Book of Abstracts Book of Abstracts MMM5 Book of Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

Book of Abstracts Book of Abstracts MMM5 Book of Abstracts Book of Abstracts Book of Abstracts MMM5 Book of Abstracts Welcome to MMM5! This has been the largest mangrove conference yet, with 321 abstracts submitted. The accepted abstracts can be found in the following pages, listed in alphabetical order according to the lead author. This document is searchable using ‘Ctrl F’ and searching for the title or the presenting author. All abstracts underwent a rigorous review process, and we would like to thank the Scientific Committee (chaired by Chua Siew Chin, National University of Singapore): AUSTRALIA NEW CALEDONIA Norm Duke, James Cook University Cyril Marchand, University of New Caledonia Catherine Lovelock, University of Queensland SAUDI ARABIA BELGIUM Hanan Almahasheer, Imam Abdulrahman bin Faisal Farid Dahdouh-Guebas, Université libre de Bruxelles University Patrick Grooteart, Royal Belgian Institute of Natural Sciences SINGAPORE Dan Friess, National University of Singapore CHINA Luzhen Chen, Xiamen University SOUTH AFRICA Janine Adams, Nelson Mandela University COLOMBIA Jose Ernesto Mancera, Universidad Nacional de PHILIPPINES Colombia Jurgene Primavera, Zoological Society of London- Martha Lucia Palacios, Universidad Autónoma de Philippines Occidente TANZANIA HONG KONG Mwita Mangora, University of Dar es Salaam Stefano Cannicci, University of Hong Kong Joe Lee, Chinese University of Hong Kong THAILAND Aor Pranchai, Kasetsart University INDONESIA Daniel Murdiyarso, CIFOR USA Frida Sidik, Ministry of Fisheries and Marine Affairs Ken Krauss, United States Geological Survey Lola Fatoyinbo, NASA Goddard Center MALAYSIA Candy Feller, Smithsonian Institution Aldrie Amir, University Kebangsaan Malaysia VIETNAM MYANMAR Tuan Quoc Vo, Can Tho University Toe Aung, Forestry Department Come Rain or Come Shine, Come Crane or Come Swine Guilherme Abuchahla, Leibniz Centre for Marine Tropical Research, Germany, [email protected] Martin Zimmer, Leibniz-Centre for Tropical Marine Research ZMT, Germany Mangroves dwell between the terrestrial and marine realms. Much has been studied on their connectivity to other coastal or marine ecosystems, such as coral reefs and seagrass meadows. The interface between mangroves and terrestrial ecosystems, by contrast, is still widely understudied, possibly being one of the reasons for mismanagement and ill compartmentalization of the coastal sea- and landscapes. The present research aims to enhance the understanding of how mangroves and terrestrial ecosystems relate to, and interact with, each other, taking into consideration regions on both sides of the Atlantic where the dry season is long and hot. We hypothesise that (1) runoff water plays an important role in the transport of nutrients and organic matter during rainy season, resulting in a uni-directional flow from land towards the sea; and (2) the motile megafauna supplant that role in the dry season, potentially driving bi-directional fluxes. For testing the above-mentioned hypotheses, samples of surface sediment, runoff and porewater, leaves of the main vegetation species, and faeces of the motile megafauna will be collected along nine transects, six in Brazil and three in Senegal. Analyses will take into account nutrients, the content, structure and origin of organic matter, environmental DNA, and sediment grain characteristics. We expect to find a gradient of influence (mangrove - salt flat - terrestrial forest), according to the above hypotheses, indicating that the path for a better ecological understanding of mangrove ecosystems includes their terrestrial-most margins. Session: T005 - Mangrove genetics and connectivity Abstract ID: T005-A001 Presentation mode: Poster Avoided Emissions and Conservation of Scrub Mangroves: Potential for a Blue Carbon Project in the Gulf of California, Mexico Fernanda Adame, Griffith University, Australia, [email protected] Catherine Lovelock, The University of Queensland, Australia Chris Brown, Griffith University, Australia Eduardo Najera, Wildcoast, Mexico Mangroves are considered ideal ecosystems for Blue Carbon projects. However, because of their short stature, some mangroves (“scrub” mangroves, < 2m) do not fulfil the current definition of “forests” which makes them ineligible for emission reduction programs such as REDD+. Short stature mangroves can be the dominant form of mangroves in arid and poor nutrient landscapes, and emissions from their deforestation and degradation could be substantial. Here, we describe a potential Blue Carbon project in the Gulf of California, Mexico, to illustrate that projects which avoid emissions from deforestation and degradation could provide financial resources to protect mangroves that cannot be included in other emission reduction programs. The goal of the project is to protect 16,058 ha of mangroves through conservation concessions from the Mexican Federal Government. The cumulative avoided emissions of the project are 2.84 million Mg CO2 over 100 years, valued at $US 426,000 per year (US$15 per Mg CO2 in the California market). The funds could be used for community-based projects that will improve mangrove management, such as surveillance, eradication of invasive species, rehabilitation after tropical storms, and environmental education. The strong institutional support, secure financial status, community engagement, and clear project boundaries provide favourable conditions to implement this Blue Carbon project. Financial resources from Blue Carbon projects, even in mangroves of short stature, can provide substantial resources to enhance community resilience and mangrove protection. Session: T008 - Blue carbon Abstract ID: T008-A009 Presentation mode: Oral Status, Threats and Management of Mangroves at a Southern Distributional Limit Janine Adams, Nelson Mandela University, South Africa, [email protected] Anusha Rajkaran, University of the Western Cape, South Africa A status assessment of mangrove area cover was completed in 2018 and changes described in relation to threats and pressures. Because of the high energy coastline, mangroves in South Africa occur in 31 of the sheltered estuaries distributed along the ~3000 km coast. Although small in total extent (1 685 ha) these ecosystems are important for biodiversity conservation as they serve as critical habitat for invertebrates and fish. Harbour development has removed 438 ha of mangrove in Durban Bay; however a larger area (682 ha) area has established in an estuarine bay (Mhlathuze) as a result of the construction of an artificial mouth to the sea and expansion of intertidal habitat. This novel ecosystem now houses 762 ha of mainly Avicennia marina. The second largest area of mangrove occurs in St Lucia Estuary (210 ha), these are fast disappearing as restoration of the freshwater inflow to this system has created fresh, turbid conditions. Thus the management of mangroves in these dynamic South African systems poses some challenges. Other threats include encroaching development, harvesting for wood and browsing by goats and cattle that roam free in rural areas. Recent mangrove die-backs have been recorded in response to multiple stressors, namely drought, freshwater abstraction and browsing. The former leads to mouth closure of estuaries, causing inundation and flooding of mangroves. Mangroves along the east coast form the interface between subtropical and warm temperate regions and are expected to be significantly influenced by climate change. Ongoing monitoring and research is tracking these changes. South Africa has some of the best environmental legislation in the world; but it is the lack of implementation that fails to protect estuaries and their mangroves. This study addresses the country’s management responses using a DPSIR framework. Session: T003 - Mangrove loss and deforestation Abstract ID: T003-A025 Presentation mode: Oral What Lies Beneath? Quantifying Mangrove Crab Bioturbation Potential in Hong Kong Mangroves Laura Elisabeth Agusto, Integrated Mangrove Ecology Lab, the Swire Institute of Marine Sciences, The University of Hong Kong, Hong Kong SAR, [email protected] Aline Quadros, Integrated Mangrove Ecology Lab, the Swire Institute of Marine Sciences, The University of Hong Kong, Hong Kong SAR Sara Fratini, Department of Biology, University of Florence, Firenze, Italy, Italy Stefano Cannicci, The University of Hong Kong, Hong Kong SAR Crab burrow morphology