Tapa TESIS M-VARISCO

Total Page:16

File Type:pdf, Size:1020Kb

Tapa TESIS M-VARISCO Naturalis Repositorio Institucional Universidad Nacional de La Plata http://naturalis.fcnym.unlp.edu.ar Facultad de Ciencias Naturales y Museo Biología de Munida gregaria (Crustacea Anomura) : bases para su aprovechamiento pesquero en el Golfo San Jorge, Argentina Varisco, Martín Alejandro Doctor en Ciencias Naturales Dirección: Lopretto, Estela Celia Co-dirección: Vinuesa, Julio Héctor Facultad de Ciencias Naturales y Museo 2013 Acceso en: http://naturalis.fcnym.unlp.edu.ar/id/20130827001277 Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional Powered by TCPDF (www.tcpdf.org) Universidad Nacional de la Plata Facultad de Ciencias Naturales y Museo Tesis Doctoral Biología de Munida gregaria (Crustacea Anomura): bases para su aprovechamiento pesquero en el Golfo San Jorge, Argentina Lic. Martín Alejandro Varisco Directora Dra. Estela C. Lopretto Co-director Dr. Julio H. Vinuesa La Plata 2013 Esta tesis esta especialmente dedicada a mis padres A Evangelina A Pame, Jime, Panchi y Agus Agradecimientos Deseo expresar mi conocimiento a aquellas personas e instituciones que colaboraron para que llevar adelante esta tesis y a aquellos que me acompañaron durante la carrera de doctorado: Al Dr. Julio Vinuesa, por su apoyo constante y por su invaluable aporte a esta tesis en particular y a mi formación en general. Le agradezco también por permitirme trabajar con comodidad y por su apoyo cotidiano. A la Dra. Estela Lopretto, por su valiosa dedicación y contribución en esta Tesis. A los Lic. Héctor Zaixso y Damián Gil, por la colaboración en los análisis estadísticos A mis compañeros de trabajo: Damián, Paula, Mauro, Tomas, Héctor por su colaboración, interés y consejo en distintas etapas de este trabajo; pero sobre todo por hacer ameno el trabajo diario. Al personal de la Secretaría de Pesca de la Provincia de Chubut: María Eva Góngora, Ricardo Álvarez y especialmente al observador a bordo Rodrigo Torres por su colaboración en la obtención de las muestras. A mis compañeros de Química Biológica: Cecilia, Eduardo, Celeste y Julia por el apoyo para que pudiera realizar esta tesis. Al personal de la Prefectura Naval Argentina por su predisposición para realizar muestreos y gestionar permisos. Al personal y propietarios de la empresa Servisub SRL por su colaboración en los muestreos. A los propietarios y tripulaciones de los barcos pesqueros: Juan Manuel, Baffetta, Virgen de Itati, 17 de octubre, Felicitas y Eterno San José. Al CONICET que me otorgó las becas que me permitieron una amplia dedicación al trabajo de tesis. A la UNPSJB por brindarme el lugar de trabajo para el desarrollo de las actividades. A mi hermano Francisco, quien ha colaborado en distintas etapas de este trabajo. A Evangelina por su acompañamiento, por tomar esto como un proyecto de ambos y por compartir muchas de las actividades de campo. A sus padres por su interés y apoyo constante. A mi familia, que siempre me brindo su apoyo y amor para que logrará mis objetivos profesionales y personales. A Dios, por permitirme disfrutar de este hermoso “trabajo” Índice Índice…………………………………………………………………………………………….. i Resumen…………………………………………………………………………………………. iii Summary…………………………………………………………………………………………. v Introducción general Características generales de los crustáceos……………………………………………………… 1 Características generales de la familia Galatheidae……………………………………………... 3 Estado actual del conocimiento de Munida gregaria……………………………………………. 5 Objetivos y enfoque del estudio ………………………………………………………………… 7 Figuras…………………………………………………………………………………………… 9 Descripción del área de estudio Descripción del área de estudio………………………………………………………………..... 10 Figuras…………………………………………………………………………………………… 13 Capítulo I – Distribución temporal, abundancia relativa y tamaño de los estadios larvales Introducción……………………………………………………………………………………... 