PL-ISSN0015-5497(print),ISSN1734-9168(online) FoliaBiologica(Kraków),vol.62(2014),No4 Ó InstituteofSystematicsandEvolutionofAnimals,PAS,Kraków, 2014 doi:10.3409/fb62_4.321

VariationinSpermFormationPatternsinJumpingPlant-Lice (:): aLightMicroscopicStudy

EugeniaS.LABINA,Anna MARYAÑSKA-NADACHOWSKA, Daniel BURCKHARDT, andValentinaG.KUZNETSOVA

AcceptedOctober02,2014

LABINA E.S.,MARYAÑSKA-NADACHOWSKA A.,BURCKHARDT D.,KUZNETSOVA V.G. 2014. Variation in sperm formation patterns in jumping plant-lice (Hemiptera: Psylloidea): a light microscopic study. Folia Biologica (Kraków) 62: 321-333.

The patterns of sperm formation in sternorrhynchous jumping plant-lice are reviewed. To date information is available for 143 species belonging to 54 genera, 17 subfamilies and seven of the eight psylloid families (only Phacopteronidae is not represented). For the majority of the taxa (116 species, 39 genera, 10 subfamilies and the families Calophyidae, Carsidaridae and ) the data presented here is new and is based exclusively on studies using light microscopy. Five distinct patterns of chromatin reorganisation during metamorphosis of spermatids into spermatozoa are recognised, described and named here typesI-V.TypesIandIIIwerepreviouslyknown,typesII,IV andVaredescribedhereforthe firsttimeforjumpingplant-lice.ThemostwidespreadistypeIwhichisfoundineveryfamily representing the plesiomorphic condition of spermiogenesis in Psylloidea. Types III and V are autapomorphic for the Aphalarinae and Spondyliaspidinae, respectively. Type IV was found only in two genera of Euphyllurinae and may represent a synapomorphy. Type II occurs in several unrelated subfamilies and is interpreted as a homoplasy. The patterns of sperm formation are stable within most of the examined subfamilies and can be used, to a certain extent, to elucidate phylogenetic relationships within Psylloidea.

Key words: Psyllids, , spermiogenesis, evolution, systematics.

Eugenia S. LABINA,ValentinaG.KUZNETSOVA, Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint Petersburg, . E-mails: [email protected], [email protected] Anna MARYAÑSKA-NADACHOWSKA, Institute of Systematics and Evolution of , Polish Academy of Sciences, S³awkowska 17, 31-016 Kraków, Poland. E-mail: [email protected] DanielBURCKHARDT, Naturhistorisches Museum, Augustinergasse 2, CH4001 Basel, Switzerland. E-mail: [email protected]

Psyllids or jumping plant-lice (Sternorrhyncha: supported with the exception of their Aphalaridae, Psylloidea) are a relatively small group of hemip- , and Spondyliaspididae which were teraninsectswithabout3800describedandatleast shown to be polyphyletic (BURCKHARDT 1987a, b, as many undescribed species worldwide (BURCK- 1991,2005).BasedontheseresultsBURCKHARDT HARDT et al. 2014; D. BURCKHARDT, unpublished and OUVRARD (2012) published a revised classifi- data). WHITE and HODKINSON (1985), in their cation also comprising eight families of which five seminal paper on the systematics of psyllids based aresimilartothoseofWhiteandHodkinson(Calo- mostly on morphological characters of immatures, phyidae, Carsidaridae, Homotomidae, Phacop- introduced a classification with eight families teronidae, and ) but three are completely (Aphalaridae, Calophyidae, Carsidaridae, Homo- redefined (Aphalaridae, Liviidae, and Psyllidae). tomidae, Phacopteronidae, Psyllidae, Spondylias- Several attempts have been undertaken to study pididae and Triozidae). This classification was the systematics of Psylloidea using new characters, tested in the last three decades by several authors such as the number of seminal follicles (e.g. KLI- who investigated many taxa using morphological MASZEWSKI 1972; KLIMASZEWSKI et al. 1974; adult and immature as well as molecular characters. G£OWACKA et al. 1995; MARYAÑSKA-NADA- White and Hodkinson’s families were generally CHOWSKA et al. 2001a, b, c; KUZNETSOVA et al. 322 E.S.LABINA etal.

2012) and karyotypes (e.g. MARYAÑSKA-NADA- Material and Methods CHOWSKA 2002; LABINA et al. 2007). These char- acters were shown to be of some use in solving For nearly three decades, we have prepared hun- taxonomic problems at the suprageneric level. dreds of cytological preparations to study karyo- types and male meiosis of psyllids represented by Variation in sperm formation patterns within a wide taxonomic range (e.g. MARYAÑSKA-NADA- Psylloidea was investigated in a number of publi- CHOWSKA 2002; LABINA et al. 2007; KUZNETSOVA et al. 2012; NOKKALA et al. 2013). For this purpose, cations (LE MENN 1966a, b; KUZNETSOVA et al. adult males were fixed in Carnoy fixative (96% 1997; TIAN et al. 2007). LE MENN (1966a, b) was ethanol and glacial acetic acid, 3:1) and refriger- the first to observe the remarkable, so-called o ated at 5 C in the laboratory until slides were made. “binuclear” male germ cells by electron micros- Seminal follicles were extracted from adult speci- copyineightspeciesofHomotomidae(Homotoma mens and squashed on the slide. The preparations ficus), Psyllidae (Arytaina genistae, were frozen using dry ice, the coverslips were re- visci, Chamaepsylla hartigii, Psylla alni, P. buxi) moved with a razor blade, and the preparations and Triozidae (Bactericera femoralis, urticae) were dehydrated in fresh Carnoy fixative for 20 min corresponding to “Type I” as defined below. and air dried. Then they were subjected either to Later, KUZNETSOVA et al. (1997) discovered by Schiff-Giemsa staining (GROZEVA &NOKKALA 1996) light microscopy a different, also unusual type of or to silver staining (HOWELL &BLACK 1980) or sperm formation in ten species of the genera to C-banding (SUMNER 1972), as the case required. Aphalara, Craspedolepta and Crastina (Aphalari- In our present study, the same cytological prepa- dae, Aphalarinae) corresponding to “Type III” as rations were used to study a post-meiotic phase of defined below. More recently, binuclear sperms spermatogenesis, i.e. spermiogenesis. By light mi- were reported for Acizzia jamatonica (Psyllidae) croscopy, we followed the progressive differentia- and Bharatiana septentrionalis (Calophyidae) tion of the spermatid components and changes in (TIAN et al. 2007) but the attribution to a particular chromatin organization during metamorphosis of sperm formation type is problematic. spermatids into spermatozoa in males of 125 spe- cies belonging to 51 genera and 16 subfamilies of In this paper we confirm the presence of the two the families Aphalaridae, Calophyidae, Carsidari- previously described types of sperm formation and dae, Homotomidae, Liviidae, Psyllidae, and add another three discovered by light microscopy Triozidae. Observation and literature data are in a wide taxonomical range of Psylloidea. Fur- summarised in Table 1. We follow the classifica- thermore, we plot the known types of sperm for- tion by BURCKHARDT and OUVRARD (2012). mationpatternsonacladogramreflectingthelatest Voucher preparations are deposited at the Depart- classification of Psylloidea by BURCKHARDT and ment of Experimental Zoology, Institute of Syste- OUVRARD (2012) and discuss the phylogenetic matics and Evolution of Animals PAS in Kraków, implications. Poland.

