Characterization of Methanogenic Communities and Nickel

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Methanogenic Communities and Nickel Microbial Diversity 2011 Characterization of methanogenic communities and nickel requirements for methane production from Wood Hole marshes and isolation of a novel methanogen of the order Methanomicrobiales from Eel Pond mud Jennifer Glass California Institute of Technology [email protected] July 28, 2011 Microbial Diversity Course Marine Biological Laboratory 1 Highlights of Mini-Project • Isolation of anaerobic Citrobacter sp. (F1_G2) from School Street Marsh that seems to be producing acetate (further testing required). Glycerol stock made. • Isolation of methanogen with 85% similarity to Methanoplanus petrolearius from Eel Pond mud (S1_G3). Glycerol stock made. • Construction of mcrA clone libraries and community analysis for Cedar Swamp (165 clones) and School Street Marsh (62 clones). • 454 pyrosequencing and community analysis of sediment samples from Cedar Swamp (JG4: 6166 total OTUs and 224 methanogen OTUs), School Street Marsh (JG2: 5279 total OTUs and1 methanogen OTU), Great Sippewissett (JG3: 4131 total OTUs and 3 methanogen OTUs) and marine mud from the south coast of Martha’s Vineyard (JG1: 4192 total OTUs and 0 methanogen OTUs). • CARD-FISH analyses of complex populations of Methanosarcinales and other archaea and bacteria. Acquisition of two new probes (MSMX860 and MS1414) for the course. • Attempt at nickel limitation experiment was not useful for testing hypothesis likely due to nickel carryover and contamination. Introduction Methane is a very potent greenhouse gas and the only organisms known to produce it in significant quantities are methanogenic archaea. The marshes and salt ponds around Woods Hole offer excellent environments for sampling and enrichment of methanogens, as exemplified by the brilliant pyrotechnic displays every summer at Cedar Swamp during the Volta experiment. Although methanogens play a vital role in carbon cycling and require high concentrations of micronutrients such as iron, molybdenum, cobalt and nickel for growth (Schönheit et al., 1979; Sowers and Ferry, 1985), little is known about the environmental availability of such trace metals in the ecosystems when methanogens live or how methanogens acquire such metals. Furthermore, little is known about how differences in the primary substrate that methanogens use for growth (H2 CO2, acetate or methyl-compounds) affects their micronutrient/trace metal requirements. Nickel is a particularly important metal for methanogens compared to other microbes because methanogenesis involves four Ni enzymes: [NiFe] hydrogenase, Ni-dependent 2 carbon monoxide dehydrogenase, acetyl SCoA synthase and most importantly methyl-SCoM (Mcr) which catalyzes the last step of methanogenesis. During this project, I developed a hypothesis that methanogens might have higher nickel requirements when grown on H2 CO2 than when grown on acetate or methyl-compounds because additional Ni-Fe hydrogenases are required for hydrogenotrophic growth via aceticlastic or methylotrophic methanogenesis (Thauer et al., 2008). The goals of this mini-project were as follows: (1) isolate and characterize a methanogen using the group enrichments started at the beginning of the course; (2) test the nickel hypothesis by measuring methane production of pure cultures of methanogens grown on H2 CO2 vs. methylated compounds; (3) use CARD-FISH to analyze the spatial structure of methanogens in mixed culture and (4) perform community analysis of methanogenic diversity in a range of natural environments around the Woods Hole/Falmouth area. Methods and Materials Sample sites Samples were collected from the following sites around Woods Hole, Massachusetts: Great and Little Sippewissett Marsh, Eel Pond, Cedar Swamp, School Street Marsh and marine sediment (kindly provided by Erik Zettler) from the south coast of Martha’s Vineyard (Fig. 1). The first round of sampling occurred on June 15, 2011 at School Street Marsh and Little Sippewissett Marsh as part of the class field trip. Each of the four student groups