16 Materiales y métodos……………………………………………………………………………. 19 Muestreo……………………………………………………………………………………... 19 Procedimientos de laboratorio……………………………………………………………….. 19 Análisis estadísticos………………………………………………………………………….. 20 Resultados………………………………………………………………………………………... 21 Distribución temporal y abundancia…………………………………………………………. 21 Tamaño de las larvas y crecimiento………………………………………………………….. 22 Diferencias morfológicas de los decapoditos………………………………………………... 22 Discusión………………………………………………………………………………………... 22 Tablas y Figuras…………………………………………………………………………………. 27 Capítulo II – Ciclo de muda y crecimiento Introducción……………………………………………………………………………………... 38 Materiales y métodos……………………………………………………………………………. 40 Muestreo……………………………………………………………………………………... 40 Procedimientos de laboratorio……………………………………………………………….. 41 Resultados………………………………………………………………………………………... 44 Ciclo de mudas y frecuencia de muda……………………………..…………………………. 44 Incremento por muda……………………………………………….……………………….. 44 Distribución de frecuencias de tallas…………………………………………..……………... 45 Discusión………………………………………………………………………………………... 46 Tablas y Figuras…………………………………………………………………………………. 53 Capítulo III – Fecundidad, tamaño del huevo y aporte teórico de huevos Introducción……………………………………………………………………………………... 68 Materiales y métodos……………………………………………………………………………. 70 Muestreo……………………………………………………………………………………... 70 Procedimientos de laboratorio……………………………………………………………….. 71 Análisis estadísticos………………………………………………………………………….. 72 Resultados………………………………………………………………………………………... 73 Tamaño del huevo y fecundidad………………………………………………...……………. 73 Aporte teórico de huevos…………………………………………………………….……….. 74 Discusión………………………………………………………………………………………... 74 Tablas y Figuras…………………………………………………………………………………. 79 i Índice Capítulo IV – Prevalencia del parásito Pseudione galacanthae y efecto sobre el potencial reproductivo de Munida gregaria Introducción……………………………………………………………………………………... 89 Materiales y métodos……………………………………………………………………………. 92 Muestreo……………………………………………………………………………………... 92 Procedimientos de laboratorio……………………………………………………………….. 92 Análisis estadísticos………………………………………………………………………….. 93 Resultados………………………………………………………………………………………... 94 Infestación de P. galacanthae…………………………………...……………...……………. 94 Prevalencia………………………………………………………………….……….……….. 94 Efecto sobre la función reproductiva…………………………………………………………. 95 Relación entre el bopírido y la talla del hospedador…………………………………………. 95 Discusión………………………………………………………………………………………... 96 Tablas y Figuras…………………………………………………………………………………. 102 Capítulo V – Abundancia y distribución de las capturas de Munida gregaria Introducción……………….……………………………………………………………………... 111 Materiales y métodos……………………………………………………………………………. 113 Caracterización de la flota costera….………………………………………………………... 113 Distribución y abundancia de las capturas incidentales….………………………………….. 114 Proporción de sexos y estructura de tallas de las capturas…………………………………... 115 Resultados………………………………………………………………………………………... 115 Dinámica de la flota costera……….…………………………………………………………. 115 Distribución y abundancia de las capturas de M. gregaria…………………………………... 116 Proporción de sexos y distribución de tallas………………………………………………..... 117 Discusión………………………………………………………………………………………... 117 Tablas y Figuras…………………………………………………………………………………. 121 Capítulo VI – Discusión general y consideraciones finales Caracterización bioecológica de Munida gregaria en el Golfo San Jorge ……………………… 131 Pesquerías de galateidos ………………………………………………………………………… 133 Aprovechamiento del recurso …………………………………………………………………… 135 La langostilla en las pesquerías del Golfo San Jorge …………………………………………… 136 Conclusiones ……………………………………………………………………………………. 139 Bibliografía citada ……………………………………………………………………………... 