has been argued to impact several important biogeochemical processes. A larger, more complex burrow may provide a different impact on nutrient and organic matter distribution and water flow than a simple small burrow, by increasing belowground surface area, or bacterial microhabitat, and volume. Burrow morphology has been shown to be similar across species within the same family but variable between families. Therefore, the potential ecosystem impact of burrowing crabs depends on their community structure and composition. However, a detailed quantification of the scale to which different families impact the mangrove ecosystem through such mechanisms has not been done. Here we quantified the bioturbation potential of five crab species belonging to three families, in three Hong Kong mangroves. Using a polyester resin to cast burrows, 3D- scanning and the MeshLab Open-Source Mesh Processing Tool, we obtained the mean species-specific burrow surface area, volume and depth of three Ocypodid, one Sesarmid (Parasesarma bidens) and Varunid species (Metaplax longipes). Next, we assessed burrow density (openings m-2) and identified their ownership. By combining these data,
Recommended publications
  • Chapter Two Marine Organisms
    THE SINGAPORE BLUE PLAN 2018 EDITORS ZEEHAN JAAFAR DANWEI HUANG JANI THUAIBAH ISA TANZIL YAN XIANG OW NICHOLAS YAP PUBLISHED BY THE SINGAPORE INSTITUTE OF BIOLOGY OCTOBER 2018 THE SINGAPORE BLUE PLAN 2018 PUBLISHER THE SINGAPORE INSTITUTE OF BIOLOGY C/O NSSE NATIONAL INSTITUTE OF EDUCATION 1 NANYANG WALK SINGAPORE 637616 CONTACT: [email protected] ISBN: 978-981-11-9018-6 COPYRIGHT © TEXT THE SINGAPORE INSTITUTE OF BIOLOGY COPYRIGHT © PHOTOGRAPHS AND FIGURES BY ORINGAL CONTRIBUTORS AS CREDITED DATE OF PUBLICATION: OCTOBER 2018 EDITED BY: Z. JAAFAR, D. HUANG, J.T.I. TANZIL, Y.X. OW, AND N. YAP COVER DESIGN BY: ABIGAYLE NG THE SINGAPORE BLUE PLAN 2018 ACKNOWLEDGEMENTS The editorial team owes a deep gratitude to all contributors of The Singapore Blue Plan 2018 who have tirelessly volunteered their expertise and effort into this document. We are fortunate to receive the guidance and mentorship of Professor Leo Tan, Professor Chou Loke Ming, Professor Peter Ng, and Mr Francis Lim throughout the planning and preparation stages of The Blue Plan 2018. We are indebted to Dr. Serena Teo, Ms Ria Tan and Dr Neo Mei Lin who have made edits that improved the earlier drafts of this document. We are grateful to contributors of photographs: Heng Pei Yan, the Comprehensive Marine Biodiversity Survey photography team, Ria Tan, Sudhanshi Jain, Randolph Quek, Theresa Su, Oh Ren Min, Neo Mei Lin, Abraham Matthew, Rene Ong, van Heurn FC, Lim Swee Cheng, Tran Anh Duc, and Zarina Zainul. We thank The Singapore Institute of Biology for publishing and printing the The Singapore Blue Plan 2018.
    [Show full text]
  • Section 1-Maggie-Final AM
    KEY TO GROUP 1 Mangroves and plants of saline habitats, i.e., regularly inundated by king tides. A. leaves B. leaves C. simple D. compound opposite alternate leaf leaf 1 Mature plants less than 60 cm high, often prostrate and succulent go to 2 1* Mature plants greater than 60 cm high, shrubs or trees go to 4 2 Plants without obvious leaves, succulent (samphires) go to Group 1.A 2* Plants with obvious leaves, sometimes succulent go to 3 3 Grass, non-succulent, leaves narrow, margins rolled inwards go to Group 1.B 3* Plants with succulent leaves, may be flattened, cylindrical or almost so go to Group 1.C 4 Trees or shrubs with opposite leaves (see sketch A) go to 5 4* Trees or shrubs with alternate leaves (B) go to 6 5 Leaves with oil glands visible when held to the light and an aromatic smell when crushed or undersurface whitish go to Group 1.D Large oil glands as seen with a good hand lens 5* Leaves without oil glands or a whitish undersurface, but prop roots, knee roots or buttresses may be present go to Group 1.E 6 Plants with copious milky sap present when parts, such as stems and leaves are broken (CAUTION) go to Group 1.F 6* Plants lacking milky sap when stems or leaves broken go to 7 7 Shrubs or trees with simple leaves (C) go to Group 1.G 7* Trees with compound leaves (D) go to Group 1.H 17 GROUP 1.A Plants succulent with no obvious leaves (samphires).
