Reconstrução Filogenética Do Filo Arthropoda Baseada No Genoma Mitocondrial

Total Page:16

File Type:pdf, Size:1020Kb

Reconstrução Filogenética Do Filo Arthropoda Baseada No Genoma Mitocondrial Universidade Federal de Pernambuco Centro de Ciências Biológicas Programa de Pós-Graduacão em Genética Marco Antonio de Oliveira dos Santos Reconstrução Filogenética do Filo Arthropoda Baseada no Genoma Mitocondrial Recife 2012 Marco Antonio de Oliveira dos Santos Reconstrução Filogenética do Filo Arthropoda Baseada no Genoma Mitocondrial Tese apresentada ao Programa de Pós-Graduação em Genética da Universidade Federal de Pernambuco como parte dos requisitos exigidos para obtenção do título de Mestre em Genética. Orientador: Valdir de Queiroz Balbino Recife 2012 ii Catalogação na Fonte: Bibliotecário Bruno Márcio Gouveia, CRB-4/1788 S237r Santos, Marco Antonio de Oliveira dos Reconstrução filogenética do filo Arthropoda baseada no genoma mitocondrial / Marco Antonio de Oliveira Santos. – Recife: O Autor, 2012. 90 f. : il., fig., tab. Orientador: Valdir de Queiroz Balbino Tese (doutorado) – Universidade Federal de Pernambuco. Centro de Ciências Biológicas. Pós-graduação em Genética, 2012. Inclui bibliografia e anexos 1. Artrópode 2. Filogenia 3. Genoma I. Balbino, Valdir de Queiroz (orientador) II. Título. 595 CDD (22.ed.) UFPE/CCB-2013-225 Marco Antonio de Oliveira dos Santos Reconstrução Filogenética do Filo Arthropoda Baseada no Genoma Mitocondrial Aprovado em 06/08/2012 Banca Examinadora: ____________________________________________ Dr. Valdir de Queiroz Balbino Universidade Federal de Pernambuco ____________________________________________ Dr. Marcos Antônio de Morais Junior Universidade Federal de Pernambuco ____________________________________________ Dr. Martin Alejandro Montes Universidade Federal Rural de Pernambuco Recife 2012 iii A todos que acreditam em mim. iv Agradecimentos À minha família que me apoiou e incentivou a sempre buscar o melhor de mim. À minha noiva, Clarice, por sempre ficar ao meu lado, mesmo nas horas mais difíceis, e ter se mostrado uma eterna companheira e sempre compreensiva. Ao professor e orientador Valdir Balbino, pela oportunidade, enorme paciência e vontade de indicar os melhores caminhos. Ao pessoal do laboratório pelo companheirismo, troca de conhecimento e bom humor. Principalmente a Carlos, Marcus, Moisés e Tiago que tornaram esse trabalho mais fácil de realizar. Ao CNPQ pela ajuda financeira e ao LABBE pela disponibilidade da infraestrutura. v Resumo Os Arthropoda formam o grupo animal mais abundante e diverso na terra, com mais de um milhão de espécies descritas, apresentando extrema importância econômica, ambiental e médica. Devido a grande diversidade e antiguidade do grupo, inúmeras hipóteses para explicar a história evolutiva dos Arthropoda foram sugeridas ao longo dos anos. No entanto, as relações entre e dentro dos quatro principais grupos do filo (Crustacea, Hexapoda, Myriapoda e Chelicerata) permanecem como uma das grandes questões em aberto na sistemática. Neste contexto, o genoma mitocondrial representa uma importante fonte de informação para a reconstrução filogenética de um grupo taxonômico tão diverso. Assim, esse trabalho teve como objetivo elucidar as relações filogeneticas do filo Arthropoda a partir dos genomas mitocondriais, completamente sequenciados e disponíveis em bancos de dados públicos, utilizando diferentes abordagens computacionais. As análises dos genomas mitocondriais sugerem, com altos valores de suporte, o monofilétismo dos grupos Pancrustacea (Hexapoda + Crustacea) e Mandibulata (Pancrustacea + Myriapoda) indicando que o grupo irmão dos demais Arthropoda é Chelicerata. Além disso, a utilização da entropia de Shannon se mostrou altamente eficiente na seleção de regiões filogeneticamente informativas, sendo mais efetiva que outros métodos utilizados tradicionalmente na análise de genomas mitocondriais. A entropia também se mostrou como ótima fonte de informações para seleção de regiões conservadas destinadas à determinação de iniciadores degenerados para a amplificação de regiões homólogas. Esse trabalho representa um importante passo para a elucidação da história filogenética do filo Arthropoda. Palavras-chave: Arthropoda; Filogenia Molecular; Genoma Mitocondrial; Entropia. vi Abstract Arthropoda are the most abundant and diverse animal group on earth, with over a million described species. They have very important economic and medical, environmental. Given the great diversity and seniority of the group, several hypotheses to explain the evolutionary history of