142 ii Resumen La langostilla Munida gregaria es crustáceo decápodo muy abundante en el Golfo San Jorge y uno de los principales componentes de las capturas incidentales en las distintas pesquerías que allí se desarrollan. Por esto, la especie constituye un potencial recurso pesquero en el Golfo San Jorge y en otras localidades del Mar Argentino. En la presente Tesis Doctoral se analizan diferentes aspectos de la biología de la langostilla Munida gregaria en el Golfo San Jorge, a efectos de incrementar el conocimiento de la especie y brindar herramientas para el manejo de la misma ante un eventual aprovechamiento. En el Capítulo I se estudia la distribución, abundancia relativa y tamaño de los estadios larvales. Cinco estadios zoeas y un decapodito (megalopa) fueron diferenciados en las muestras de plancton. Larvas de M. gregaria se observan de desde agosto a febrero, con un prolongado período de aporte de zoeas I al plancton. En este período las larvas de langostilla son el principal componente del meroplancton de decápodos en aguas costeras, junto al cangrejo Halicarcinus planatus y al camarón fantasma Notiax brachyophthalma. En general, las curvas de abundancia para los distintos estadios son bimodales con un primer pico de mayor magnitud. No se observa un patrón de deriva de los estadios, siendo los tardíos (zoea IV, zoea V y decapodito) muy abundantes en aguas costeras con profundidades menores a 20 m. Los decapoditos muestran numerosas características morfológicas que permiten la diferenciación de los dos morfotipos descriptos. Los resultados sugieren que la duración del estadio zoea V determinaría la expresión de los morfotipos y que el asentamiento ocurre en aguas costeras. El ciclo de muda y crecimiento de langostilla en el Golfo San Jorge son analizados en el Capítulo II. La frecuencia de muda está relacionada con la talla de los ejemplares. Luego del asentamiento, los animales tienen un período de rápido crecimiento, con sucesivas
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • BIOPAPUA Expedition Highlighting Deep-Sea Benthic Biodiversity of Papua New- Guinea
    Biopapua Expedition – Progress report MUSÉUM NATIONAL D'HISTOIRE NATURELLE 57 rue Cuvier 75005 PARIS‐ France BIOPAPUA Expedition Highlighting deep-sea benthic Biodiversity of Papua New- Guinea Submitted by: Muséum National d'Histoire Naturelle (MNHN) Represented by (co‐PI): Dr Sarah Samadi (Researcher, IRD) Dr Philippe Bouchet (Professor, MNHN) Dr Laure Corbari (Research associate, MNHN) 1 Biopapua Expedition – Progress report Contents Foreword 3 1‐ Our understanding of deep‐sea biodiversity of PNG 4 2 ‐ Tropical Deep‐Sea Benthos program 5 3‐ Biopapua Expedition 7 4‐ Collection management 15 5‐ Preliminary results 17 6‐ Outreach and publications 23 7‐ Appendices 26 Appendix 1 27 NRI, note n°. 302/2010 on 26th march, 2010, acceptance of Biopapua reseach programme Appendix 2 28 Biopapua cruise Report, submitted by Ralph MANA (UPNG) A Report Submitted to School of Natural and Physical Sciences, University of Papua New Guinea Appendix 3 39 Chan, T.Y (2012) A new genus of deep‐sea solenocerid shrimp (Crustacea: Decapoda: Penaeoidea) from the Papua New Guinea. Journal of Crustacean Biology, 32(3), 489‐495. Appendix 4 47 Pante E, Corbari L., Thubaut J., Chan TY, Mana R., Boisselier MC, Bouchet P., Samadi S. (In Press). Exploration of the deep‐sea fauna of Papua New Guinea. Oceanography Appendix 5 60 Richer de Forges B. & Corbari L. (2012) A new species of Oxypleurodon Miers, 1886 (Crustacea Brachyura, Majoidea) from the Bismark Sea, Papua New Guinea. Zootaxa. 3320: 56–60 Appendix 6 66 Taxonomic list: Specimens in MNHN and Taiwan collections 2 Biopapua Expedition – Progress report Foreword Biopapua cruise was a MNHN/IRD deep‐sea cruise in partnership with the School of Natural and Physical Sciences, University of Papua New Guinea.