    [Show full text]
  • Macrobenthic Invertebrates of the Coorong, Lower Lakes and Murray Mouth Ramsar Site: a Literature Review of Responses to Changing Environmental Conditions
    Macrobenthic invertebrates of the Coorong, Lower Lakes and Murray Mouth Ramsar Site: A Literature Review of Responses to Changing Environmental Conditions Report to the Department for Environment and Heritage, Adelaide Alec Rolston, Ruan Gannon, and Sabine Dittmann Flinders University School of Biological Sciences March 4, 2010 Citation: Rolston, A., Gannon, R., and Dittmann, S. 2010: Macrobenthic invertebrates of the Coorong, Lower Lakes and Murray Mouth Ramsar Site: A Literature Review of Responses to Changing Environmental Conditions. Report to the Department for Environment and Heritage, Adelaide Contents 1. Executive Summary ......................................................................................................................... 1 2. Introduction....................................................................................................................................... 2 3. Underlying Drivers of Macrobenthic Invertebrate Communities in Estuaries................................... 3 3.1 Abiotic factors .......................................................................................................................... 5 3.2 Biotic Interactions .................................................................................................................... 6 3.3 Recruitment and colonisation .................................................................................................. 7 4. Temporal and Spatial Distribution of Macroinvertebrates in the CLLAMM Region ......................... 8 5.
    [Show full text]
  • Selection of an Omnivorous Diet by the Mangrove Tree Crab Aratus Pisonii in Laboratory Experiments ⁎ Amy A
    Journal of Sea Research 59 (2008) 59–69 www.elsevier.com/locate/seares Selection of an omnivorous diet by the mangrove tree crab Aratus pisonii in laboratory experiments ⁎ Amy A. Erickson a, , Ilka C. Feller b, Valerie J. Paul a, Lisa M. Kwiatkowski a, Woody Lee a a Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL, USA 34949 b Smithsonian Environmental Research Center, 647 Contees Wharf Rd., PO Box 28, Edgewater, MD, USA 21037 Received 16 October 2006; accepted 12 June 2007 Available online 26 July 2007 Abstract Observational studies on leaf damage, gut content analyses, and crab behaviour have demonstrated that like numerous other mangrove and salt-marsh generalists, the mangrove tree crab Aratus pisonii feeds on a variety of food resources. This study is the first that experimentally tests feeding preferences of A. pisonii, as well as the first to test experimentally whether chemical composition of food resources is responsible for food selection. Feeding preferences were determined among a variety of plant, algal, and animal resources available in the field both in Florida and Belize, using multiple-choice feeding assays, where male and female crabs simultaneously were offered a variety of food items. To test whether chemistry of food resources was responsible for feeding preferences, chemical extracts of food resources were incorporated in an agar-based artificial food, and used in feeding assays. Results of feeding assays suggest that crabs prefer animal matter from ∼ 2.5 to 13× more than other available resources, including leaves of the red mangrove Rhizophora mangle, which contribute the most to their natural diet.