collected sediment from the two sampling localities. In addition, group 3 collected a sample on June 13, 2011 from a patch of black, smelly, fine mud from Eel Pond directly across from the Loeb building near the parking lot and boats. Anaerobic chemotrophic group enrichments from these sites later became classified as the “freshwater” (School Street Marsh) and “seawater” (Little Sippewissett for groups 1, 2 and 4; Eel Pond for group 3) cultures (see below). The second round of sampling occurred on July 3-4, 2011 at Cedar Swamp, School Street Marsh and Great Sippewissett Marsh. Samples of sediment collected at Cedar Swamp, School Street Marsh and Great Sippewissett were frozen at -80°C immediately upon return to the lab. Along with a sample of marine sediment (C235AA-002-SG) collected on June 20, 2011 by Erik Zettler from 41°14’94009N/70°53’93055W, these samples were used for constructing mcrA clone libraries and for 454 pyrosequencing. At Great Sippewissett, anaerobic enrichment cultures 3 were set up within several hours after sampling (see below) whereas at School Street Marsh and Cedar Swamp, enrichment samples were taken with an N2-flushed syringe in the field and immediately inoculated into sterile anaerobic freshwater media in 160-mL serum bottles. The marine sediment enrichment culture was inoculated ~2 weeks after collection. Figure 1. Map of sampling localities in the Woods Hole and Falmouth area, Cape Cod, Massachusetts Anaerobic chemotrophic media Anaerobic basal modular medium was used throughout this project. This media was made by mixing 1 mL 0.1% resazurin with 1L of 1x seawater (342.2 mM NaCl; 14.8 mM MgCl22H2O; 1.0 mM CaCl22H2O; 6.71 mM KCl) or freshwater (17.1 mM NaCl; 1.97 mM MgCl22H2O; 0.68 mM CaCl22H2O; 6.71 mM KCl) basal medium in 1-L Pyrex bottle. The following additions were made: 20 mL 1 M MOPS (pH 7.2) to maintain the pH, 1 mL 0.1M potassium phosphate (pH 7.2), 1 mL 1000x trace element solution (made without Ni for the nickel experiments) and 0.7 g of sodium acetate (for a final concentration of 5 mM acetate). This media was purged for 1 hour under a stream of anaerobic 80% N2: 20%CO2 gas and then brought 4 into the anaerobic chamber. The following anaerobic stock solutions were then added: 70 mL 1 M NaHCO3 to adjust the pH to 7.0 under 20% CO2, 10 mL of 0.5 M NH4Cl, 2.0 mL of 0.2 M cysteine-HCl and 2.0 mL of Na2S to reduce the medium and serve as a source of sulfur. Once the medium turned from pink to clear in color, indicating complete reduction, 30 mL of media was distributed into 160-mL serum bottles. Bottles intended for nickel experiments were acid-washed in 20% hydrochloric acid and then rinsed 3x in MilliQ water. An anaerobic stock solution of nickel (30 mM NiCl26H2O) was added to final concentrations of 0 (no added Ni), 10, 100, 500 and 1000 nM Ni. For experiments with trimethylamine and methanol, anaerobic stock solutions were added to serum bottles a final concentration of 10 and 62 mM, respectively. Bottles were stoppered with blue butyl stoppers (HCl-washed for nickel experiments) and crimped inside the anaerobic chamber. Bottles were then autoclaved and allowed to cool before inoculation. Plates were made using the same media recipe described above, but with Gelrite added to the seawater media and agar added to the freshwater media. Inoculation for anaerobic chemotrophic enrichments For group enrichments, bottles containing 30-mL of anaerobic basal modular media containing either no added or 62 mM methanol were decrimped, purged with N2/CO2 gas (80%:20%) for 10 minutes and inoculated with 5-mL of a prepared soil slurry (2-3 g of soil or sediment into 15 mL of media). Bottles without added methanol were then overpressured with H2/CO2 (80%:20%) gas to 7 psi (in later transfers, higher overpressures were used, up to 30 psi). The inventory of inoculated cultures included 4 freshwater (from School Street Marsh) cultures grown on H2 CO2, 4 freshwater cultures grown on methanol, 4 seawater (from Little Sippewissett) cultures grown on H2 CO2 and 4 seawater cultures grown on methanol, totaling to 16 bottles. The annotation used for labeling cultures in this