    [Show full text]
  • Lobsters-Identification, World Distribution, and U.S. Trade
    Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More­ Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de­ temperature zones. From such partition­ food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob­ Nephropoidea), the squat lobsters the world because of species distribu­ ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al­ The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con­ lobsters, Homarus americanus, caught the purpose of reporting fishery statis­ tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish­ Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e.
    [Show full text]
  • Distribución Y Abundancia De Larvas De Langostino Colorado Pleuroncodes Monodon Frente a La Costa De Concepción, Chile
    Invest. Mar., Valparaíso, 22: 13-29, 1994 Distribución de larvas de langostino colorado 13 Distribución y abundancia de larvas de langostino colorado Pleuroncodes monodon frente a la costa de Concepción, Chile SERGIO PALMA G. Escuela de Ciencias del Mar Universidad Católica de Valparaíso Casilla 1020, Valparaíso, Chile RESUMEN. Se analiza la distribución y abundancia de larvas de langostino colorado Pleuroncodes monodon captura- das en cuatro cruceros oceanográficos efectuados entre abril y diciembre de 1991, frente a la costa de Concepción, Chile. Las muestras de zooplancton se obtuvieron en 15 estaciones oceanográficas, mediante pescas oblicuas con redes Bongo desde el fondo a superficie, con un máximo de 200 m de profundidad. En todos los cruceros realizados se observó la presencia de larvas de langostino, encontrándose la mayor abundancia en noviembre. Las mayores densidades de larvas se detectaron en aguas sobre la plataforma continental, particularmente en el norte del área de estudio. La biomasa zooplanctónica alcanzó valores máximos en abril y mínimos en junio, registrándose las mayores densidades en aguas de la plataforma, en el norte y sur del área de estudio. La distribución temporal de los distintos estados de desarrollo (zoeas y postlarvas), sugiere el desplazamiento desde la costa hacia el talud, a medida que avanza la metamorfosis larval. La distribución vertical de las larvas mostró una preferencia de los estados de zoea por el estrato 0-25 m, mientras que las postlarvas se concentraron en el estrato 25-50 m. Bajo 50 m de profundidad, se observó una escasa cantidad de individuos. Palabras claves: Pleuroncodes monodon, larvas langostino colorado, biomasa zooplancton, distribución espacio-temporal, abundancia.
    [Show full text]
  • From Ghost and Mud Shrimp
    Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 .