    [Show full text]
  • Complete Larval and Early Juvenile Development of the Mangrove Crab
    JOURNAL OF PLANKTON RESEARCH j VOLUME 26 j NUMBER 12 j PAGES 1389–1408 j 2004 Complete larval and early juvenile development of the mangrove crab Perisesarma fasciatum (Crustacea: Brachyura: Sesarmidae) from Singapore, with a larval comparison of Parasesarma and Perisesarma GUILLERMO GUERAO1*, KLAUS ANGER2, U. W. E. NETTELMANN2 AND CHRISTOPH D. SCHUBART3 1 DEPARTAMENT DE BIOLOGIA ANIMAL (ARTRO` PODES), FACULTAT DE BIOLOGIA (U.B.), AV. DIAGONAL 645, 08028 BARCELONA, SPAIN, 2 ALFRED-WEGENER-INSTITUT FU¨ R POLAR- UND MEERESFORSCHUNG, BIOLOGISCHE ANSTALT HELGOLAND, MEERESSTATION, 27498 HELGOLAND, 3 GERMANY AND BIOLOGIE 1: ZOOLOGIE, UNIVERSITA¨ T REGENSBURG, 93040 REGENSBURG, GERMANY *CORRESPONDING AUTHOR: [email protected] Received January 22, 2004; accepted in principle June 2, 2004; accepted for publication July 13, 2004; published online July 23, 2004 The complete larval development of the sesarmid crab Perisesarma fasciatum (Lanchester, 1900) from Singapore was obtained from laboratory culture. All four zoeal stages, the megalopa and the first crab stage are described and illustrated. The morphological characteristics of the larvae of P. fasciatum are compared with those of other known larvae of the genera Perisesarma and Parasesarma. The larval morphology of P. fasciatum clearly presents the typical combination of features that characterize sesarmid larvae. Overall, larval stages are very similar in Perisesarma and Parasesarma and it is impossible to distinguish these two genera by larval morphology. INTRODUCTION still being revised
    [Show full text]
  • Mangroves and Saltmarshes of Moreton Bay
    https://moretonbayfoundation.org/ 1 Moreton Bay Quandamooka & Catchment: Past, present, and future Chapter 5 Habitats, Biodiversity and Ecosystem Function Mangroves and saltmarshes of Moreton Bay Abstract The mangroves and saltmarshes of Moreton Bay comprising 18,400 ha are important habitats for biodiversity and providing ecosystem services. Government policy and legislation largely reflects their importance with protection provided through a range of federal and state laws, including the listing of saltmarsh communities in 2013 under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). Local communities also conserve and manage mangroves and saltmarshes. Recent scientific research on these ecosystems in Moreton Bay has described food webs, habitat use by fauna, carbon sequestration and effects of climate change. The area of saltmarsh has declined by 64% since 1955 due to mangrove encroachment into saltmarsh habitats and past conversion to rural and urban land uses. Mangrove encroachment into saltmarsh habitats, which has been reported in other locations in Australia and across the world, has increased the area of mangrove habitat by 6.4% over the same period. This is consistent with predictions of habitat changes under climate change, and demonstrates the need for management strategies that ensure these ecosystems are maintained. Keywords: coastal wetlands, intertidal, wetland management, EPBC Act, wetland change, drivers of wetland change, South East Queensland, soil carbon stocks Introduction Mangroves and saltmarshes, which are components of the estuarine wetlands of Moreton Bay, are dominated by salt-tolerant vegetation that occurs from approximately mean sea level to the highest astronomical tidal plane. They occur within the river systems and tidal creeks of Moreton Bay as well as on the comparatively open coasts of the Bay where they fringe both islands and the mainland.
    [Show full text]
  • Benthic Macroinvertebrate Response Monitoring in the Coorong and Murray Mouth, 2012/13
    Benthic Macroinvertebrate Response Monitoring in the Coorong and Murray Mouth, 2012/13 Final Report for the Department of Environment and Natural Resources Sabine Dittmann, Tanith Ramsdale, Justine Keuning, Nat Navong and Stephanie Baggalley Flinders University, School of Biological Sciences This report may be cited as: Dittmann, S., Ramsdale, T., Keuning, J., Navong, N. and Baggalley, S. 2013: Benthic Macroinvertebrate Response Monitoring in the Coorong and Murray Mouth, 2012/13. Report for the Department of Environment, Water and Natural Resources, Adelaide. Contents 1. Executive Summary ............................................................................................................................. 1 2. Introduction .......................................................................................................................................... 7 3. Materials and Methods ........................................................................................................................ 9 3.1 Sampling sites and dates ............................................................................................................... 9 3.2 Environmental parameters ............................................................................................................. 9 3.3 Macrofauna .................................................................................................................................. 12 3.4 Larval recruitment .......................................................................................................................