Table 1 Species studied and types of spermiogenesis Type of Taxon spermio- Collecting data Indentification Reference genesis by Aphalaridae Aphalarinae binuclear ? ? LE MENN 1966a,b sperm Aphalara calthae (Linnaeus,1761) III Finland:near Turku – Caltha S.Nokkala KUZNETSOVA et al. palustre 1997 KUZNETSOVA et al. Aphalara exilis (WeberetMohr,1804) III Poland: Gorce Mts – Rumex sp. E. G³owacka 1997 Poland:west Beskidy Mts – Aphalaramaculipennis Löw,1886 III Polygonum sp. E. G³owacka presentpaper 1 Georgia:Kolkhida, Paliastomi KUZNETSOVA et al. Aphalara polygoni Foerster,1848 III Lake – Polygonum sp. A.Gegechkori 1997 Craspedolepta bulgarica Klimaszewski, Georgia:DavidGaredzhi– KUZNETSOVA et al. 1961 III Achillea sp. A.Gegechkori 1997 TypesofSpermiogenesisinPsylloidea 323

Table 1 cont. Russia: , Khasan- Craspedolepta flava (Kuwayama,1908) III sky District, near Kedrovaya Pad’ E.Labina presentpaper Reserve– Artemisia spp. Poland:KazimierzDolny– Craspedolepta flavipennis (Foerster, 1848) III Chrysanthemum sp. E. G³owacka presentpaper Russia: Primorsky Krai, Khasan- Craspedolepta kerzhneri Loginova, III skyDistrict,nearKedrovaya E.Labina presentpaper 1963 Pad’Reserve– Artemisia spp. Russia: Primorsky Krai, Khasan- Craspedoleptalatior Wagner,1944 III skyDistrict,nearKedrovaya E.Labina presentpaper Pad’Reserve– Artemisia spp. Russia: PrimorskyKrai, Craspedolepta lineolata Loginova,1962 III – Artemisia sp. E.Labina presentpaper Craspedolepta malachitica (Dahlbom, Poland: Mielnik– Artemisia KUZNETSOVA et al. 1851) III absinthium E. G³owacka 1997 Craspedolepta nebulosa (Zetterstedt, Poland: Gorce Mts – Chamerion KUZNETSOVA et al. 1828) III angustifolium E. G³owacka 1997 KUZNETSOVA et al. Craspedolepta nervosa (Foerster,1848) III Poland: Gorce Mts – Achillea sp. E. G³owacka 1997 KUZNETSOVA et al. Craspedolepta omissa Wagner,1944 III Poland: Gorce Mts – Artemisia sp. E. G³owacka 1997 MARYAÑSKA-NA Craspedoleptasonchi (Foerster,1848) III Finland – Leontodon autumnalis S.Nokkala DACHOWSKA et al. 2001c Craspedolepta subpunctata (Foerster, Poland: Gorce Mts – Chamerion KUZNETSOVA et al. 1848) III angustifolium E. G³owacka 1997 Russia: Primorsky Krai, Khasan- Craspedolepta terminata Loginova, skyDistrict,nearKedrovaya 1962 III Pad’ Reserve; Khasansky District, E.Labina presentpaper Krabovy Peninsula – Artemisia spp. Russia: Primorsky Krai, Khasan- skyDistrict,nearKedrovaya Craspedolepta topicalis Loginova,1962 III Pad’ Reserve; Ussuriysky District, E.Labina presentpaper Kraunovka – Artemisia spp. Russia: Altai Republic, Craspedolepta villosa Loginova,1962 III ChemalskyDistrict, Edigan E.Labina presentpaper Village – Artemisia sp. Georgia: Caucasus Mts, III Hersureti,– Myricariabracteata A.Gegechkori KUZNETSOVA et Crastinamyricariae Loginova,1964 Russia: Altai Republic, al. 1997 III ChemalskyDistrict, Edigan E.Labina presentpaper Village – Tamarix sp. Pachypsyllinae USA: Maryland,Beltsville– Pachypsylla sp. I Celtistenuifolia M.-M.Yang presentpaper Rhinocolinae presentpaper II Spain:Mallorca, Boquet Valley – Pistacialentiscus I.D.Hodkinson Agonoscenacisti (Puton,1882) Spain: Cádizprov.,Sierra E.Labina presentpaper II Blanquilla–underolivetrees Spain:Mallorca, Boquet Valley – presentpaper Pistacialentiscus I.D.Hodkinson Agonoscena targionii (Lichtenstein, II 1874) Spain: Cádizprov.,Sierra E.Labina presentpaper Blanquilla–underolivetrees Listronia varicicosta (Hodkinson et Hollis, Spain: Mallorca,Formentor– 1981) II Cistusalbidus I.D.Hodkinson presentpaper II Poland:Kraków– Acer E. G³owacka presentpaper platanoides Rhinocolaaceris (Linnaeus,1758) II Georgia: near Tbilisi – A. A.Gegechkori presentpaper platanoides II Finland: Turku – A. platanoides S.Nokkala presentpaper Spondyliaspidinae Australia: Adelaide,Urrbrae, Anoeconeossa sp.(communis group) V WaitCampus– Eucalyptus G.S.Taylor presentpaper leucoxylon Australia: Adelaide,Urrbrae, Anoeconeossa sp.(fuscipennis group) V WaitCampus– Eucalyptus G.S.Taylor presentpaper leucoxylon Australia: Adelaide, Urrbrae, Anoeconeossaunicornuta Taylor,1987 V WaitCampus– Eucalyptus G.S.Taylor presentpaper leucoxylon 324 E.S.LABINA etal.