    [Show full text]
  • Metabolic Suppression in the Pelagic Crab, Pleuroncodes Planipes, in Oxygen Minimum Zones T ⁎ Brad A
    Comparative Biochemistry and Physiology, Part B 224 (2018) 88–97 Contents lists available at ScienceDirect Comparative Biochemistry and Physiology, Part B journal homepage: www.elsevier.com/locate/cbpb Metabolic suppression in the pelagic crab, Pleuroncodes planipes, in oxygen minimum zones T ⁎ Brad A. Seibela, , Bryan E. Luub,1, Shannon N. Tessierc,1, Trisha Towandad, Kenneth B. Storeyb a College of Marine Science, University of South Florida, 830 1st St. S., St. Petersburg, FL 33701, USA b Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada c BioMEMS Resource Center & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA d Evergreen State College, Olympia, WA, USA ARTICLE INFO ABSTRACT Keywords: The pelagic red crab, Pleuroncodes planipes, is abundant throughout the Eastern Tropical Pacific in both benthic Protein synthesis and pelagic environments to depths of several hundred meters. The oxygen minimum zones in this region Hypoxia reaches oxygen levels as low as 0.1 kPa at depths within the crabs vertical range. Crabs maintain aerobic me- Zooplankton tabolism to a critical PO2 of ~0.27 ± 0.2 kPa (10 °C), in part by increasing ventilation as oxygen declines. At Hypometabolism subcritical oxygen levels, they enhance anaerobic ATP production slightly as indicated by modest increases in Vertical migration lactate levels. However, hypoxia tolerance is primarily mediated via a pronounced suppression of aerobic me- tabolism (~70%). Metabolic suppression is achieved, primarily, via reduced protein synthesis, which is a major sink for metabolic energy. Posttranslational modifications on histone H3 suggest a condensed chromatin state and, hence, decreased transcription.
    [Show full text]
  • Nuevos Táxones Animales Descritos En La Península Ibérica Y Macaronesia Desde 1994 (XIII)
    15. Especies_nuevas_2010 27/12/10 13:18 Página 313 CORE Graellsia,Metadata, 66(2): citation 313-344 and similar papers at core.ac.uk julio-diciembre 2010 Provided by MUCC (Crossref) ISSN: 0367-5041 doi:10.3989/graellsia.2010.v66.028 NOTICIA DE NUEVOS TÁXONES PARA LA CIENCIA EN EL ÁMBITO ÍBERO-BALEAR Y MACARONÉSICO Nuevos táxones animales descritos en la península PORIFERA Ibérica y Macaronesia desde 1994 (3ª parte) Dercitus (Dercitus) bucklandi lusitanicus Van Soest, Beglinger y De Voogd, 2010 Familia Pachastrellidae J. FERNÁNDEZ Museo Nacional de Ciencias Naturales, C.S.I.C. LOCALIDAD TIPO: Gettysburg Peak, Gorringe Bank, Portugal, océano José Gutiérrez Abascal, 2. 28006. Madrid. Atlántico, 31-38 m de profundidad. E-mail: [email protected] MATERIAL TIPO: holotipo (ZMA Por. 21810) en el National Centre for Biodiversity (antiguo Zoological Museum of the University of Amsterdam). DISTRIBUCIÓN: océano Atlántico (costas de Portugal y norte de España) y mar de Alborán. REFERENCIA: Van Soest, R.W.M., Beglinger, E.J. y De Voogd, N.J., De nuevo frente a otro capítulo de este trabajo. 2010. Skeletons in confusion: a review of astrophorid sponges Las consideraciones generales son las habituales y with (dicho–)calthrops as structural megascleres (Porifera, Demospongiae, Astrophorida). ZooKeys, 68: 1-88. no las repetiremos. NOTA: urn:lsid:zoobank.org:act:9152BD64-067E-4F21-AF03-6B84E6 Queremos expresar nuestro reconocimiento a 71E2A6 todos aquellos investigadores que nos han enviado Dercitus (Stoeba) senegalensis Van Soest, Beglinger y De Voogd, 2010 generosamente sus estudios y, de manera muy espe- Familia Pachastrellidae cial, a las personas que nos porporcionan informa- LOCALIDAD TIPO: costas frente a Senegal, océano Atlántico.