    [Show full text]
  • RHIZOPHORACEAE Ceriops Tagal(Perr.) C.B. Rob. Synonyms
    Mangrove Guidebook for Southeast Asia Part 2: DESCRIPTIONS – Trees & shrubs 1'(9./'.1 "$ $ 235 "¨π∞∂∑∫ª®Æ®≥ /¨ππ "! 1∂© Synonyms : Ceriops australis White, Ceriops boiviniana Tul., Ceriops candolleana Arn., Ceriops candolleana var. sasakii Hayata, Ceriops candolleana var. spathulata Blume, Ceriops forsteniana, Ceriops lucida Miq., Ceriops pauciflora Benth., Ceriops somalensis Chiovenda, Ceriops tagal var. australis White, Ceriops timoriensis Domin, Mangium caryophylloides Rumph., Rhizophora candel (non L.) Blanco, Rhizophora tagal Perr., Rhizophora timoriensis DC. Vernacular name(s) : Tengar, Tengah (Mal.), Tangar, Tingih, Palun, Parun, Bido-bido (Ind.), Magtongod, Pakat, Rungon, Tagasa, Tangal, Tanggal, Tangal lalaki, Tigasan, Tungod - Tangal (Phil.), Madame (Myan.), Dà vôi (Viet.), Prong, Prong daeng (Thai.), Smerkrohorm (Camb.) Description : Small tree or shrub up to 6 m tall, occasionally to 15(-25) m, with a grey, occasionally brown, smooth bark and with a flanged stem base. The tree often has small stilt roots. The rounded, glossy-green leaves measure 5.5-10 by 2-3.5 cm, are obovate-elliptic and often have an inwardly-curled margin. The 5-10 flowered, pendulous flower head measures 2 by 10-20. It has a long, slender stalk, is resinous and occurs at the ends of new shoots or in the axils on older ones. Calyx lobes are erect in flower, recurved in fruit, 4-5 mm long, with a 2 mm long tube. Flowers are white and soon turn brown. Petals are linked via marginal hairs and have a top that bears three trumpet-shaped lobes, 0.5 mm across. The stamens have long, slender filaments that extend far beyond the blunt anthers.
    [Show full text]
  • MAHS Care Sheet Master List *By Eric Roscoe Care Sheets Are Often An
    MAHS Care Sheet Master List *By Eric Roscoe Care sheets are often an excellent starting point for learning more about the biology and husbandry of a given species, including their housing/enclosure requirements, temperament and handling, diet , and other aspects of care. MAHS itself has created many such care sheets for a wide range of reptiles, amphibians, and invertebrates we believe to have straightforward care requirements, and thus make suitable family and beginner’s to intermediate level pets. Some species with much more complex, difficult to meet, or impracticable care requirements than what can be adequately explained in a one page care sheet may be multiple pages. We can also provide additional links, resources, and information on these species we feel are reliable and trustworthy if requested. If you would like to request a copy of a care sheet for any of the species listed below, or have a suggestion for an animal you don’t see on our list, contact us to let us know! Unfortunately, for liability reasons, MAHS is unable to create or publish care sheets for medically significant venomous species. This includes species in the families Crotilidae, Viperidae, and Elapidae, as well as the Helodermatidae (the Gila Monsters and Mexican Beaded Lizards) and some medically significant rear fanged Colubridae. Those that are serious about wishing to learn more about venomous reptile husbandry that cannot be adequately covered in one to three page care sheets should take the time to utilize all available resources by reading books and literature, consulting with, and working with an experienced and knowledgeable mentor in order to learn the ropes hands on.
    [Show full text]
  • Redalyc.Population and Life History Features of the Crab Aratus Pisonii
    Interciencia ISSN: 0378-1844 [email protected] Asociación Interciencia Venezuela Conde, J. E.; Tognella, M. M. P.; Paes, E. T.; Soares, M. L. G.; Louro, I. A.; Schaeffer Novelli, Y. Population and life history features of the crab aratus pisonii (decapoda: grapsidae) in a subtropical estuary Interciencia, vol. 25, núm. 3, mayo-junio, 2000, pp. 151-158 Asociación Interciencia Caracas, Venezuela Available in: http://www.redalyc.org/articulo.oa?id=33904505 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative COMUNICACIONES REPORTS COMUNICAÇÕES POPULATION AND LIFE HISTORY FEATURES OF THE CRAB ARATUS PISONII (DECAPODA: GRAPSIDAE) IN A SUBTROPICAL ESTUARY J. E. Conde1, M. M. P. Tognella2, E. T. Paes2, M. L. G. Soares2, I. A. Louro2 and Y. Schaeffer-Novelli2 SUMMARY Population features of the grapsid crab Aratus pisonii, a similar in the two study sites: 1.63 individuals/m2 in Bertioga-D common inhabitant of the supralittoral zone of roots, branches and 1.41 in Bertioga-Cidade. Females were significantly more and canopy of several species of mangroves, were studied in abundant than males in a ratio of 1.168:1.00 in Bertioga-D, and two estuarine mangrove forests near Bertioga, São Paulo, Bra- 1.153:1.00 in Bertioga-Cidade. J-shaped sex ratio curves were zil. Crabs were larger in Bertioga-D (range: 8.85 - 26.20 mm), observed for both populations. Juvenile crabs were present at where a well-developed mangrove forest is present, than in both locations, but they were much more abundant in Bertioga- nearby Bertioga-Cidade (range: 3.80 - 20.85 mm), where Cidade (34.8%) than in Bertioga-D (3.9%), possibly as a conse- arbustive and stunted mangrove trees prevailed.