mini-project was “F” or “S” for freshwater or seawater, “1” for H2 CO2 growth, “4” for methanol growth and “G1, G2, G3 or G4” for group 1, 2, 3, or 4. Enrichment and isolation of methanogens All sixteen group cultures were transferred after 6 days of growth by withdrawing 1-mL of culture with an N2-purged syringe and injecting it into 30 mL of fresh sterile anaerobic basal modular medium. Cultures were monitored for growth by visually checking for turbidity, by 5 observing F420 autofluorescence under the microscope and by measurement of methane production by gas chromatography. The culture was grown for another 2 days and plated onto agar plates for freshwater samples and Gelrite plates for seawater samples, otherwise of the same composition as the liquid media. Plates were grown inside the anaerobic chamber in H2S incubators with the same headspace previously used for incubation. Small colonies appeared after several days of growth in the H2S incubators. These colonies were checked for F420 autofluorescence and colony PCR with universal and archeal primers (see below). I restreaked single colonies from all plates onto new plates after approximately 1 week of growth. After another week, single colonies were picked and transferred into sterile anaerobic basal modular media. Figure 2. Protocol for isolation of methanogens used during the group enrichments (first three steps) and the steps conducted in this mini-project (last three steps). Numbers indicate the number of different cultures at each step. DNA extraction DNA was extracted from four sediment samples (Great Sippewissett, Cedar Swamp, School Street Marsh and marine sediment) and from pure liquid cultures using the Mo-Bio 6 PowerSoil® DNA Isolation Kit following manufacturer’s directions. DNA concentration and quality was checked with a NanoDrop.
Recommended publications
  • Evidence of Active Methanogen Communities in Shallow Sediments
    Evidence of active methanogen communities in shallow sediments of the Sonora Margin cold seeps Adrien Vigneron, St´ephaneL'Haridon, Anne Godfroy, Erwan Roussel, Barry A Cragg, R. John Parkes, Laurent Toffin To cite this version: Adrien Vigneron, St´ephaneL'Haridon, Anne Godfroy, Erwan Roussel, Barry A Cragg, et al.. Evidence of active methanogen communities in shallow sediments of the Sonora Margin cold seeps. Applied and Environmental Microbiology, American Society for Microbiology, 2015, 81 (10), pp.3451-3459. <10.1128/AEM.00147-15>. <hal-01144705> HAL Id: hal-01144705 http://hal.univ-brest.fr/hal-01144705 Submitted on 23 Apr 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps Adrien Vigneron,a,b,c,e Stéphane L’Haridon,b,c Anne Godfroy,a,b,c Erwan G. Roussel,a,b,c,d Barry A. Cragg,d R. John Parkes,d Downloaded from Laurent Toffina,b,c Ifremer, Laboratoire de Microbiologie
    [Show full text]
  • Insights Into Archaeal Evolution and Symbiosis from the Genomes of a Nanoarchaeon and Its Inferred Crenarchaeal Host from Obsidian Pool, Yellowstone National Park
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-22-2013 Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar University of Tennessee - Knoxville, [email protected] Kira S. Makarova National Institutes of Health David E. Graham University of Tennessee - Knoxville, [email protected] Yuri I. Wolf National Institutes of Health Eugene V. Koonin National Institutes of Health See next page for additional authors Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Part of the Microbiology Commons Recommended Citation Biology Direct 2013, 8:9 doi:10.1186/1745-6150-8-9 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Authors Mircea Podar, Kira S. Makarova, David E. Graham, Yuri I. Wolf, Eugene V. Koonin, and Anna-Louise Reysenbach This article is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/ utk_micrpubs/44 Podar et al. Biology Direct 2013, 8:9 http://www.biology-direct.com/content/8/1/9 RESEARCH Open Access Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar1,2*, Kira S Makarova3, David E Graham1,2, Yuri I Wolf3, Eugene V Koonin3 and Anna-Louise Reysenbach4 Abstract Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.