Table 1 cont. Australia:Strathalbyn-Goolwa– Australopsylla sp. V Eucalyptus sp. G.S.Taylor presentpaper Australia: Adelaide, Urrbrae, Blastopsyllaadnatariae Taylor,1985 V WaitCampus– Eucalyptus G.S.Taylor presentpaper lehmannii Australia: Goolwa – Melaleuca Blastopsylla moorei Taylor,1985 V lanceolata G.S.Taylor presentpaper Australia: Queensland, Brisbane, Boreioglycaspismelaleucae Moore, V Indooroopilly, CSIRO – G.S.Taylor presentpaper 1964 Melaleucaquinquenervia Australia:Goolwa– Eucalytus Cardiaspinaalbitextura Taylor,1962 V camaldulensis G.S.Taylor presentpaper Australia: Ambleside, near Hahndorf Cardiaspinaretator Taylor,1962 V – Eucalytuscamaldulensis G.S.Taylor presentpaper Australia:Urrbrae,WaitCampus Creiis sp. V – Eucalyptusleucoxylon G.S.Taylor presentpaper Australia:Urrbrae, Wait Campus Cryptoneossa triangula Taylor, 1990) V – Angophora floribunda G.S. Taylor present paper E.Labina presentpaper V Ethiopia: Eucalyptus sp. Ctenarytainaeucalypti (Maskell,1890) Portugal: Madeira – Eucalyptus E.Labina presentpaper V sp. Australia: Ambleside,near Glycaspisbrimblecombei Moore,1964 V Hahndorf –Eucalytus camaldulensis G.S.Taylor presentpaper Hyalinaspis sp. V Australia G.S.Taylor presentpaper Australia:Ambleside,near Platyobrialewisi Taylor,1987 V Hahndorf – Eucalytus camaldulensis G.S.Taylor presentpaper Australia:Adelaide,Urrbrae, Spondyliaspisplicatuloides (Froggatt, V WaitCampus– Eucalyptus G.S.Taylor presentpaper 1900) microcarpa Calophyidae Calophyinae Calophyanigripennis Riley,1885 I USA: Maryland M.-M.Yang presentpaper I USA:California,AlamedaCo., P.G.daSilvaas presentpaper Berkeley,UCCampus– Schinus C. rubra Calophyaschini Tuthill,1959 Molle I SouthAfrica:near CapeTown E. G³owacka presentpaper Mastigimatinae Bharatianaseptentrionalis Yang&Li, binuclear IAN 1983 sperm ? T etal. 2007 Carsidaridae Protyorasterculiae (Froggatt,1901) I Australia: Clare – Brachychiton sp. G.S.Taylor presentpaper Tenaphalara acutipennis Kuwayama, 1908 I Taiwan– Bombaxceiba Ch.-T. Yang presentpaper Homotomidae Dynopsyllinae Dynopsylla pinnativena (Enderlein, 1914) I Taiwan– Ficusnervosa Ch.-T. Yang presentpaper Homotominae binuclear ? ? LE MENN 1966b sperm Homotomaficus (Linnaeus,1758) I Croatia:Makarska E. G³owacka presentpaper I Italy:Roma– Ficuscarica E. G³owacka presentpaper I Portugal: Madeira – Ficuscarica E.Labina presentpaper Macrohomotominae Edenini Mycopsyllafici (Tryon,1895) II Australia: NewSouthWales, E. G³owacka presentpaper Sidney – Ficus sp. Macrohomotomini Macrohomotomagladiata Kuwayama, I Taiwan– Ficusretusa Ch.-T.Yang presentpaper 1908 Liviidae Euphyllurinae acokantherae (Pettey,1924) I SouthAfrica E. G³owacka presentpaper Diaphorina cf. chobauti Puton,1898 I Israel– Convolvulus sp. D.Burckhardt presentpaper Diaphorinahelichrysi Capener,1970 I SouthAfrica: Fonre E. G³owacka presentpaper Diaphorina lamproptera Burckhardt, 1981 I Israel– Zygophylum sp. D.Burckhardt presentpaper TypesofSpermiogenesisinPsylloidea 325

Table 1 cont. Diaphorinaloranthi Capener,1973 I SouthAfrica: AgnesMine, E. G³owacka presentpaper Diaphorinapetteyi Capener,1970 I SouthAfrica: CapeTown E. G³owacka presentpaper Portugal: Castro Marim-Vila Real Diaphorina putonii Löw,1879 I deSantoAntónio E.Labina presentpaper ‘Paurocephala’2 bicarinata Pettey,1924 IV SouthAfrica E. G³owacka presentpaper ’Paurocephala’ hottentotti Pettey,1933 IV SouthAfrica E. G³owacka presentpaper ‘Paurocephala’sp. IV SouthAfrica E. G³owacka presentpaper Peripsyllopsisspeciosa (Capener,1973) IV South Africa: Fonre – Combretum E. G³owacka presentpaper LiviinaeLöw,1879 Finland:Turku – Populus Caramatoscenaspeciosa (Flor,1961) I generosa S.Nokkala presentpaper Paurocephalachonchaiensis Boselli, Taiwan– Ficusbeechayana, 1929 Ior II F.pumila Ch.-T.Yang presentpaper Paurocephala trematos Yang, Yang et Chao, 1986 Ior II Taiwan:– Tremaorientalis Ch.-T.Yang presentpaper Psyllidae Acizziinae Acizziaacaciaebaileyanae (Froggatt, Australia: Adelaide, Urrbrae, 1901) I WaitCampus– Acaciabaileyana G.S.Taylor presentpaper binuclear ? IAN Acizziajamatonica (Kuwayama,1908) sperm China T etal. 2007 I Italy: Liguria, Taggia – Acacia C.Conci presentpaper Acizzia uncatoides (Ferris & Klyver, 1932) pycnantha I SouthAfrica E. G³owacka presentpaper Ciriacreminae Ciriacremumcapense Enderlein,1923 I SouthAfrica E. G³owacka presentpaper KUZNETSOVA et al., Heteropsyllacubana Crawford,1914 I Taiwan– Oryzasativa Ch.-T.Yang 1997 Macrocorsinae Colophorina sp. I SouthAfrica E. G³owacka presentpaper Psyllinae ? binuclear ? LE MENN,1966b; Arytaina genistae (Latreille,1804) sperm I Poland:Piñczów– Cytisus E. G³owacka presentpaper scorparius Arytaina maculata (Löw,1886) I Italia: Sicily E. G³owacka presentpaper Arytainilla barbagalloi Rapisarda,1986 I Italia: Sicily, Calabria E. G³owacka presentpaper Spain:Avila prov., Sierrade E. G³owacka, Arytainilla cytisi (Puton,1876) I Candelario,SanMartíndel presentpaper Pimpollar E.Labina E. G³owacka I Spain: Cáceresprov.,Puertode presentpaper Tornavacas Arytainilla spartiophila (Foerster,1848) Spain:Avila prov.,Hoyosdel E.Labina presentpaper I Espino Arytinnisumbonata (Loginova,1976) I Portugal: Madeira E.Labina presentpaper I Finland:near Turku S.Nokkala presentpaper Baeopelmafoersteri (Flor,1861) I Poland: near Kraków – Alnus sp. E. G³owacka presentpaper I Georgia A.Gegechkori presentpaper Baeopelmacolorata (Löw,1888) I Bulgaria:near Sofia E. G³owacka presentpaper Georgia:near Tbilisi,Kodzhori– KUZNETSOVA et al. Cacopsyllacrataegi (Schrank,1801) I Crataegusorientalis A.Gegechkori 1997 Poland:BieszczadyMts, Po³onina Cacopsyllafraudatrix Labina& Caryñska, Wielka Rawka,and Kuznetsova, 2012 I Tarnicaridges– Vaccinium E.Labina presentpaper myrtillus Russia: PrimorskyKrai, Cacopsyllaginnali (Konovalova& Khasansky District, Gvosdevo Loginova1985) 3 I Village,and UssuriyskyDistrict, E.Labina presentpaper Kraunovka – Acerginnala I TheNetherlands– Hippophae I.H.Woudstra presentpaper Cacopsyllahippophaes (Foerster,1848) rhamnoides I Finland:near Turku S.Nokkala presentpaper 326 E.S.LABINA etal.