    [Show full text]
  • Comparative Study of Spectral Sensitivity, Irradiance Sensitivity
    Nova Southeastern University NSUWorks All HCAS Student Capstones, Theses, and Dissertations HCAS Student Theses and Dissertations 5-11-2020 Comparative Study of Spectral Sensitivity, Irradiance Sensitivity, Spatial Resolution and Temporal Resolution in the Visual Systems of Aratus pisonii and Ocypode quadrata Ruchao Qian Nova Southeastern University Follow this and additional works at: https://nsuworks.nova.edu/hcas_etd_all Part of the Comparative and Evolutionary Physiology Commons, Integrative Biology Commons, and the Marine Biology Commons Share Feedback About This Item NSUWorks Citation Ruchao Qian. 2020. Comparative Study of Spectral Sensitivity, Irradiance Sensitivity, Spatial Resolution and Temporal Resolution in the Visual Systems of Aratus pisonii and Ocypode quadrata. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (46) https://nsuworks.nova.edu/hcas_etd_all/46. This Thesis is brought to you by the HCAS Student Theses and Dissertations at NSUWorks. It has been accepted for inclusion in All HCAS Student Capstones, Theses, and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Thesis of Ruchao Qian Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Marine Science Nova Southeastern University Halmos College of Arts and Sciences May 2020 Approved: Thesis Committee Committee Chair: Tamara Frank, Ph.D. Committee Member: Patricia Blackwelder, Ph.D. Committee Member: Heather Bracken-Grissom, Ph.D. This thesis
    [Show full text]
  • Brood Loss and Sperm Limitation in Aratus Pisonii, the Mangrove Tree Crab Austen Walker, Connor Bird, Blaine D
    Brood Loss and Sperm Limitation in Aratus pisonii, the Mangrove Tree Crab Austen Walker, Connor Bird, Blaine D. Griffen Biology Department, Brigham Young University Purpose Results To investigate the possible loss of eggs and potential for sperm limitation in Aratus pisonii, the mangrove tree Clutch Size Throughout Egg Development and Egg development by crab. the Reproductive Period Carapace Width sampling date 0.95 Introduction 0.95 Egg loss can occur at any point during the reproductive period. Several past studies document egg loss across a 1200 variety of crustaceans. The mangrove tree crab is expected to experience high egg loss, due to it’s constant 0.85 0.85 climbing on tree limbs. Egg production and loss provide valuable insight into the reproductive physiology and 600 the mangrove tree crab and its ecology as an important part of the mangrove ecosystem. (Boudreau et al. 2012). /size Clutch 10 0.75 200 This species is also currently expanding it’s range due to climate change, and egg loss will factor into the rate of 0.75 14 16 18 20 22 24 of Proportion developing eggs 150 200 250 300 population growth in northern regions of its expanding range. Secondarily, we also look for evidence of sperm 14 16 18 20 22 24 Proportion of Proportion developing eggs limitation, when there is insufficient sperm to fertilize all eggs produced by the females. If sperm limitation is Carapace width (mm) Carapace width (mm) Julian sampling date occurring, the reproductive potential of a population would be limited, and could hamper its ability to keep pace with environmental changes.
    [Show full text]