Journal of Natural History
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Species of Greatest Conservation Need 2015 Wildlife Action Plan
RHODE ISLAND SPECIES OF GREATEST CONSERVATION NEED 2015 WILDLIFE ACTION PLAN RI SGCN 2015 (454) Contents SGCN Mammals ............................................................................................................................. 2 SGCN Birds .................................................................................................................................... 3 SGCN Herptofauna ......................................................................................................................... 6 SGCN Fish ...................................................................................................................................... 7 SGCN Invertebrates ........................................................................................................................ 9 1 RHODE ISLAND SPECIES OF GREATEST CONSERVATION NEED 2015 WILDLIFE ACTION PLAN SGCN Mammals (21) Scientific Name Common Name Balaenoptera physalus Fin Whale Eptesicus fuscus Big Brown Bat Eubalaena glacialis North Atlantic Right Whale Lasionycteris noctivagans Silver-haired Bat Lasiurus borealis Eastern Red Bat Lasiurus cinereus Hoary Bat Lynx rufus Bobcat Megaptera novaeangliae Humpback Whale Microtus pennsylvanicus provectus Block Island Meadow Vole Myotis leibii Eastern Small-footed Myotis Myotis lucifugus Little Brown Myotis Myotis septentrionalis Northern Long-eared Bat Perimyotis subflavus Tri-colored Bat Phoca vitulina Harbor Seal Phocoena phocoena Harbor Porpoise Scalopus aquaticus Eastern Mole Sorex (Otisorex) fumeus Smoky -
Selection of an Omnivorous Diet by the Mangrove Tree Crab Aratus Pisonii in Laboratory Experiments ⁎ Amy A
Journal of Sea Research 59 (2008) 59–69 www.elsevier.com/locate/seares Selection of an omnivorous diet by the mangrove tree crab Aratus pisonii in laboratory experiments ⁎ Amy A. Erickson a, , Ilka C. Feller b, Valerie J. Paul a, Lisa M. Kwiatkowski a, Woody Lee a a Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL, USA 34949 b Smithsonian Environmental Research Center, 647 Contees Wharf Rd., PO Box 28, Edgewater, MD, USA 21037 Received 16 October 2006; accepted 12 June 2007 Available online 26 July 2007 Abstract Observational studies on leaf damage, gut content analyses, and crab behaviour have demonstrated that like numerous other mangrove and salt-marsh generalists, the mangrove tree crab Aratus pisonii feeds on a variety of food resources. This study is the first that experimentally tests feeding preferences of A. pisonii, as well as the first to test experimentally whether chemical composition of food resources is responsible for food selection. Feeding preferences were determined among a variety of plant, algal, and animal resources available in the field both in Florida and Belize, using multiple-choice feeding assays, where male and female crabs simultaneously were offered a variety of food items. To test whether chemistry of food resources was responsible for feeding preferences, chemical extracts of food resources were incorporated in an agar-based artificial food, and used in feeding assays. Results of feeding assays suggest that crabs prefer animal matter from ∼ 2.5 to 13× more than other available resources, including leaves of the red mangrove Rhizophora mangle, which contribute the most to their natural diet. -
Complete Larval and Early Juvenile Development of the Mangrove Crab
JOURNAL OF PLANKTON RESEARCH j VOLUME 26 j NUMBER 12 j PAGES 1389–1408 j 2004 Complete larval and early juvenile development of the mangrove crab Perisesarma fasciatum (Crustacea: Brachyura: Sesarmidae) from Singapore, with a larval comparison of Parasesarma and Perisesarma GUILLERMO GUERAO1*, KLAUS ANGER2, U. W. E. NETTELMANN2 AND CHRISTOPH D. SCHUBART3 1 DEPARTAMENT DE BIOLOGIA ANIMAL (ARTRO` PODES), FACULTAT DE BIOLOGIA (U.B.), AV. DIAGONAL 645, 08028 BARCELONA, SPAIN, 2 ALFRED-WEGENER-INSTITUT FU¨ R POLAR- UND MEERESFORSCHUNG, BIOLOGISCHE ANSTALT HELGOLAND, MEERESSTATION, 27498 HELGOLAND, 3 GERMANY AND BIOLOGIE 1: ZOOLOGIE, UNIVERSITA¨ T REGENSBURG, 93040 REGENSBURG, GERMANY *CORRESPONDING AUTHOR: [email protected] Received January 22, 