EPPO Reporting Service
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evidence for Noncirculative Transmission of Pierce's Disease Bacterium by Sharpshooter Leafhoppers
Vector Relations Evidence for Noncirculative Transmission of Pierce's Disease Bacterium by Sharpshooter Leafhoppers Alexander H. Purcell and Allan Finlay Department of Entomological Sciences, University of California, Berkeley, 94720. The California Table Grape Commission and the Napa Valley Viticultural Research Fund supported this work in part. We thank Dennis Larsen for technical assistance. Accepted for publication 10 October 1978. ABSTRACT PURCELL, A. H., and A. H. FINLAY. 1979. Evidence for noncirculative transmission of Pierce's disease bacterium by sharpshooter leafhoppers. Phytopathology 69:393-395. Half of the leafhoppers (Graphocephalaatropunctata) allowed acquisi- which was in close agreement with estimates for which no latent period was tion access on grapevines affected with Pierce's disease (PD) became assumed. Neither G. atropunctatanor Draeculacephalaminerva retained infective within 2.0 hr, and there was no significant increase inacquisition infectivity after molting. The loss of infectivity after molting and lack of a beyond 24 hr. The median inoculation access period was 3.9 hr. Three of 34 latent period suggest a noncirculative mechanism of transmission of the P[) (9%) insects transmitted after I hr each for acquisition and for inoculation, bacterium by leafhoppers. Additional key words: Hordnia, Graphocephala, Draeculacephala,lucerne dwarf, alfalfa dwarf, almond leaf scorch, rickettsia-like bacteria, stylet-borne. Pierce's disease (PD) of grapevines usually is lethal to grapevines Princeton, NJ 08540) 25% WP in water at recommended rates and (Vitis vinifera); periodically it has caused serious losses to the held in a heated greenhouse. Symptoms of PD normally appeared California grape industry and it has precluded successful after 10-14 wk. Grapevines without symptoms of PD for 22-25 wk production of bunch grapes in the southeastern USA (5). -
INSECTS of MICRONESIA Heteroptera: Pentatomoidea1
INSECTS OF MICRONESIA Heteroptera: Pentatomoidea1 By HERBERT RUCKES RESEARCH ASSOCIATE, DEPARTMENT OF ENTOMOLOGY AMERICAN MUSEUM OF NATURAL HISTORY, NEW YORK EMERlTUS PROFESSOR OF BIOLOGY, CITY COLLEGE OF NEW YORK INTRODUCTION The Pentatomoidea consists of the families Plataspidae, Cydnidae, Pentatomidae, Acanthosomidae, Phloeidae, Urostylidae, Aphylidae, and Lestoniidae. In this classification I am following the terminology proposed by China and Miller (l955, Ann. Mag. Nat. Hist. XII, 8: 257-267). Of these various families, representatives of the Phloeidae, Urostylidae, Lestoniidae, and Aphylidae have not, as yet, been recorded from Micronesia. The Phloei dae, represented by two genera, are found only in Brazil. The Urostylidae, however, are native to India; China, Japan, Australia, the Philippines, and intermediate islands such as Borneo and Java. It is rather surprising that examples of this family have not been taken from Micronesia since the other pentatomoid fauna of these islands is, for the most part, derived from the nearby Australian, Asian, and adjacent insular regions where the Uro stylidae occur. Aphylidae and Lestoniidae are strictly Australian families, each represented by a single genus. The remaining families have varying representation in the Micronesian fauna. I wish to take this opportunity to express my sincere thanks to Miss Marjorie Statham, of the technical staff of the Department of Entomology of the American Museum of Natural History, for generously donating her time and ability to make the fine drawings that accompany this report. Her gratuitous services are, indeed, greatly appreciated. Thanks are also extended to Miss Setsuko Nakata, of the Bernice P. Bishop Museum staff, for editing and preparing the typescript of this article for publication. -
3 Mating Behavior of the Asian Citrus Psyllid