Table 1 cont. Cacopsylla mali (Schmidberber,1836) I Poland:Kraków– Malus sp. E. G³owacka presentpaper Cacopsylla palmeni (Löw,1882) I Finland– Salix sp. S.Nokkala presentpaper Poland:Mielnik– Salix Cacopsyllaparvipennis (Löw,1877) I rosmarinifolia E. G³owacka presentpaper Cacopsyllapermixta Burckhardtet Georgia:DavidGaredzhi– Pyrus KUZNETSOVA et al. Hodkinson,1986 I salicifolia A.Gegechkori 1997 Cacopsyllapruni (Scopoli,1763) I Poland:Kraków– Prunus sp. E. G³owacka presentpaper Russia: PrimorskyKrai, 4Cacopsyllapseudosieboldiani KhasanskyDistrict,near (Konovalova&Loginova1985) I KedrovayaPad’Reserve– Acer E.Labina presentpaper pseudosieboldianum Cacopsyllapulchra (Zetterstedt,1840) I Poland:GorceMts E. G³owacka presentpaper Poland:LipieŒl¹skie– Pyrus Cacopsyllapyri (Linnaeus,1758) I communis E. G³owacka presentpaper Cacopsyllapyricola (Foerster,1848) I Poland:Kraków – Pyrus sp. E. G³owacka presentpaper Cacopsyllasaliceti (Foerster,1848) I Poland:GorceMts E. G³owacka presentpaper I TheNetherlands – Sorbus sp I.H.Woudstra presentpaper Cacopsyllasorbi (Linnaeus,1767) I Finland: Twarmine – Sorbus sp. E. G³owacka presentpaper I Finland: near Turku – Ulmus sp. S.Nokkala presentpaper Cacopsyllaulmi (Foerster,1848) I Poland: Niepo³omice – Ulmus sp. E. G³owacka presentpaper binuclear ? E ENN Cacopsylla visci (Curtis,1835) sperm ? L M 1966b Russia:Altai Republic, Cacopsyllazaicevi (Šulc,1915) I ChemalskyDistrict, Edigan E.Labina presentpaper Village – Salix sp. Poland:Mielnik– Hippophae Cacopsyllazetterstedti (Thomson,1877) I rhamnoides I.D.Hodkinson presentpaper binuclear ? ? LE MENN 1966b Chamaepsylla hartigii (Flor,1961) sperm I Finland– Betula sp. S.Nokkala presentpaper Cyamophila caraganae (Loginova, Georgia: David Garedzhi– KUZNETSOVA et al. 1964) I Caraganagrandifolia A.Gegechkori 1997 Cyamophilamedicaginis (Andrianova, Russia:Altai Republic, 1952) I Chemalsky District, Edigan Village E.Labina presentpaper I Georgia:near Tbilisi – Spiraea A.Gegechkori KUZNETSOVA et hypericifolia al. 1997 (as Psylla); Cyamophiliopsisfasciata (Löw,1881) I Russia:Altai Republic, E.Labina presentpaper ChemalskyDistrict, Edigan Village – Spiraea sp. Livilla magna HodkinsonetHollis,1987 I Italia: Sicily E. G³owacka presentpaper Livilla nervosa Hodkinson et Hollis, 1987 I Portugal: Madeira E.Labina presentpaper Spain:Malagaprov.,Sierrade Livillapyrenaea (Mink,1859) I Oreganal; Cádizprov.,Sierradel E. G³owacka presentpaper Niño I Poland:GorceMts E. G³owacka presentpaper Livilla radiata (Foerster,1848) I Spain:Almeriaprov.,Sierrade E.Labina presentpaper Alhamilla Livilla spectabilis (Flor,1861) I Italia: Sicily E. G³owacka presentpaper Livillavariegata (Löw,1881) I Italy E. G³owacka presentpaper binuclear ? ? LE MENN,1966b sperm Psyllaalni (Linnaeus,1758) I Poland:Mielnik– Alnus sp. E. G³owacka pesentpaper I Spain:Avila prov.,Solanade E.Labina pesentpaper Bejar – Alnus Finland:TäktomnearHanko– Psyllabetulae (Linnaeus,1758) I Betulaverrucosa,B.pubescens E. G³owacka presentpaper binuclear ? ? LE MENN 1966b; Psyllabuxi (Linnaeus,1758) sperm I USA: Maryland M.-M.Yang presentpaper Psyllafusca (Zetterstedt,1828) I Poland: Katowice – Alnusincana E. G³owacka presentpaper TriozidaeLöw,1879 Bactericera albiventris (Foerster,1848) I Poland:GorceMts E. G³owacka presentpaper Bactericera curvatinervis (Foerster, 1848) I Finland: Turku – Salix spp. S.Nokkala presentpaper TypesofSpermiogenesisinPsylloidea 327