2004; accepted in principle June 2, 2004; accepted for publication July 13, 2004; published online July 23, 2004 The complete larval development of the sesarmid crab Perisesarma fasciatum (Lanchester, 1900) from Singapore was obtained from laboratory culture. All four zoeal stages, the megalopa and the first crab stage are described and illustrated. The morphological characteristics of the larvae of P. fasciatum are compared with those of other known larvae of the genera Perisesarma and Parasesarma. The larval morphology of P. fasciatum clearly presents the typical combination of features that characterize sesarmid larvae. Overall, larval stages are very similar in Perisesarma and Parasesarma and it is impossible to distinguish these two genera by larval morphology. INTRODUCTION still being revised -
Redalyc.Population and Life History Features of the Crab Aratus Pisonii
Interciencia ISSN: 0378-1844 [email protected] Asociación Interciencia Venezuela Conde, J. E.; Tognella, M. M. P.; Paes, E. T.; Soares, M. L. G.; Louro, I. A.; Schaeffer Novelli, Y. Population and life history features of the crab aratus pisonii (decapoda: grapsidae) in a subtropical estuary Interciencia, vol. 25, núm. 3, mayo-junio, 2000, pp. 151-158 Asociación Interciencia Caracas, Venezuela Available in: http://www.redalyc.org/articulo.oa?id=33904505 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative COMUNICACIONES REPORTS COMUNICAÇÕES POPULATION AND LIFE HISTORY FEATURES OF THE CRAB ARATUS PISONII (DECAPODA: GRAPSIDAE) IN A SUBTROPICAL ESTUARY J. E. Conde1, M. M. P. Tognella2, E. T. Paes2, M. L. G. Soares2, I. A. Louro2 and Y. Schaeffer-Novelli2 SUMMARY Population features of the grapsid crab Aratus pisonii, a similar in the two study sites: 1.63 individuals/m2 in Bertioga-D common inhabitant of the supralittoral zone of roots, branches and 1.41 in Bertioga-Cidade. Females were significantly more and canopy of several species of mangroves, were studied in abundant than males in a ratio of 1.168:1.00 in Bertioga-D, and two estuarine mangrove forests near Bertioga, São Paulo, Bra- 1.153:1.00 in Bertioga-Cidade. J-shaped sex ratio curves were zil. Crabs were larger in Bertioga-D (range: 8.85 - 26.20 mm), observed for both populations. Juvenile crabs were present at where a well-developed mangrove forest is present, than in both locations, but they were much more abundant in Bertioga- nearby Bertioga-Cidade (range: 3.80 - 20.85 mm), where Cidade (34.8%) than in Bertioga-D (3.9%), possibly as a conse- arbustive and stunted mangrove trees prevailed. -
Sound Production and Reception in Mangrove Crabs Perisesarma Spp
Vol. 5: 107–116, 2009 AQUATIC BIOLOGY Printed May 2009 doi: 10.3354/ab00136 Aquat Biol Published online March 10, 2009 OPEN ACCESS Sound production and reception in mangrove crabs Perisesarma spp. (Brachyura: Sesarmidae) P. Y. Boon*, D. C. J. Yeo, P. A. Todd Department of Biological Sciences, Marine Biology Laboratory, National University of Singapore, 14 Science Drive 4, Blk S1, #02–05, Singapore, 117543 ABSTRACT: Acoustic signalling and sound production structures in the sesarmid crabs Perisesarma eumolpe (De Man) and P. indiarum (Tweedie) from Mandai mangroves, Singapore, were examined using 40 to 20 000 Hz sound recordings and scanning electron microscopy. The sound receptor, Barth’s myochordotonal organ, was identified in both species. Only male crabs were found to display acoustically, and only during agonistic interactions. The present study also revealed key species- specific differences in the morphology of the stridulatory organs, stridulatory movements and result- ing sounds produced. The findings show that acoustic signalling may be a significant component in the social behaviour of mangrove sesarmid crabs. KEY WORDS: Sound · Mangroves · Crab · Crustacea · Brachyura · Sesarmidae · Perisesarma spp. · Stridulation · Singapore Resale or republication not permitted without written consent of the publisher INTRODUCTION vibration or quivering of appendages; (3) percussion or rapping, the striking of a body part on the substrate; Relatively little research has been conducted on and (4) stridulation or rasping, a file-and-scraper the social interactions of mangrove-dwelling sesarmid mechanism involving the appendages and/or the crabs (Mulstay 1980, Seiple & Salmon 1982), despite cephalothorax (Guinot-Dumortier & Dumortier 1960, their important ecological role in this habitat (Smith Salmon & Horch 1972) where the file (pars stridens), et al. -