    [Show full text]
  • Annotated Checklist of New Zealand Decapoda (Arthropoda: Crustacea)
    Tuhinga 22: 171–272 Copyright © Museum of New Zealand Te Papa Tongarewa (2011) Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea) John C. Yaldwyn† and W. Richard Webber* † Research Associate, Museum of New Zealand Te Papa Tongarewa. Deceased October 2005 * Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand ([email protected]) (Manuscript completed for publication by second author) ABSTRACT: A checklist of the Recent Decapoda (shrimps, prawns, lobsters, crayfish and crabs) of the New Zealand region is given. It includes 488 named species in 90 families, with 153 (31%) of the species considered endemic. References to New Zealand records and other significant references are given for all species previously recorded from New Zealand. The location of New Zealand material is given for a number of species first recorded in the New Zealand Inventory of Biodiversity but with no further data. Information on geographical distribution, habitat range and, in some cases, depth range and colour are given for each species. KEYWORDS: Decapoda, New Zealand, checklist, annotated checklist, shrimp, prawn, lobster, crab. Contents Introduction Methods Checklist of New Zealand Decapoda Suborder DENDROBRANCHIATA Bate, 1888 ..................................... 178 Superfamily PENAEOIDEA Rafinesque, 1815.............................. 178 Family ARISTEIDAE Wood-Mason & Alcock, 1891..................... 178 Family BENTHESICYMIDAE Wood-Mason & Alcock, 1891 .......... 180 Family PENAEIDAE Rafinesque, 1815 ..................................
    [Show full text]
  • High-Density Linkage Mapping Aided by Transcriptomics Documents ZW Sex Determination System in the Chinese Mitten Crab Eriocheir Sinensis
    Heredity (2015) 115, 206–215 & 2015 Macmillan Publishers Limited All rights reserved 0018-067X/15 www.nature.com/hdy ORIGINAL ARTICLE High-density linkage mapping aided by transcriptomics documents ZW sex determination system in the Chinese mitten crab Eriocheir sinensis Z Cui1,2,6, M Hui1,6, Y Liu1,6, C Song1,3,XLi1,3,YLi1, L Liu1, G Shi1,3, S Wang4,FLi1, X Zhang1, C Liu1, J Xiang1 and KH Chu5 The sex determination system in crabs is believed to be XY-XX from karyotypy, but centromeres could not be identified in some chromosomes and their morphology is not completely clear. Using quantitative trait locus mapping of the gender phenotype, we revealed a ZW-ZZ sex determination system in Eriocheir sinensis and presented a high-density linkage map covering ~ 98.5% of the genome, with 73 linkage groups corresponding to the haploid chromosome number. All sex-linked markers in the family we used were located on a single linkage group, LG60, and sex linkage was confirmed by genome-wide association studies (GWAS). Forty-six markers detected by GWAS were heterozygous and segregated only in the female parent. The female LG60 was thus the putative W chromosome, with the homologous male LG60 as the Z chromosome. The putative Z and W sex chromosomes were identical in size and carried many homologous loci. Sex ratio (5:1) skewing towards females in induced triploids using unrelated animals also supported a ZW-ZZ system. Transcriptome data were used to search for candidate sex-determining loci, but only one LG60 gene was identified as an ankyrin-2 gene.
    [Show full text]
  • Chemical Communication in Crustaceans
    Chemical Communication in Crustaceans Thomas Breithaupt l Martin Thiel Editors Chemical Communication in Crustaceans With drawings by Jorge Andrés Varela Ramos Editors Thomas Breithaupt Martin Thiel University of Hull Universidad Cato´lica del Norte Department of Biological Sciences Facultad Ciencas del Mar Hull, HU6 7RX Depto. de Biologı´a Marina UK Larrondo 1281 [email protected] Coquimbo Chile [email protected] ISBN 978-0-387-77100-7 e-ISBN 978-0-387-77101-4 DOI 10.1007/978-0-387-77101-4 Springer New York Dordrecht Heidelberg London # Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) To our families and friends. Preface Animal communication has fascinated biologists for centuries. This fascination has sustained many a scientific career as will be evident from the personal accounts by the contributors to this book.