Table 1 cont. binuclear ? ? LE MENN 1966b Bactericerafemoralis (Foerster,1848) sperm I Poland:GorceMts E. G³owacka presentpaper Bactericeramaura (Foerster,1848) I TheNetherlands:– Salix sp. I.H.Woudstra presentpaper Russia:PrimorskyKrai, UssuriyskyDistrict,Kraunovka – Bactericera nigricornis (Foerster,1848) I Artemisia sp.; Altai Republic, E.Labina presentpaper ChemalskyDistrict, Edigan Village Bactericerasalicivora (Reuter,1876) I Finland:Turku – Salix spp. S.Nokkala presentpaper Bactericera striola (Flor,1961) I Finland: Turku – Salix spp. E. G³owacka presentpaper Baeoalitriozusafrobsoletus (Hollis, 1984) I SouthAfrica: CapeTown E. G³owacka presentpaper Finland:Turku – Chenopodium Heterotriozachenopodii (Reuter,1876) I album S.Nokkala presentpaper Taiwan– Calophyllum Leptynopterasulfurea Crawford,1919 I inophyllum Ch.-T.Yang presentpaper Pauropsyllatrichaeta Pettey,1924 I SouthAfrica: CapeTown E. G³owacka presentpaper Australia:Bridgewater – Schedotriozaapicobystra Taylor,1990 I Eucalyptuscosmophylla G.S.Taylor presentpaper Schedotriozamultitudinea (Maskell, Australia: Mylor– Eucalyptus 1898) I obliqua G.S.Taylor presentpaper Trichochermes grandis Loginova,1965 I Russia: Primorsky Krai, E.Labina presentpaper Bulgaria:Melnik– Rhamnus Trichochermeswalkeri (Foerster,1848) I catharctica E. G³owacka presentpaper Triozaabdominalis Flor,1961 I Poland:GorceMts– Salix sp. E. G³owacka presentpaper Russia: Altai Republic, Triozaagrophila Löw,1888 I ChemalskyDistrict, Edigan E.Labina presentpaper Village Triozaalacris Flor,1861 I Italy:Sicily E. G³owacka presentpaper Triozacarvalhoi Hollis,1984 I SouthAfrica E. G³owacka presentpaper Triozacirsii Löw,1881 I Poland:GorceMts E. G³owacka presentpaper Triozadispar Löw,1878 I Poland:GorceMts E. G³owacka presentpaper Trioza elaeagni Scott,1880 I Portugal:Madeira E.Labina presentpaper Russia:PrimorskyKrai, KhasanskyDistrict,near Trioza eleutherococci Konovalova,1980 I KedrovayaPad’ Reserve– E.Labina presentpaper Eleutherococcus sp. USA: California, LongBeach, Triozaeugeniae Froggart,1901 I Alamada Street – Syzygium sp. P.G.daSilva presentpaper Triozaflavipennis Foerster,1848 I Poland:GorceMts E. G³owacka presentpaper Triozafletcheri Crawford,1912 I India– Terminaliatermentosa A.Raman presentpaper Triozailicina (DeStefaniPerez,1901) I Spain:Mallorca – Quercusilex I.D.Hodkinson presentpaper Triozamunda Foerster,1848 I Poland:GorceMts, E. G³owacka presentpaper Triozaremota Foerster,1848 I TheNetherlands– Quercus sp. I.H.Woudstra presentpaper Georgia:Tbilisi – Rumex KUZNETSOVA et Trioza rumicis Löw,1880 I acetosella A.Gegechkori al.,1997 Triozasenecionis (Scopoli,1763) I Poland:GorceMts E. G³owacka presentpaper binuclear ? ? LE MENN,1966a Triozaurticae (Linnaeus,1758) sperm I Poland: Mielnik – Urtica dioica E. G³owacka presentpaper

1Probably A.freji Burckhardt&Lauterer,1997 2This and the following two species belong to an undescribed Afrotropical genus associated with Proteaceae (D. BURCKHARDT, unpublisheddata). 3Cacopsylla ginnali (Konovalova & Loginova 1985) comb. nov. from Psylla. C. ginnali is closely related to C. abieti (Kuwayama, 1908), C. lineatipennis (Kwon, 1983) and C. liricapita Li, 2011, all associated with Acer ginnala and members of Cacopsylla. For this reason P. ginnali is transferred here to Cacopsylla. C. ginnali is probably a junior synonym of C. lineatipennis but relevant type material has to be examined before the species is formally synonymised. The name ‘ginnali’, if derived from ‘ginnala’, the species epithet of the host plant should, correctly formed, be ‘ginnalae’. According to the International Code of Zoological Nomenclature article 32.5 this is, however, not considered as incorrect original spelling and thespelling‘ginnali’hastobeaccepted. 4Cacopsylla pseudosieboldiani (Konovalova & Loginova 1985) comb. nov. from Psylla. C. pseudosieboldiani is congeneric with C. abieti and C. ginnali, two species also associated with Acer. For this reason P. pseudosieboldiani is transferred here to Cacopsylla. 328 E.S.LABINA etal.

Results matin subsequently concentrates at one pole of the nucleus (Fig. 1a). As the nucleus elongates (Fig. Our study reveals the presence of five distinctive 1b,c), two tails (nuclear prolongations) are pro- types of sperm formation in males among the 125 duced extending along the flagellum. The tails are examined psyllid species. The types referred to as slightly different in length and all the chromatin “Type I” to “Type V” differ from one another in mass (as a heteropycnotic body) is present in the the mode of chromatin reorganization during distal part of the shorter tale. The longer tail shows metamorphosis of spermatids into spermatozoa. no evidence of DNA (Fig. 1d-f).

Type I (Fig. 1a-f) Type II (Fig. 2a-e) At the very beginning of spermatid maturation As in Type I, at the very beginning of spermiogene- (post-telophasic cells), the chromosomes lose sisthe chromosomes lose their integrity and associate; their integrity and associate; a large mass of chro- a large mass of chromatin subsequently concentrates

Fig. 1. Spermiogenesis of Type I with consecutive stages of sperm formation. Black arrows indicate chromatin bodies inside the nuclei (for explanation, see Results). Grey arrow indicates basal body. a – Chamaepsylla hartigii, b – Diaphorina helichrysi, c, d – Acizziauncatoides,d– Arytainillacytisi,f– Bactericerastriola.Bar=10 Fm.

Fig. 2. Spermiogenesis of Type II with consecutive stages of sperm formation. Black arrows indicate chromatin bodies inside thenuclei.a,b,d,e– Rhinocolaaceris, c– Agonoscenacisti.Bar=10 Fm. TypesofSpermiogenesisinPsylloidea 329 at one pole of the nucleus (Fig. 2a). As the nucleus the chromosomes lose their integrity and associate; elongates, two cytoplasmic tails are produced ex- a large mass of chromatin subsequently divides tending along the flagellum (Fig. 2b,c). Contrary into the two heteropycnotic bodies which concen- to Type I, the chromatin mass (as a heteropycnotic trate at the opposite lateral parts of the nucleus body)remainsinthespermheadinsteadofmoving (Fig. 3a,b). As the nucleus elongates, two cyto- intothetail(Fig.2d,e).TypesIandIIaresosimilar plasmic tails are produced extending along the fla- thatitisimpossibletoattributewithcertaintysome gellum. The chromatin masses (as two heteropyc- species (Paurocephala chonchaiensis and P. tre- notic bodies) elongate in parallel with the nucleus matos, Liviidae; Table 1) to one of the two types. and each moves to one of the tails (Fig. 3c-e). Af- terwards, each of the bodies disintegrates and Type III (Fig. 3a-f) separate chromatin units are distributed through- out the tail’s length being highly condensed and This type differs distinctly from the two types easytocountatthisstage.Theunitsshowatandem above. At the very beginning of spermiogenesis (end-to-end) arrangement and their number is ap-

Fig. 3. Spermiogenesis of Type III with consecutive stages of sperm formation. Black arrows indicate chromatin bodies inside the nuclei. Grey arrow indicate basal body. a-d – Aphalara polygoni, e – Aphalara calthae, f – Craspedolepta topicalis.Bar = 10 Fm.