3 Mating Behavior of the Asian Citrus Psyllid Richard W. Mankin1* and Barukh Rohde2 1US Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, Florida, USA; 2Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA Many aspects of the mating behavior of Diapho- produce signals ranging approximately 150– rina citri Kuwayama (Hemiptera: Liviidae), the 500 ms in duration, and females 331–680 ms. Asian citrus psyllid (ACP) are shared by other mem- The spectra of communication signals produced bers of the Psylloidea. Adults are reproductively by D. citri have prominent frequencies that are mature within about 2 days post-eclosion, and multiples (harmonics) of the 170–250 Hz wing- both sexes mate multiple times during their lifetime. beat frequency, and both sexes respond behav- Typically, courtship is mediated by short-range, iorally to synthetic signals containing three or substrate- borne vibrational communication and more wingbeat harmonics. When the male semiochemicals. In citrus orchards, D. citri court- finds the female, he moves alongside with their ship is facilitated by host-seeking and foraging heads pointing in the same direction and grasps behavior, as both sexes are attracted to green and her with his adjacent legs, bringing his abdo- yellow colors, as well as to volatiles of young men from underneath to meet the opening of flush shoots on the host tree, and short-range her genital segment. They remain in copulation communication is sufficient for finding mates in for about 48 min. Dispersal and mating behavior aggregations that develop soon after the flush of D. -
Howard Associate Professor of Natural History and Curator Of
INGI AGNARSSON PH.D. Howard Associate Professor of Natural History and Curator of Invertebrates, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086 E-mail: [email protected]; Web: http://theridiidae.com/ and http://www.islandbiogeography.org/; Phone: (+1) 802-656-0460 CURRICULUM VITAE SUMMARY PhD: 2004. #Pubs: 138. G-Scholar-H: 42; i10: 103; citations: 6173. New species: 74. Grants: >$2,500,000. PERSONAL Born: Reykjavík, Iceland, 11 January 1971 Citizenship: Icelandic Languages: (speak/read) – Icelandic, English, Spanish; (read) – Danish; (basic) – German PREPARATION University of Akron, Akron, 2007-2008, Postdoctoral researcher. University of British Columbia, Vancouver, 2005-2007, Postdoctoral researcher. George Washington University, Washington DC, 1998-2004, Ph.D. The University of Iceland, Reykjavík, 1992-1995, B.Sc. PROFESSIONAL AFFILIATIONS University of Vermont, Burlington. 2016-present, Associate Professor. University of Vermont, Burlington, 2012-2016, Assistant Professor. University of Puerto Rico, Rio Piedras, 2008-2012, Assistant Professor. National Museum of Natural History, Smithsonian Institution, Washington DC, 2004-2007, 2010- present. Research Associate. Hubei University, Wuhan, China. Adjunct Professor. 2016-present. Icelandic Institute of Natural History, Reykjavík, 1995-1998. Researcher (Icelandic invertebrates). Institute of Biology, University of Iceland, Reykjavík, 1993-1994. Research Assistant (rocky shore ecology). GRANTS Institute of Museum and Library Services (MA-30-19-0642-19), 2019-2021, co-PI ($222,010). Museums for America Award for infrastructure and staff salaries. National Geographic Society (WW-203R-17), 2017-2020, PI ($30,000). Caribbean Caves as biodiversity drivers and natural units for conservation. National Science Foundation (IOS-1656460), 2017-2021: one of four PIs (total award $903,385 thereof $128,259 to UVM). -
Kudzu Vine Distribution of Kudzu
Kudzu Bug Megacopta cribraria Photo: ©2007 Charles Lam, Wikimedia commons Kudzu Bug • First species of Plataspidae family in Western Hemisphere! • 2009: First detection in U.S. (Georgia) • Agricultural pest to legumes • Nuisance pest to homeowners Photos: (Top) - Michasia Harris, University of Georgia, Bugwood.org #5474627; (Bottom) - Daniel R. Suiter, University of Georgia, Bugwood.org # 5407722 Kudzu Bug Distribution No sampling Sampled but not found Intercepted or detected, but not established Established by survey or consensus Map courtesy of Pest Tracker, National Agricultural Pest Information System (NAPIS), and The University of Georgia - Center for Invasive Species and Ecosystem Health, eddmaps.org Photo: Russ Ottens, University of Georgia, Bugwood.org #5475145 Susceptible Plants In the United States: • Kudzu • Soybean and other legumes • Corn • Sweet potato • Wisteria • Wheat In native regions: • NOT an agricultural pest Kudzu bug on soybean Photo: Michasia Harris, University of Georgia, Bugwood.org #5473918 Kudzu “The vine that ate the South” Kudzu vine Distribution of Kudzu Photo: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org #5483399; Map courtesy of USDA database, National Agricultural Pest Information System (NAPIS) Identification Eggs Nymphs Symbiont capsules in egg mass Hairy appearance of nymphs Photos: (Top) - Joe Eger, Dow AgroSciences, Bugwood.org #5471831; Yasmin Cardoza, North Carolina State University, Bugwood.org #5472919 (Bottom) - Yasmin Cardoza, North Carolina State University, Bugwood.org #5472911; -