    [Show full text]
  • Experimental Studies on the Feeding Ecology of Munida Subrugosa (White, 1847) (Decapoda: Anomura: Galatheidae) from the Magellan Region, Southern Chile
    SCIENTIA MARINA 71(1) March 2007, 187-190, Barcelona (Spain) ISSN: 0214-8358 Experimental studies on the feeding ecology of Munida subrugosa (White, 1847) (Decapoda: Anomura: Galatheidae) from the Magellan region, southern Chile PATRICIA KARAS1,2, MATTHIAS GORNY1 and RUBÉN ALARCÓN-MUÑOZ1 1 Instituto de la Patagonia, Universidad de Magallanes. Av. Bulnes 01890, Punta Arenas, Chile. E-mail: [email protected] 2 Institute for Polar Ecology, University of Kiel, D-24184 Kiel, Germany. SUMMARY: Feeding behaviour and food uptake rates of the anomuran crab Munida subrugosa from the southern Magellan region (Chile) were studied under laboratory conditions. Crabs exhibited a marked preference for meat versus macroalgae, with uptake rates being 14 times higher. Different algal species were ranked according to structure and detrital cover. Observations suggest that scavenging and cannibalism, restricted to injured or moulting individuals, are regularly applied in the natural habitat, whereas active hunting is only performed on suitable prey. The main food resource is suggested to be of microscopic origin, given the time spent on typical food uptake movements for detritus and suspended food. The findings of this study, backed up by results of simultaneously carried out stomach analysis, proved M. subrugosa to be an opportunistic feeder that can make use of different forms of food uptake. Key words: feeding habits, food choice, natural diet, anomuran crabs, Munida subrugosa. RESUMEN: ESTUDIOS EXPERIMENTALES DE LA ECOLOGÍA ALIMENTARIA DE MUNIDA SUBRUGOSA (WHITE, 1847) (DECAPODA: ANOMURA: GALATHEIDAE) DE LA REGIÓN DE MAGALLANES, SUR DE CHILE. – Se estudiaron los hábitos alimentarios y tasas de ingesta de alimento del crustáceo anomuro Munida subrugosa en la Región de Magallanes (Chile) bajo condiciones de labo- ratorio.
    [Show full text]
  • Heterochronic Phenotypic Plasticity with Lack of Genetic Differentiation in the Southeastern Pacific Squat Lobster Pleuroncodes Monodon
    EVOLUTION & DEVELOPMENT 12:6, 628–634 (2010) DOI: 10.1111/j.1525-142X.2010.00447.x Heterochronic phenotypic plasticity with lack of genetic differentiation in the southeastern Pacific squat lobster Pleuroncodes monodon Pilar A. Haye,a,Ã Pilar Salinas,b Enzo Acun˜a,a and Elie Poulinb aDepartamento de Biologı´a Marina, Facultad de Ciencias del Mar, Universidad Cato´lica del Norte and Centro de Estudios Avanzados en Zonas A´ ridas (CEAZA), Larrondo 1281, Coquimbo, Chile bInstituto de Ecologı´a y Biodiversidad, Departamento de Ciencias Ecolo´gicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile ÃAuthor for correspondence (email: [email protected]) SUMMARY Two forms of the squat lobster Pleuroncodes genetically differentiated or not; and thus to infer the underlying monodon can be found along the Pacific coast of South America: basisFheritable or plasticFof the existence of the two forms. a smaller pelagic and a larger benthic form that live respectively Based on barcoding data of mitochondrial DNA (the COI gene), in the northern and southern areas of the geographic distribution we show that haplotypes from individuals of the pelagic and of the species. The morphological and life history differences benthic forms comprise a single genetic unit without genetic between the pelagic and benthic forms could be explained either differentiation. Moreover, the data suggest that all studied indivi- by genetic differentiation or phenotypic plasticity. In the latter duals share a common demographic history of recent and case it would correspond to a heterochronic phenotypic plasticity sudden population expansion. These results strongly suggest that is fixed in different environments (phenotype fixation).
    [Show full text]