Fig. 4. Spermiogenesis of Type IV with consecutive stages of sperm formation (a-d – species with low chromosome number; e & f – species with high chromosome number). Black arrows indicate chromatin bodies inside the nuclei. a-d – Peripsyllopsis speciosa, e – ’Paurocephala’ hottenttoti,f–’Paurocephala’sp.Bar=10 Fm. 330 E.S.LABINA etal.

Fig. 5. Spermiogenesis of Type V with consecutive stages of sperm formation. Black arrows indicate chromatin bodies inside the nuclei. a – Anoeconeossa unicornuta, b – Cryptoneossa cf. triangula, c – Blastopsylla moorei, d & e – Cardiaspina albitextura,f– Anoeconeossa sp.(communisgroup),g– Creiis.Bar=10 Fm. proximately consistent with the haploid chromo- sitioned very close to each other in the nucleus some set of a species (Fig. 3f). At a later stage, the (Fig. 5a-b). The nucleus elongates and two cyto- tails further elongate, the chromosomes associate plasmic tails are produced. Gradually the hetero- again and form two heteropycnotic bodies each pycnotic bodies elongate in parallel with the nucleus positioned at the end of a tail. being from then on observed as two bands expanded along the entire lengths of each tail (Fig. 5c-g). Type IV (Fig. 4a-f) This type is similar to Type III but differs clearly Discussion at the initial stage of spermiogenesis. At this stage, the chromosomes maintain their integrity in the Spermiogenesis is a highly regulated and ex- spermatid nucleus and appear as separate chroma- tremely complex process by which post-meiotic tin units distributed throughout the whole nucleus. male germ cells differentiate into mature sper- The number of chromatin units is approximately matozoa. This process involves remarkable consistent with the number of chromosomes in the changes in cell morphology and chromatin organi- haploid set of a species, e.g. in Peripsyllopsis speciosa zation during spermatid differentiation. Refer- with n = 4 + X/0 (Fig. 4a) and in ‘Paurocephala’ ences on spermiogenesis, mainly on the fine hottentotti with n = 12 +X/0 (Fig. 4e). At a later structure of spermatozoa, are numerous in studies stage, the nucleus elongates and the cytoplasmic using the electron microscope, suggesting that tails are produced. The chromosomes are divided these characters may be potentially informative in into the two groups and show a tandem arrange- phylogenetic analyses (see e.g. JAMIESON 1987; ment along each tail, being easy to count at this JAMIESON et al. 1999). Evidence for Psylloidea is, stage (Fig. 4b-d, f). Later, the tails elongate further, however, scarce and limited to just a few studies the chromosomes associate again and form a het- carried out either with electron microscopy (LE eropycnotic band at the end of each tail. MENN 1966a, b; DALAI 1979) or light microscopy (KUZNETSOVA et al. 1997; TIAN et al. 2007; pres- ent study). Type V (Fig. 5a-g) By electron microscopy, LE MENN (1966a, b) As in Type III, at the beginning of spermiogene- revealed the unique nuclear structure of sper- sis all the chromosomes unite into two heteropyc- matids and mature spermatozoa in eight species of notic bodies. The spermatids are very small in Homotomidae, Psyllidae and Triozidae (Table 1). Type V and the chromatin bodies are therefore po- In spermatids, a large mass of Feulgen-positive TypesofSpermiogenesisinPsylloidea 331

caped attention in the literature”(JAMIESON 1987: 159). With light microscopy KUZNETSOVA et al. (1997) found in ten species of Aphalarinae (Aphalaridae) a different, also unusual type of sperm formation which they named the “binu- clear” type (Type III according to our classifica- tion). In these species, the chromatin mass was found to break down into two portions in the sper- matid nucleus and each of the DNA masses subse- quently enters one of the two nuclear tails. TIAN et al. (2007) described a kind of binuclear sperm in Bharatiana septentrionalis (Calophyidae) and Acizzia jamatonica (Psyllidae). In these species, a second spermatocyte was shown to form binuclear spermatozoa as a result of cytokinesis failure. The present light microscopic study carried out on 125 psyllid species representing 51 genera and seven families (Table 1) revealed the presence of five types of post-meiotic chromatin reorganiza- tion in males. The variation observed at the mor- phological level is most likely correlated with the molecular reorganization of the chromatin that oc- curs in spermatid nuclei. Table 1 summarises the data on spermiogenesis available for 143 species of 54 genera, 17 subfamilies and seven families (only Phacopteronidae is not represented). B. sep- tentrionalis and A. jamatonica were not examined by us and the information is taken from Fig. 1i in TIAN et al. (2007). At present it is not possible to decide whether the binuclear spermatozoa in these species represent Type I, Type III or a new type. Apart from these two species, the variation in sperm formation is limited to the five types listed above. For exploring evolutionary patterns we mapped thefivetypesofspermformationonthecladogram illustrating the hypothesised phylogenetic rela- tionships of psyllid families and subfamilies by BURCKHARDT and OUVRARD (2012) (Fig. 6). Type I, found in 93 species of 31 genera (not counting Paurocephala with two studied species; see Table I), occurs in 13 subfamilies and all the families studied. It is the only type in the Triozidae and Carsidaridae. The data on Carsidaridae are Fig. 6. Types of spermiogenesis mapped onto a cladogram representing the hypothesised phylogenetic relationships of still very scarce; those on Triozidae available for Psylloidea according to BURCKHARDT and OUVRARD (2012). 32 species of 8 genera are slightly more represen- tative although the Triozidae comprise well over 1000 described species. The exclusive presence of chromatin was shown to concentrate at one pole of Type I was also documented in the following sub- thenucleus;theremainderofthenucleusshowsno families: Pachypsyllinae (1 species/1 genus; trace of DNA; the mass of chromatin is subse- Aphalaridae), Dynopsyllinae and Homotominae quently carried to the tip of only one of the nuclear (2/2; Homotomidae), Calophyinae (2/1; Calophyi- prolongations(tails).ThispatternreferredtobyLE dae), as well as Acizziinae, Ciriacreminae, Macro- MENN as “binuclear” (i.e. as showing a “divided corsinae and Psyllinae (46/14; Psyllidae). Type I nucleus”) corresponds to the Type I in our classifi- also occurs in Macrohomotoma (1 species; Homo- cation. tomidae, Macrohomotominae), Diaphorina (7; Surprisingly, this remarkable sperm pattern, not Liviidae, Euphyllurinae) and (1; previously known in any insect, “has largely es- Liviidae, Liviinae). 332 E.S.LABINA etal.