    [Show full text]
  • Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora
    AEM Accepted Manuscript Posted Online 13 March 2015 Appl. Environ. Microbiol. doi:10.1128/AEM.00147-15 Copyright © 2015, American Society for Microbiology. All Rights Reserved. 1 Evidence of active methanogen communities in shallow sediments of the Sonora 2 Margin cold seeps 3 4 Adrien Vigneron#1235, Stéphane L'Haridon23, Anne Godfroy123, Erwan G. Roussel1234, Barry A. 5 Cragg4, R. John Parkes4 and Laurent Toffin123 6 1Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, 7 Technopôle Brest Iroise, BP70, Plouzané, France 8 2Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements 9 Extrêmes, UMR6197, Technopôle Brest Iroise, BP70, Plouzané, France 10 3CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, Technopôle 11 Brest Iroise, BP70, Plouzané, France 12 4School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, United Kingdom 13 5School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne 14 NE1 7RU, United Kingdom 15 Running Title: Methanogens in the Sonora Margin sediments 16 Keywords: Archaea / methanogenesis / Guaymas Basin / Methanococcoides / 17 Methanogenium 18 Contact of corresponding author: Dr. Adrien Vigneron ; [email protected] ; tel :+33 19 298 224 396 ; fax +33 298 224 557 20 Abstract 21 In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying 22 microbial mats harbor high biogenic methane concentrations, fuelling various microbial 23 communities such as abundant lineages of Anaerobic Methanotrophs (ANME). However 1 24 biodiversity, distribution and metabolism of the microorganisms producing this methane 25 remain poorly understood. In this study, measurements of methanogenesis using 26 radiolabelled dimethylamine, bicarbonate and acetate showed that biogenic methane 27 production in these sediments was mainly dominated by methylotrophic methanogenesis, 28 while the proportion of autotrophic methanogenesis increased with depth.
    [Show full text]
  • Representatives of a Novel Archaeal Phylum Or a Fast-Evolving
    Open Access Research2005BrochieretVolume al. 6, Issue 5, Article R42 Nanoarchaea: representatives of a novel archaeal phylum or a comment fast-evolving euryarchaeal lineage related to Thermococcales? Celine Brochier*, Simonetta Gribaldo†, Yvan Zivanovic‡, Fabrice Confalonieri‡ and Patrick Forterre†‡ Addresses: *EA EGEE (Evolution, Génomique, Environnement) Université Aix-Marseille I, Centre Saint-Charles, 3 Place Victor Hugo, 13331 Marseille, Cedex 3, France. †Unite Biologie Moléculaire du Gène chez les Extremophiles, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex ‡ 15, France. Institut de Génétique et Microbiologie, UMR CNRS 8621, Université Paris-Sud, 91405 Orsay, France. reviews Correspondence: Celine Brochier. E-mail: [email protected]. Simonetta Gribaldo. E-mail: [email protected] Published: 14 April 2005 Received: 3 December 2004 Revised: 10 February 2005 Genome Biology 2005, 6:R42 (doi:10.1186/gb-2005-6-5-r42) Accepted: 9 March 2005 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2005/6/5/R42 reports © 2005 Brochier et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Placement<p>Anteins from analysis 25of Nanoarcheumarchaeal of the positiongenomes equitans of suggests Nanoarcheum in the that archaeal N. equitans phylogeny inis likethe lyarchaeal to be the phylogeny representative using aof large a fast-evolving dataset of concatenatedeuryarchaeal ribosomalineage.</p>l pro- deposited research Abstract Background: Cultivable archaeal species are assigned to two phyla - the Crenarchaeota and the Euryarchaeota - by a number of important genetic differences, and this ancient split is strongly supported by phylogenetic analysis.
    [Show full text]
  • Nitrate Decreases Ruminal Methane Production with Slight Changes To
    Zhao et al. BMC Microbiology (2018) 18:21 https://doi.org/10.1186/s12866-018-1164-1 RESEARCH ARTICLE Open Access Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate- adapted steers Liping Zhao, Qingxiang Meng, Yan Li, Hao Wu, Yunlong Huo, Xinzhuang Zhang and Zhenming Zhou* Abstract Background: This study was conducted to examine effects of nitrate on ruminal methane production, methanogen abundance, and composition. Six rumen-fistulated Limousin×Jinnan steers were fed diets supplemented with either 0% (0NR), 1% (1NR), or 2% (2NR) nitrate (dry matter basis) regimens in succession. Rumen fluid was taken after two-week adaptation for evaluation of in vitro methane production, methanogen abundance, and composition measurements. Results: Results showed that nitrate significantly decreased in vitro ruminal methane production at 6 h, 12 h, and 24 h (P < 0.01; P < 0.01; P = 0.01). The 1NR and 2NR regimens numerically reduced the methanogen population by 4.47% and 25.82% respectively. However, there was no significant difference observed between treatments. The alpha and beta diversity of the methanogen community was not significantly changed by nitrate either. However, the relative abundance of the methanogen genera was greatly changed. Methanosphaera (PL = 0.0033) and Methanimicrococcus (PL = 0.0113) abundance increased linearly commensurate with increasing nitration levels, while Methanoplanus abundance was significantly decreased (PL = 0.0013). The population of Methanoculleus, the least frequently identified genus in this study, exhibited quadratic growth from 0% to 2% when nitrate was added (PQ = 0.0140). Conclusions: Correlation analysis found that methane reduction was significantly related to Methanobrevibacter and Methanoplanus abundance, and negatively correlated with Methanosphaera and Methanimicrococcus abundance.