The Leafhoppers of Minnesota
Technical Bulletin 155 June 1942 The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station Accepted for publication June 19, 1942 CONTENTS Page Introduction 3 Acknowledgments 3 Sources of material 4 Systematic treatment 4 Eurymelinae 6 Macropsinae 12 Agalliinae 22 Bythoscopinae 25 Penthimiinae 26 Gyponinae 26 Ledrinae 31 Amblycephalinae 31 Evacanthinae 37 Aphrodinae 38 Dorydiinae 40 Jassinae 43 Athysaninae 43 Balcluthinae 120 Cicadellinae 122 Literature cited 163 Plates 171 Index of plant names 190 Index of leafhopper names 190 2M-6-42 The Leafhoppers of Minnesota John T. Medler INTRODUCTION HIS bulletin attempts to present as accurate and complete a T guide to the leafhoppers of Minnesota as possible within the limits of the material available for study. It is realized that cer- tain groups could not be treated completely because of the lack of available material. Nevertheless, it is hoped that in its present form this treatise will serve as a convenient and useful manual for the systematic and economic worker concerned with the forms of the upper Mississippi Valley. In all cases a reference to the original description of the species and genus is given. Keys are included for the separation of species, genera, and supergeneric groups. In addition to the keys a brief diagnostic description of the important characters of each species is given. Extended descriptions or long lists of references have been omitted since citations to this literature are available from other sources if ac- tually needed (Van Duzee, 1917). -
Your HATCH Project Sample Title Here
HATCH PROJECT Alabama Agricultural Experiment Station Auburn University TITLE OF PROPOSED PROJECT: Development and Implementation of Alternative Pest Management Strategies for Emerging Crop Pests in Alabama PRINCIPAL INVESTIGATOR: Department: 1 SUMMARY OF CRIS DATABASE SEARCH A search of the Current Research Information System (CRIS) revealed a total of eight projects relating to arthropod pest management. Entering “insect pest management” returned 6 matches, while entering “insect pest management in fruit/vegetable/specialty crops” returned 2 matches. Four of these are Hatch projects and only two are vaguely related to the focus of this Hatch project: 1) Development and Implementation of New Reduced-Risk Insect Management Strategies for Blueberries and Cranberries - by ??, ?? University, 2) Insect Pest Management of Sweet Potato and Vegetable Crops – by :??, ?? University, and 3) High Value Specialty Crop Pest Management – by ??, ?? University. None of the projects directly addresses the specific objectives of or overlaps with this proposed Hatch project. NON TECHNICAL SUMMARY This project focuses on the management of key emerging pests of crops in Alabama, specifically pests of fruit and vegetable crops and soybean. Fruit and vegetable crops constitute an important group of horticultural crops in the U.S. with an annual market value of approximately $23 billion. Soybean is also an important crop in the U.S with an annual market value of about $42 billion. Several arthropod pests attack these crops in Alabama with the potential to cause significant economic losses to producers. The goal of this project is to develop and implement ecologically based and cost-effective integrated pest management (IPM) practices for major and emerging pests of peaches, cucurbits, crucifers and soybean. -
Current Status of the Kudzu Bug, Megacopta Cribraria, in North America