Molecular Phylogeny, Taxonomy, and Evolution of Nonmarine Lineages Within the American Grapsoid Crabs (Crustacea: Brachyura) Christoph D
Molecular Phylogenetics and Evolution Vol. 15, No. 2, May, pp. 179–190, 2000 doi:10.1006/mpev.1999.0754, available online at http://www.idealibrary.com on Molecular Phylogeny, Taxonomy, and Evolution of Nonmarine Lineages within the American Grapsoid Crabs (Crustacea: Brachyura) Christoph D. Schubart*,§, Jose´ A. Cuesta†, Rudolf Diesel‡, and Darryl L. Felder§ *Fakulta¨tfu¨ r Biologie I: VHF, Universita¨ t Bielefeld, Postfach 100131, 33501 Bielefeld, Germany; †Departamento de Ecologı´a,Facultad de Biologı´a,Universidad de Sevilla, Apdo. 1095, 41080 Sevilla, Spain; ‡Max-Planck-Institut fu¨ r Verhaltensphysiologie, Postfach 1564, 82305 Starnberg, Germany; and §Department of Biology and Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-2451 Received January 4, 1999; revised November 9, 1999 have attained lifelong independence from the sea (Hart- Grapsoid crabs are best known from the marine noll, 1964; Diesel, 1989; Ng and Tan, 1995; Table 1). intertidal and supratidal. However, some species also The Grapsidae and Gecarcinidae have an almost inhabit shallow subtidal and freshwater habitats. In worldwide distribution, being most predominant and the tropics and subtropics, their distribution even species rich in subtropical and tropical regions. Over- includes mountain streams and tree tops. At present, all, there are 57 grapsid genera with approximately 400 the Grapsoidea consists of the families Grapsidae, recognized species (Schubart and Cuesta, unpubl. data) Gecarcinidae, and Mictyridae, the first being subdi- and 6 gecarcinid genera with 18 species (Tu¨ rkay, 1983; vided into four subfamilies (Grapsinae, Plagusiinae, Tavares, 1991). The Mictyridae consists of a single Sesarminae, and Varuninae). To help resolve phyloge- genus and currently 4 recognized species restricted to netic relationships among these highly adaptive crabs, portions of the mitochondrial genome corresponding the Indo-West Pacific (P. -
Comparative Study of Spectral Sensitivity, Irradiance Sensitivity
Nova Southeastern University NSUWorks All HCAS Student Capstones, Theses, and Dissertations HCAS Student Theses and Dissertations 5-11-2020 Comparative Study of Spectral Sensitivity, Irradiance Sensitivity, Spatial Resolution and Temporal Resolution in the Visual Systems of Aratus pisonii and Ocypode quadrata Ruchao Qian Nova Southeastern University Follow this and additional works at: https://nsuworks.nova.edu/hcas_etd_all Part of the Comparative and Evolutionary Physiology Commons, Integrative Biology Commons, and the Marine Biology Commons Share Feedback About This Item NSUWorks Citation Ruchao Qian. 2020. Comparative Study of Spectral Sensitivity, Irradiance Sensitivity, Spatial Resolution and Temporal Resolution in the Visual Systems of Aratus pisonii and Ocypode quadrata. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (46) https://nsuworks.nova.edu/hcas_etd_all/46. This Thesis is brought to you by the HCAS Student Theses and Dissertations at NSUWorks. It has been accepted for inclusion in All HCAS Student Capstones, Theses, and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Thesis of Ruchao Qian Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Marine Science Nova Southeastern University Halmos College of Arts and Sciences May 2020 Approved: Thesis Committee Committee Chair: Tamara Frank, Ph.D. Committee Member: Patricia Blackwelder, Ph.D. Committee Member: Heather Bracken-Grissom, Ph.D. This thesis -
This Article Is from the October 2014 Issue of Published by the American