    [Show full text]
  • Design of Targeted Primers Based on 16S Rrna Sequences in Meta
    Zhang et al. BMC Microbiology (2020) 20:25 https://doi.org/10.1186/s12866-020-1707-0 METHODOLOGY ARTICLE Open Access Design of targeted primers based on 16S rRNA sequences in meta-transcriptomic datasets and identification of a novel taxonomic group in the Asgard archaea Ru-Yi Zhang1, Bin Zou1, Yong-Wei Yan1,2, Che Ok Jeon3, Meng Li4, Mingwei Cai4,5 and Zhe-Xue Quan1* Abstract Background: Amplification of small subunit (SSU) rRNA genes with universal primers is a common method used to assess microbial populations in various environmental samples. However, owing to limitations in coverage of these universal primers, some microorganisms remain unidentified. The present study aimed to establish a method for amplifying nearly full-length SSU rRNA gene sequences of previously unidentified prokaryotes, using newly designed targeted primers via primer evaluation in meta-transcriptomic datasets. Methods: Primer binding regions of universal primer 8F/Arch21F for bacteria or archaea were used for primer evaluation of SSU rRNA sequences in meta-transcriptomic datasets. Furthermore, targeted forward primers were designed based on SSU rRNA reads from unclassified groups unmatched with the universal primer 8F/ Arch21F, and these primers were used to amplify nearly full-length special SSU rRNA gene sequences along with universal reverse primer 1492R. Similarity and phylogenetic analysis were used to confirm their novel status. Results: Using this method, we identified unclassified SSU rRNA sequences that were not matched with universal primer 8F and Arch21F. A new group within the Asgard superphylum was amplified by the newly designed specific primer based on these unclassified SSU rRNA sequences by using mudflat samples.
    [Show full text]
  • Presence of Archaea in the Indoor Environment and Their Relationships with Housing Characteristics
    Microb Ecol (2016) 72:305–312 DOI 10.1007/s00248-016-0767-z ENVIRONMENTAL MICROBIOLOGY Presence of Archaea in the Indoor Environment and Their Relationships with Housing Characteristics Sepideh Pakpour1,2 & James A. Scott3 & Stuart E. Turvey 4,5 & Jeffrey R. Brook3 & Timothy K. Takaro6 & Malcolm R. Sears7 & John Klironomos1 Received: 3 April 2016 /Accepted: 5 April 2016 /Published online: 20 April 2016 # Springer Science+Business Media New York 2016 Abstract Archaea are widespread and abundant in soils, Based on the results, Archaea are not equally distributed with- oceans, or human and animal gastrointestinal (GI) tracts. in houses, and the areas with greater input of outdoor However, very little is known about the presence of Archaea microbiome and higher traffic and material heterogeneity tend in indoor environments and factors that can regulate their to have a higher abundance of Archaea. Nevertheless, more re- abundances. Using a quantitative PCR approach, and search is needed to better understand causes and consequences of targeting the archaeal and bacterial 16S rRNA genes in floor this microbial group in indoor environments. dust samples, we found that Archaea are a common part of the indoor microbiota, 5.01 ± 0.14 (log 16S rRNA gene copies/g Keywords Archaea . Bacteria . Indoor environment . qPCR . dust, mean ± SE) in bedrooms and 5.58 ± 0.13 in common Building characteristics . Human activities rooms, such as living rooms. Their abundance, however, was lower than bacteria: 9.20 ± 0.32 and 9.17 ± 0.32 in bed- rooms and common rooms, respectively. In addition, by mea- Introduction suring a broad array of environmental factors, we obtained preliminary insights into how the abundance of total archaeal The biology and ecology of the third domain of life, Archaea, 16S rRNA gene copies in indoor environment would be asso- have been studied far less when compared to the other do- ciated with building characteristics and occupants’ activities.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0287504 A1 Mets (43) Pub