The chromatin organization and transformations Based on a statistic correlation between the in Type II closely resemble those of Type I but number of these blocks and haploid chromosome clearly differ in that the whole DNA mass remains number of a species, the blocks correspond to in the sperm head rather than moving into a tail as chromosomes. The disposition of chromosomes in in Type I (see Results). Type II is found in sperms,i.e.whethertheyarearrangedrandomlyor Aphalaridae where it occurs in all members of the they occupy specific positions in a sperm nucleus, Rhinocolinae (4 species/3 genera), as well as in has been the subject of many studies over several Mycopsylla (1/1; Homotomidae). The occurrence decades(e.g.HUGHES-SCHRADER 1946; INOUE & of Type II in phylogenetically distant taxa sug- SATO 1962; TAYLOR 1964). From the evidence of gests that there is no common evolutionary origin some species studied, in particular of ’Pauroceph- of this type and that the underlying molecular ala’ hottentotti and Peripsyllopsis speciosa (Fig. mechanism is either different in the above three 4a & e), it is concluded that the chromosomes of groups or convergent. psyllids are arranged in a defined order in the Type III is restricted to the Aphalarinae (20 spe- sperm nucleus. This finding supports the hypothe- cies/3 genera; Aphalaridae). The main difference sisthatspecificchromosomearrangementisagen- between Type III and Types I and II is that the eral feature of sperm (WATSON et al. chromatin mass breaks down into two portions 1996). which are subsequently carried to the tips of both Within Psylloidea, there are two main chromatin cytoplasmic prolongations. With the present data reorganisation pathways during metamorphosis of Type III can be interpreted as an autapomorphy of spermatids into spermatozoa represented by Types theAphalarinae,however,onlythreeofthe16cur- III,IVandVontheonehandandbyTypesIandII rently recognised genera have been examined. Ac- on the other hand. Type I has the widest distribu- cording to the cladistic analysis of BURCKHARDT tion over the higher-level taxa (at the subfamily and QUEIROZ (2013) Aphalara and Craspedolepta level) followed by Type II (Fig. 6). Ancestral state are closely related, but Crastina only distantly, reconstruction suggests that Type I is ancestral representing only a small fraction of taxonomic di- within Psylloidea. It follows that Type II evolved versity of the subfamily. four times independently (once each in Aphalari- Type IV is restricted to some members of dae and Homotomidae, respectively and twice in Euphyllurinae (4 species/2 genera; Liviidae), i.e. Liviidae). one species of Peripsyllopsis and three species of an undescribed genus which contains two de- scribed and at least a dozen undescribed species in the Afrotropical region associated with Proteaceae Concluding remarks (D. BURCKHARDT & D. HOLLIS, in preparation). Whether Type IV represents a synapomorphy for a monophyletic clade within Euphyllurinae should Our light microscopic study shows that in Psyl- be tested with other genera such as the Palaearctic loidea spermatids undergo substantial morpho- or the New World Katacephala, Noto- logical changes as they transform into mature phorina and Tuthillia,agroupofgeneraassociated sperm, and the type of chromatin organization and with Myrtaceae and other families. sperm formation greatly differ between the species examined. Within Psylloidea, five types are recog- Type V is restricted to the predominantly Aus- nized. Type I most likely represents a plesiomor- tralian Spondyliaspidinae where it occurs in all ex- phic condition while the remaining Types II-V are amined taxa (16 species/12 genera; Aphalaridae). derived traits. Types III and V represent autapo- The 12 studied genera represent half of known morphies supporting the monophyly of the Spondyliaspidinae genera (BURCKHARDT & Aphalarinae and Spondyliaspidinae, respectively. OUVRARD 2012). The monophyly of Spondylias- Type IV may also constitute a synapomorphy pidinae is well supported by a series of morpho- grouping some genera within the Euphyllurinae logical characters (BURCKHARDT 1991). Type V but more taxa have to be examined to support this spermatogenesis, the very small spermatid nuclei, suggestion. Type II, finally, represents a homo- the low chromosome numbers and testes consist- plasy. In summary, among the five types of sper- ing of only two follicles (MARYAÑSKA-NAD- miogenesis, two are phylogenetically significant, ACHOWSKA et al. 2001a) represent additional giving additional support for the monophyly of potential autapomorphies of the subfamily. two of the best defined subfamilies of Psylloidea, As discussed above, the main shared feature of and one perhaps shows phylogenetic signal. Thus, Types III, IV and V is that the chromatin in sper- the pattern of spermiogenesis can be used for re- matids undergoes, in one way or another, division solving taxonomic questions and inferring phylo- into a number of chromatin blocks in spermatids geneticrelationshipswithinPsylloidea,evenifina and subsequently lands in both cytoplasmic tales. limited way. TypesofSpermiogenesisinPsylloidea 333