This article is from the October 2014 issue of published by The American Phytopathological Society For more information on this and other topics related to plant pathology, we invite you to visit the APS website at www.apsnet.org Ecology and Epidemiology e-Xtra* A Tripartite Interaction Between Spartina alterniflora, Fusarium palustre, and the Purple Marsh Crab (Sesarma reticulatum) Contributes to Sudden Vegetation Dieback of Salt Marshes in New England Wade H. Elmer The Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, P.O. Box 1106, New Haven 06504. Accepted for publication 17 March 2014. ABSTRACT Elmer, W. H. 2014. A tripartite interaction between Spartina alterniflora, plants. When the drought treatment was combined with inoculation with Fusarium palustre, and the purple marsh crab (Sesarma reticulatum) F. palustre, plants were significantly more stunted and symptomatic, had contributes to sudden vegetation dieback of salt marshes in New England. less fresh weight, more diseased roots, and a greater number of Fusarium Phytopathology 104:1070-1077. colonies growing from the roots (P < 0.001) than noninoculated plants. The effects were additive, and statistical interactions were not detected Tripartite interactions are common and occur when one agent (an between drought and inoculation. Estimates of herbivory (number of arthropod or pathogen) changes the host plant in a manner that alters the grass blades cut or biomass consumption) by the purple marsh crab were attack of the challenging agent. We examined herbivory from the purple significantly greater on drought-stressed, diseased plants than on healthy marsh crab (Sesarma reticulatum) on Spartina alterniflora following plants irrigated normally. -
Brood Loss and Sperm Limitation in Aratus Pisonii, the Mangrove Tree Crab Austen Walker, Connor Bird, Blaine D
Brood Loss and Sperm Limitation in Aratus pisonii, the Mangrove Tree Crab Austen Walker, Connor Bird, Blaine D. Griffen Biology Department, Brigham Young University Purpose Results To investigate the possible loss of eggs and potential for sperm limitation in Aratus pisonii, the mangrove tree Clutch Size Throughout Egg Development and Egg development by crab. the Reproductive Period Carapace Width sampling date 0.95 Introduction 0.95 Egg loss can occur at any point during the reproductive period. Several past studies document egg loss across a 1200 variety of crustaceans. The mangrove tree crab is expected to experience high egg loss, due to it’s constant 0.85 0.85 climbing on tree limbs. Egg production and loss provide valuable insight into the reproductive physiology and 600 the mangrove tree crab and its ecology as an important part of the mangrove ecosystem. (Boudreau et al. 2012). /size Clutch 10 0.75 200 This species is also currently expanding it’s range due to climate change, and egg loss will factor into the rate of 0.75 14 16 18 20 22 24 of Proportion developing eggs 150 200 250 300 population growth in northern regions of its expanding range. Secondarily, we also look for evidence of sperm 14 16 18 20 22 24 Proportion of Proportion developing eggs limitation, when there is insufficient sperm to fertilize all eggs produced by the females. If sperm limitation is Carapace width (mm) Carapace width (mm) Julian sampling date occurring, the reproductive potential of a population would be limited, and could hamper its ability to keep pace with environmental changes. -
Phylogeny of the Genus Pinnixa White, 1846
DIRECTEUR DE LA PUBLICATION : Bruno David Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF : Laure Desutter-Grandcolas ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Anne Mabille ([email protected]) MISE EN PAGE / PAGE LAYOUT : Anne Mabille COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : James Carpenter (AMNH, New York, États-Unis) Maria Marta Cigliano (Museo de La Plata, La Plata, Argentine) Henrik Enghoff (NHMD, Copenhague, Danemark) Rafael Marquez (CSIC, Madrid, Espagne) Peter Ng (University of Singapore) Norman I. Platnick (AMNH, New York, États-Unis) Jean-Yves Rasplus (INRA, Montferrier-sur-Lez, France) Jean-François Silvain (IRD, Gif-sur-Yvette, France) Wanda M. Weiner (Polish Academy of Sciences, Cracovie, Pologne) John Wenzel (The Ohio State University, Columbus, États-Unis) COUVERTURE / COVER : Morphological characters of the type species of some genera within subfamily Pinnixinae Števčić, 2005. Zoosystema est indexé dans / Zoosystema is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting Services® – Current Contents® / Agriculture, Biology, and Environmental Sciences® – Scopus® Zoosystema est distribué en version électronique par / Zoosystema is distributed electronically by: – BioOne® (http://www.bioone.org) Les articles ainsi que les nouveautés nomenclaturales publiés dans Zoosystema sont référencés par / Articles and nomenclatural novelties published in Zoosystema are referenced by: – ZooBank® (http://zoobank.org) Zoosystema est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris / Zoosystema is a fast track journal published by the Museum Science Press, Paris Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publish: Adansonia, Geodiversitas, Anthropozoologica, European Journal of Taxonomy, Naturae, Cryptogamie sous-sections Algologie, Bryologie, Mycologie. Diffusion – Publications scientifiques Muséum national d’Histoire naturelle CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France) Tél. -
Effects of Salinity on Development in the Ghost Shrimp Callichirus Islagrande and Two Populations of C
Gulf and Caribbean Research Volume 13 | Issue 1 January 2001 Effects of Salinity on Development in the Ghost Shrimp Callichirus islagrande and Two Populations of C. major (Crustacea: Decapoda: Thalassinidea) K.M. Strasser University of Louisiana-Lafayette D.L. Felder University of Louisiana-Lafayette DOI: 10.18785/gcr.1301.01 Follow this and additional works at: http://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Strasser, K. and D. Felder. 2001. Effects of Salinity on Development in the Ghost Shrimp Callichirus islagrande and Two Populations of C. major (Crustacea: Decapoda: Thalassinidea). Gulf and Caribbean Research 13 (1): 1-10. Retrieved from http://aquila.usm.edu/gcr/vol13/iss1/1 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf and Caribbean Research Vol. 13, 1–10, 2001 Manuscript received January 27, 2000; accepted June 30, 2000 EFFECTS OF SALINITY ON DEVELOPMENT IN THE GHOST SHRIMP CALLICHIRUS ISLAGRANDE AND TWO POPULATIONS OF C. MAJOR (CRUSTACEA: DECAPODA: THALASSINIDEA) K. M. Strasser1,2 and D. L. Felder1 1Department of Biology, University of Louisiana - Lafayette, P.O. Box 42451, Lafayette, LA 70504-2451, USA, Phone: 337-482-5403, Fax: 337-482-5834, E-mail: [email protected] 2Present address (KMS): Department of Biology, University of Tampa, 401 W. Kennedy Blvd. Tampa, FL 33606-1490, USA, Phone: 813-253-3333 ext. 3320, Fax: 813-258-7881, E-mail: [email protected] ABSTRACT Salinity (S) was abruptly decreased from 35‰ to 25‰ at either the 4th zoeal (ZIV) or decapodid stage (D) in Callichirus islagrande (Schmitt) and 2 populations of C. -
Moulting of the Semi-Terrestrial Crab Chiromantes Haematocheir (De Haan, 1833) (Decapoda, Sesarmidae) in Taiwan
Crustaceana 90 (14) 1731-1745 MOULTING OF THE SEMI-TERRESTRIAL CRAB CHIROMANTES HAEMATOCHEIR (DE HAAN, 1833) (DECAPODA, SESARMIDAE) IN TAIWAN BY HUNG-CHANG LIU1), MING-SHIOU JENG2) and RICHARD G. HARTNOLL3,4) 1) No. 53 Chenggong 11th St., Jhubei City, Hsinchu County, Taiwan 302 2) Research Centre for Biodiversity, Academia Sinica, Nankang, Taipei 115, Taiwan 3) School of Environmental Sciences, University of Liverpool, Liverpool L69 3BX, U.K. ABSTRACT Population structure and moulting of the semi-terrestrial crab Chiromantes haematocheir (De Haan, 1833) were studied in Taiwan. The crab moults nocturnally in small freshwater pools, and newly moulted crabs and cast integuments were used to assess moult increment. Males reached a larger size (max. CW 36 mm, n = 272) than females (max. CW 33 mm, n = 164): from 22 mm CW males increasingly dominated the population. Size at maturity was estimated at 17.5 mm CW. The percentage moult increment averaged 11.5% in males (5.5-19%, n = 153) and 13.9% in females (7-23%, n = 72). Female increment exceeded male increment for all overlapping size classes. The larger size of mature males, despite a smaller percentage increment, is explained by a higher post-puberty moult frequency. Of the moulting crabs, 25% of males and 38% of females had one or more missing or regenerating peraeopods. In both sexes this reduced the percentage increment, more so the larger number of limbs affected. The moulting conditions for C. haematocheir are not ideal, with constraints in relation to calcium supplies, and shelter. So the moult increments are unsurprisingly less than those of shallow water marine crabs moulting in an optimal environment, but larger than those of land crabs moulting without access to standing water.