    US 2011 0287504A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0287504 A1 Mets (43) Pub. Date: Nov. 24, 2011 (54) METHOD AND SYSTEM FOR CONVERTING Publication Classification ELECTRICITY INTO ALTERNATIVE ENERGY RESOURCES (51) Int. Cl. CI2P 5/02 (2006.01) (75) Inventor: Laurens Mets, Chicago, IL (US) (52) U.S. Cl. ........................................................ 435/167 (73) Assignee: THE UNIVERSITY OF CHICAGO, Chicago, IL (US) (57) ABSTRACT (21) Appl. No.: 13/204,398 A method of using electricity to produce methane includes maintaining a culture comprising living methanogenic micro (22) Filed: Aug. 5, 2011 organisms at a temperature above 50° C. in a reactor having a first chamber and a second chamber separated by a proton Related U.S. Application Data permeable barrier, the first chamber comprising a passage between an inlet and an outlet containing at least a porous (63) Continuation of application No. 13/049,775, filed on electrically conductive cathode, the culture, and water, and Mar. 16, 2011, which is a continuation-in-part of appli the second chamber comprising at least an anode. The method cation No. PCT/US 10/40944, filed on Jul. 2, 2010. also includes coupling electricity to the anode and the cath (60) Provisional application No. 61/222,621, filed on Jul. 2, ode, Supplying carbon dioxide to the culture in the first cham 2009, provisional application No. 61/430,071, filed on ber, and collecting methane from the culture at the outlet of Jan. 5, 2011. the first chamber. Patent Application Publication Nov. 24, 2011 Sheet 1 of 12 US 2011/0287504 A1 PRIOR ART O2 H2 CHA -CH -D -O 50 52 -CH CO2 FIG.
    [Show full text]
  • Diversity of Archaea Domain in Cuatro Cienegas Basin: Archaean Domes
    bioRxiv preprint doi: https://doi.org/10.1101/766709; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Diversity of Archaea Domain in Cuatro Cienegas Basin: Archaean Domes 2 3 Medina-Chávez Nahui Olin1, Viladomat-Jasso Mariette2, Olmedo-Álvarez Gabriela3, Eguiarte Luis 4 E2, Souza Valeria2, De la Torre-Zavala Susana1,4 5 6 1Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de 7 Biotecnología. Av. Pedro de Alba S/N Ciudad Universitaria. San Nicolás de los Garza, Nuevo León, 8 México. C.P. 66455. 9 2Instituto de Ecología, UNAM, Circuito Exterior S/N anexo Jardín Botánico exterior. Ciudad 10 Universitaria, Ciudad de México, C.P. 04500 11 3Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N. 12 Campus Guanajuato, AP 629 Irapuato, Guanajuato 36500, México 13 14 4Correspondence should be addressed to Susana De la Torre-Zavala; 15 [email protected]. 16 17 18 19 20 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/766709; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Abstract 24 Herein we describe the Archaea diversity in a shallow pond in the Cuatro Ciénegas Basin (CCB), 25 Northeast Mexico, with fluctuating hypersaline conditions containing elastic microbial mats that 26 can form small domes where their anoxic inside reminds us of the characteristics of the Archaean 27 Eon, rich in methane and sulfur gases; thus, we named this site the Archaean Domes (AD).