Acknowledgements son, R. Dallai, B.A. Afzelius eds. Science Publishers, En- field,NewHampshire):4-23. The study was financially supported by the Rus- KLIMASZEWSKI S.M. 1972. Bemerkungen uber die Systema- tik der Gattung Psylla Geoffr. s. l. (Homoptera, Psylloidea). sian Scientific Foundation (grant 14-14-00541). Ann.Univ.MarieCurieSklodowskaBiol. 27:11-15. Work on this project was facilitated by a research KLIMASZEWSKI S.M., G£OWACKA E., JANAS R., NOVAK M. agreement between the Polish Academy of Sci- 1974. Systematic classification of the genus Craspedolepta ences and the Russian Academy of Sciences. Enderl. s.l. (Homoptera, Psylloidea) in the light of anatomi- cal and biochemical studies. Bull. Pol. Acad. Sci. 22: 239-243. KUZNETSOVA V.G., LABINA E.S., SHAPOVAL N.A., LUKH- References TANOV V.A., MARYAÑSKA-NADACHOWSKA A. 2012. Ca- copsylla fraudatrix sp.n. (Hemiptera: Psylloidea) recognised BURCKHARDT D. 1987a. Jumping plant lice (Homoptera: from testis structure and mitochondrial gene COI. Zootaxa Psylloidea) of the temperate Neotropical region. Part 1: 3547:55-63. Psyllidae (subfamilies Aphalarinae, Rhinocolinae and KUZNETSOVA V.G., NOKKALA S., MARYAÑSKA-NAD- Aphalaroidinae).Zool.J.LinneanSoc. 89:299-392. ACHOWSKA A., MACHARASHVILI I.D. 1997. Karyotypes, HARDT D. 1987b. Jumping plant lice (Homoptera: Psylloidea) spermatogenesis, and morphology of the internal reproduc- of the temperate Neotropical region. Part 2: Psyllidae (sub- tive system in males of some psyllid species (Homoptera, families Diaphorininae, Acizziinae, Ciriacreminae and Psyl- Psylloidea) of the fauna from Georgia: II. Peculiarities of the linae).Zool.J.LinneanSoc. 90:145-205. reproductive system and initial stages of spermiogenesis. Entomol.Rev. 77:21-30. BURCKHARDT D. 1991. Boreioglycaspis and spondyliaspid- ineclassification.RafflesBull.Zool. 39:15-52. LABINA E.S., MARYAÑSKA-NADACHOWSKA A., KUZNET- SOVA V.G. 2007. Meiotic karyotypes in males of nineteen BURCKHARDT D. 2005. Biology, ecology, and evolution of species of Psylloidea (Hemiptera) in the families Psyllidae gall-inducing psyllids (Hemiptera: Psylloidea). (In: Biol- andTriozidae. FoliaBiol.(Kraków) 55:27-34. ogy, Ecology, and Evolution of Gall-Inducing , Raman A., Schaefer C.W., Withers T.M. eds, Science Pub- LE MENN R. 1966a. Particularites ultrastructurales de la sper- lishers,Inc.,Enfield,NH):143-157. miogenèse de Trioza urticae (Homoptera Psylloidea). Pro- ceedongs of Sixth International Congress for Electron BURCKHARDT D., OUVRARD D. 2012. A revised classifica- Microscopy,Kyoto. MaruzenCo.,Tokyo:643-644. tion of the jumping plant-lice (Hemiptera: Psylloidea). Zo- otaxa 3509:1-34. LE MENN R. 1966b. Observations sur la spermiogenèse et le spermatozoïde des Psyllides (Homoptera Psylloïdea). C. BURCKHARDT D., QUEIROZ D.L. 2013. Systematics of the R.Acad.Sci. 262:1731-1733. Neotropical jumping plant-louse genus Limataphalara (Hemiptera: Psylloidea: Aphalaridae) and phylogenetic re- MARYAÑSKA-NADACHOWSKA A., KUZNETSOVA V.G., lationships within the subfamily Aphalarinae. (In: Studies in TAYLOR G.S. 2001a. Meiotic karyotypes and structure of Hemiptera in Honour of Pavel Lauterer and Jaroslav L. testes in males of 12 species of Psyllidae: Acizziinae, Carsi- Stehlík. Kment P., Malenovský I., Kolibác J. eds. Acta Mus. daridae and Triozidae (Hemiptera: Psylloidea) from Austra- Mor.,Sci.biol.(Brno) 98:35-56. lia.Austr.J.Entomol. 40:357-364. BURCKHARDT D., OUVRARD D., QUEIROZ D., PERCY D. MARYAÑSKA-NADACHOWSKA A., TAYLOR G.S., KUZNET- 2014. Psyllid host-plants (Hemiptera: Psylloidea): resolving SOVA V.G. 2001b. Meiotic karyotypes and structure of testes asemanticproblem.FloridaEntomologist 97:242-246. in males of 17 species of Psyllidae: Spondyliaspidinae (Hemiptera: Psylloidea) from Australia. Austr. J. Entomol. DALAI R. 1979. An overview of atypical spermatozoa in in- 40:349-356. sects. (In: The Spermatozoon: Maturation, Motility, Surface Properties and Comparative Aspects. D. W. Fawcett, J. M. MARYAÑSKA-NADACHOWSKA A., KUZNETSOVA V.G., Bedford eds. Urban and Schwarzenberg, Baltimore): NOKKALA S. 2001c. Standard and C-banded meiotic karyo- 253-256. types of Psylloidea (Sternorrhyncha, Homoptera, Insecta). FoliaBiol.(Kraków) 49: 53-62. G£OWACKA E., KUZNETSOVA V.G., MARYAÑSKA-NAD- ACHOWSKA A. 1995. Testis follicle number in psyllids MARYAÑSKA-NADACHOWSKA A. 2002. A review of karyo- (Psylloidea, Homoptera) as an anatomical feature in studies type variation in jumping plant-lice (Psylloidea, Sternor- of systematic relations within the group. Folia Biol. rhyncha, Hemiptera) and checklist of chromosome numbers. (Kraków) 43: 115-124. FoliaBiol.(Kraków) 50:135-152. GROZEVA S., NOKKALA S. 1996. Chromosomes and their NOKKALA S., KUZNETSOVA V. G., NOKKALA Ch. 2013. meiotic behaviour in two families of the primitive infraorder Meiosis in rare males in parthenogenetic Cacopsylla myrtilli ().Hereditas 125: 31-36. (Wagner, 1947) (Hemiptera, Psyllidae) populations from northernEurope.Comp.Cytogen. 7:241-251. HUGHES-SCHRADER S. 1946. A new type of spermiogenesis in iceryine coccids – with linear alignment of chromosomes SUMNER A.T. 1972. A simple technique for demonstrating inthesperm.J.Morphol. 78:43-83. centromereheterochromatin.Exp.CellRes. 75:304-306. INOUÉ S., SATO H. 1962. Arrangement of DNA in living TAYLOR J.H. 1964. The arrangement of chromosomes in the sperm:Abiophysicalanalysis.Science 136:1122-1124. mature sperm of the grasshopper. J. Cell Biol. 21: 286-289. HOWELL W.M., BLACK D.A. 1980. Controlled silver staining TIAN R.-G., YUAN F., ZHANG Ya-L., MIN F. 2007. Chromo- of nucleolus organizer regions with a protective colloidal de- some behaviors in two species of psyllids (Homoptera: Psyl- veloper:a1-stepmethod.Experientia 36:1014-1015. loidea).Entomotaxonomia 29:119-124. JAMIESON B.G.M. 1987. The Ultrastructure and Phylogeny of WATSON J.M., MEYNE J., GRAVES J.A. 1996. Ordered tan- Insect Spermatozoa. University Press, Cambridge, England. dem arrangement of chromosomes in the sperm heads of Pp.320. monotreme mammals. Proc. Natl. Acad. Sci. U. S. A. 93: 10200-10205. JAMIESON B.G.M., DALLAI R., AFZELIUS B.A. 1999. Devel- opment of the insect spermatozoon: spermatogenesis. (In: WHITE I.M., HODKINSON I.D. 1985. Nymphal and : Their Spermatozoa and Phylogeny. B.G.M. Jamie- systematics of Psylloidea (Homoptera). Bull. Br. Mus. Nat. Hist.(Entomol.) 50:153-301.