Presentation to: Annual Meeting of the National Plant Board Current Status of the Kudzu Bug, Megacopta Mystic, Connecticut Acknowledgments 24 July 2012 cribraria, in North America Wayne A. Gardner, Professor Department of Entomology John All University of Georgia University of Georgia Lisa Ames Georgia Dept of Agriculture Griffin Campus Chuck Bargeron Emory University Griffin, Georgia 30223 USA David Buntin USDA Forest Service 770‐228‐7341 Keith Douce USDA‐ARS [email protected] Wayne Gardner USDA‐APHIS‐PPQ Jim Hanula Clemson UiUnivers ity Scott Horn NC State University Tracie Jenkins NC Dept of Agriculture Robert Kemerait Wingate University Joseph LaForest Virginia Tech Hal Peeler University of Georgia Auburn University Phillip Roberts College of Agricultural and Environmental Sciences Megacopta Working Group Dow AgroScience John Ruberson Florida Dept of Agriculture Paul Smith Mississippi State University Alton (Stormy) Sparks, Jr. Dan Suiter Clay Talton Michael Toews Yanzhou Zhang The Insect Megacopta cribraria Initial Discovery Hemiptera: Plataspidae October 2009 A Development time from egg to Samples submitted to the UGA adult = 24 to 56 days. Homeowner Insect & Weed Diagnostics Laboratory. Numbers of eggs produced per female = 26 to 274 with 15 eggs per egg mass. October 28, 2009: Site visit to Jackson Co., GA, thousands of Eggs usually deposited in 2‐3 adult kudzu bugs on homes. parallel rows stuck black Upper images provided by Jeremy Greene, Clemson University substance deposited by female. Kudzu growing 30 m from homes harbored large numbers 5 nymphal instars. of adults and some late‐instar nymphs. Adult longevity = 23 to 77 days. Overwinter as adults in groups Adults seeking overwintering usually under debris or under sites at the homes. -
Consequences of Linguistic Uncertainty for Insect Management
WATCH YOUR LANGUAGE Consequences of Linguistic Uncertainty for Insect Management THERESA M. CIRA, KATHY QUICK, AND ROBERT C. VENETTE JA'CRISPY/ISTOCK 258 AMERICAN ENTOMOLOGIST | WINTER 2019 his is a call to entomologists to consider the un- certainty introduced into our works through the language we use. Albert Einstein remarked, “Every- thing depends on the degree to which words and word-combinations correspond to the world of im- Tpression,” which makes language a “dangerous source of error and deception” (Hawking 2007). Scientists usually research and deliberately choose the language they use to propose new concepts or terminology. Often, however, terms slip into the lexicon through less systematic means. Words may seem to have meanings so obvious that broad understanding of the term may be taken for granted, but individual contexts are diverse, and to assume that a word’s meaning is unchanging across time and space is to overlook the uncertainties of lan- guage. Thus, communication through even the most common entomological vocabulary can fail. Language is a mutable, un- certain, and imperfect way of representing the world. Because language is integral to science and yet inherently imprecise, it is important for scientists to recognize and address uncertain- ty in the language of our works. Uncertainty, as defined by the Society a phenomenon is repeatedly observed and for Risk Analysis (2015), is “not knowing the individuals agree that measurements con- true value of a quantity or the future con- verge, to some degree, on a specific point, sequences of an activity,” or “imperfect or more certainty about the true nature of the incomplete information/knowledge about phenomenon can be asserted. -
The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae) Taxonomy, Biology, and Virus Transmission
/«' THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, CICADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION Technical Bulletin No. 1382 Agricultural Research Service UMTED STATES DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS Many individuals gave valuable assistance in the preparation of this work, for which I am deeply grateful. I am especially indebted to Miss Julianne Rolfe for dissecting and preparing numerous specimens for study and for recording data from the literature on the subject matter. Sincere appreciation is expressed to James P. Kramer, U.S. National Museum, Washington, D.C., for providing the bulk of material for study, for allowing access to type speci- mens, and for many helpful suggestions. I am also grateful to William J. Knight, British Museum (Natural History), London, for loan of valuable specimens, for comparing type material, and for giving much useful information regarding the taxonomy of many important species. I am also grateful to the following persons who allowed me to