    [Show full text]
  • Methanogenic Archaea: Emerging Partners in the Field of Allergic Diseases
    Clinical Reviews in Allergy & Immunology (2019) 57:456–466 https://doi.org/10.1007/s12016-019-08766-5 Methanogenic Archaea: Emerging Partners in the Field of Allergic Diseases Youssouf Sereme1,2 & Soraya Mezouar1,2 & Ghiles Grine1,2 & Jean Louis Mege1,2,3 & Michel Drancourt1,2 & Pierre Corbeau4,5,6 & Joana Vitte1,2,3 Published online: 14 September 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Archaea, which form one of four domains of life alongside Eukarya, Bacteria, and giant viruses, have long been neglected as components of the human microbiota and potential opportunistic infectious pathogens. In this review, we focus on methanogenic Archaea, which rely on hydrogen for their metabolism and growth. On one hand, methanogenic Archaea in the gut are functional associates of the fermentative digestion of dietary fibers, favoring the production of beneficial short-chain fatty acids and likely contributing to the weaning reaction during the neonatal window of opportunity. On the other hand, methanogenic Archaea trigger the activation of innate and adaptive responses and the generation of specific T and B cells in animals and humans. In mouse models, lung hypersensitivity reactions can be induced by inhaled methanogenic Archaea mimicking human professional exposure to organic dust. Changes in methanogenic Archaea of the microbiota are detected in an array of dysimmune conditions comprising inflammatory bowel disease, obesity, malnutrition, anorexia, colorectal cancer, and diverticulosis. At the subcellular level, methanogenic Archaea are activators of the TLR8-dependent NLRP3 inflammasome, modulate the release of antimicrobial peptides and drive the production of proinflammatory, Th-1, Th-2, and Th-17 cytokines.
    [Show full text]
  • Nov., Isolated from an Oil-Producing Well
    International Journal of Systematic Bacteriology (1998), 48, 821-828 Printed in Great Britain Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well Bernard Ollivier,’ Marie-Laure Fardeau,l Jean-Luc Cayol,’ Michel Magot,’ Bharat K. C. Patel,3 Gerard Prensiep and Jean-Louis Garcia’ Author for correspondence: Bernard Ollivier. Tel: + 33 4 91 82 85 76. Fax: + 33 4 91 82 85 70. e-mail : [email protected] 1 Laboratoire ORSTOM de Two irregular coccoid methanogens designated SEBR 4845Tand FRlT were Microbiologie des isolated from an oilfield in Alsace, France. Strain SEBR 4845l (T = type strain) is AnaCrobies, UniversitC de Provence, 13288 Marseille a hydrogenotrophic halotolerant methanogen, which grows optimally at 5 O/O Cedex 9, France NaCl (whr) and tolerates up to 12O/0 NaCI. It does not use methylated * Sanofi Recherche, Groupe compounds and therefore cannot be ascribed to any of the known genera of Elf-Aquitaine, Unit6 de the halophilic methylotrophic methanogens. It differs from hydrogenotrophic Microbiologie, 31 676 members of the orders Methanococcales and Methanomicrobiales in the NaCl La b&ge Cedex, France growth range (0-12% NaCI), which is the widest reported to date for any 3 School of Biomolecular hydrogenotrophic methanogen. 165 rRNA gene sequence analysis indicated and Biomedical Sciences, Griffith University, Nathan that strain SEBR 4845l is a novel isolate for which a new genus is proposed, 41 11, Brisbane, Methanocalculus halotolerans gen. nov., sp. nov. (= OCM 4703 that might be Queensland, Australia indigenous to the oilfield ecosystem. Strain FRlT (= OCM 471) is a moderately 4 Laboratoire de halophilic methanogen which grows optimally at 10% NaCl and tolerates up to Microbiologie, UniversitC 20% NaCI.
    [Show full text]
  • Thermophiles and Thermozymes
    Thermophiles and Thermozymes Edited by María-Isabel González-Siso Printed Edition of the Special Issue Published in Microorganisms www.mdpi.com/journal/microorganisms Thermophiles and Thermozymes Thermophiles and Thermozymes Special Issue Editor Mar´ıa-Isabel Gonz´alez-Siso MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Mar´ıa-Isabel Gonzalez-Siso´ Universidade da Coruna˜ Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Microorganisms (ISSN 2076-2607) from 2018 to 2019 (available at: https://www.mdpi.com/journal/ microorganisms/special issues/thermophiles) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-816-9 (Pbk) ISBN 978-3-03897-817-6 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Mar´ıa-Isabel Gonz´alez-Siso Editorial for the Special Issue: Thermophiles and Thermozymes Reprinted from: Microorganisms 2019, 7, 62, doi:10.3390/microorganisms7030062 ........
    [Show full text]