examine and study type specimens: René Beique, Laval Univer- sity, Ste. Foy, Quebec; George W. Byers, University of Kansas, Lawrence; Dwight M. DeLong and Paul H. Freytag, Ohio State University, Columbus; Jean L. LaiFoon, Iowa State University, Ames; and S. L. Tuxen, Universitetets Zoologiske Museum, Co- penhagen, Denmark. To the following individuals who provided additional valuable material for study, I give my sincere thanks: E. W. Anthon, Tree Fruit Experiment Station, Wenatchee, Wash.; L. M. Black, Uni- versity of Illinois, Urbana; W. E. China, British Museum (Natu- ral History), London; L. N. Chiykowski, Canada Department of Agriculture, Ottawa ; G. H. L. Dicker, East Mailing Research Sta- tion, Kent, England; J. -
The Jumping Plant-Lice (Hemiptera: Psylloidea) of Turkey: a Checklist and New Records
Turkish Journal of Zoology Turk J Zool (2014) 38: 559-568 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1307-15 The jumping plant-lice (Hemiptera: Psylloidea) of Turkey: a checklist and new records 1, 2 Jowita DROHOJOWSKA *, Daniel BURCKHARDT 1 Department of Zoology, Silesian University, Katowice, Poland 2 Naturhistorisches Museum, Basel, Switzerland Received: 10.07.2013 Accepted: 17.02.2014 Published Online: 14.07.2014 Printed: 13.08.2014 Abstract: A checklist is provided for the Turkish Psylloidea comprising 99 species, of which 1 is doubtful (Livia crefeldensis) and 6 are recorded for the first time from Turkey (Rhodochlanis bicolor, Euphyllura pakistanica, Camarotoscena lauta, Syntomoza unicolor, Baeopelma colorata, and Spanioneura persica). A key is provided for the 3 Spanioneura species associated with Prunus dulcis. Spanioneura pechai (Klimaszewski and Lodos) stat. rev. is removed from synonymy with S. turkiana. Key words: Palearctic, psyllids, taxonomy, distribution, Spanioneura 1. Introduction and Ulusoy, 2011a, 2011b). The present checklist brings Psyllids or jumping plant-lice are phloem-feeding insects together the published records on Turkish psyllids and that superficially resemble small cicadas. They are generally adds information from several small lots of material that very host-specific, in particular as larvae. It is therefore we have identified over the last few years. not surprising that some can become pests on cultivated plants (Burckhardt, 1994). Of major economic importance 2. Materials and methods are those vectoring Liberibacter and Phytoplasma species, Material was examined from the collections of the the causal agents of serious plant diseases on citrus, pear, Naturhistorisches Museum, Basel (NHMB); the apple, plum, potato, and tomato (Hodkinson, 2009). -
An Inventory of Nepal's Insects
An Inventory of Nepal's Insects Volume III (Hemiptera, Hymenoptera, Coleoptera & Diptera) V. K. Thapa An Inventory of Nepal's Insects Volume III (Hemiptera, Hymenoptera, Coleoptera& Diptera) V.K. Thapa IUCN-The World Conservation Union 2000 Published by: IUCN Nepal Copyright: 2000. IUCN Nepal The role of the Swiss Agency for Development and Cooperation (SDC) in supporting the IUCN Nepal is gratefully acknowledged. The material in this publication may be reproduced in whole or in part and in any form for education or non-profit uses, without special permission from the copyright holder, provided acknowledgement of the source is made. IUCN Nepal would appreciate receiving a copy of any publication, which uses this publication as a source. No use of this publication may be made for resale or other commercial purposes without prior written permission of IUCN Nepal. Citation: Thapa, V.K., 2000. An Inventory of Nepal's Insects, Vol. III. IUCN Nepal, Kathmandu, xi + 475 pp. Data Processing and Design: Rabin Shrestha and Kanhaiya L. Shrestha Cover Art: From left to right: Shield bug ( Poecilocoris nepalensis), June beetle (Popilla nasuta) and Ichneumon wasp (Ichneumonidae) respectively. Source: Ms. Astrid Bjornsen, Insects of Nepal's Mid Hills poster, IUCN Nepal. ISBN: 92-9144-049 -3 Available from: IUCN Nepal P.O. Box 3923 Kathmandu, Nepal IUCN Nepal Biodiversity Publication Series aims to publish scientific information on biodiversity wealth of Nepal. Publication will appear as and when information are available and ready to publish. List of publications thus far: Series 1: An Inventory of Nepal's Insects, Vol. I. Series 2: The Rattans of Nepal.