Arthropoda have been suggested over the years. The relationships between and within these four major lineages of the phylum (Crustacea, Hexapoda, Myriapoda and Chelicerata) lineages remain one of the most contentious issues in systematics. The mitochondrial genome represents an important source of information for phylogenetic reconstructions of a taxonomic group as diverse. Thus, this study aimed to elucidate the phylogenetics relationships of the phylum Arthropoda by use the completely sequenced and available mitochondrial genomes in public databases, using different computational approaches. Analyses of mitochondrial genomes suggest with high values support the monophyly of groups Pancrustacea (Hexapoda + Crustacea) and Mandibulata (Pancrustacea + Myriapoda) indicating that Chelicerata is sister group of other Arthropoda. Furthermore, the use of Shannon's entropy proved highly effective in the selection of phylogenetically informative regions. Shannon's entropy was more effective than other methods traditionally used in the analysis of mitochondrial genomes. The entropy also showed like great source of information for selection of conserved regions to determination of degenerate primers. This work represents an important step to elucidate the phylogenetics history of the phylum Arthropoda. Key words: Arthropoda; Molecular phylogeny; Mitochondrial Genome; Entropy. vii Lista de Ilustrações Figura 1. Diversidade do filo Arthropoda. 3 Figura 2. Esquema genoma mitocondrial. 10 Figura 3. Árvore de UPGMA baseada na ordem gênica do genoma mitocondrial dos Arthropoda. 33 Figura 4. Gráficos mostrando os valores de entropia para os genes ATP6, ATP8, COX1, COX2, COX3, CYTB, ND1 e ND2. 40 Figura 4. Gráficos mostrando os valores de entropia para os genes ND3, ND4, ND4L, ND5 e ND6. 41 Figura 5. Gráficos mostrando a saturação das sequências de DNA iniciais e para os dois métodos de seleção empregados nos genes ATP6, COX1 e COX2. 43 Figura 6. Gráficos mostrando a saturação das sequências de DNA iniciais e para os dois métodos de seleção empregados nos genes COX3, CYTB e ND1. 44 Figura 8. Gráficos mostrando a saturação das sequências de DNA iniciais e para os dois métodos de seleção empregados nos genes ND3, ND4 e ND5. 45 Figura 7. Gráfico mostrando os valores de entropia para os genomas mitocondriais da ordem Diptera. 47 Figura 8. Árvore filogenética da ordem díptera baseada nas regiões amplificadas com iniciadores degenerados. 50 Figura 9. Árvore filogenética do filo Arthropoda baseada nas regiões selecionadas por entropia. 53 Figura 10. Continuação da árvore filogenética do filo Arthropoda baseada nas regiões selecionadas por entropia. 54 Figura 11. Árvore filogenética do filo Arthropoda baseada nos blocos concervados selecionadas. 55 viii Figura 12. Continuação da árvore filogenética do filo Arthropoda baseada nos blocos concervados selecionadas. 56 ix Lista de Tabelas Tabela 1. Variação no viés GC% dos genes mitocondriais 34 Tabela 2. Variabilidade dos genes mitocondriais. 36 Tabela 3. Comparação entre número de sítios identificados como de baixa entropia e pertencentes a blocos conservados. 38 Tabela 4. Iniciadores degenerados definidos para a amplificação dos genomas mitocondriais de dípteros. 48 Tabela 5. Modelos evolutivos aplicados na reconstrução filogenética dos Arthropoda. 51 x Lista de Abreviaturas ATP Adenosina Trifosfato AIC Akaike Information Criterion ATP6 ATP F0 Sintase Subunidade 6 ATP8 ATP F0 Sintase Subunidade 8 COX1 Subunidade 1 da citocromo c oxidase COX2 Subunidade 2 da citocromo c oxidase COX3 Subunidade 3 da citocromo c oxidase CYTB Citocromo B DNA Ácido Desoxirribonucléico EST Etiquetas de Genes Expressos MCMC Cadeia de Markov de Monte Carlo MtDNA DNA Mitocondrial NCBI Centro Nacional para Informação Biotecnológica ND1 Subunidade 1 da NADH Desidrogenase ND2 Subunidade 2 da NADH Desidrogenase ND3 Subunidade 3 da NADH Desidrogenase ND4 Subunidade 4 da NADH Desidrogenase ND4L Subunidade 4L da NADH Desidrogenase ND5 Subunidade 5 da NADH Desidrogenase ND6 Subunidade 6 da NADH Desidrogenase NNI Nearest Neighbor Interchange xi pb Pares de Bases PCR Reação da Polimera em Cadeia RNA Ácido Ribonucléico RNAt Ácido Ribonucléico Transportador UPGMA Método de Agrupamento Pareado Não Ponderado com Média Aritmética xii Sumário Resumo vi Abstract vii Lista de ilustrações viii Lista de tabelas ix Lista de abreviaturas xi 1. Introdução 1 2. Revisão da Literatura 3 2.1. Filo Arthropoda 3 2.1.1 Evolução dos Arthropoda 4 2.1.2. Ordem Diptera 7 2.1.2.1.Gênero Chrysomya (Diptera: Calliphoridae) 9 2.2. Genoma Mitocondrial 9 2.2.1. Genoma Mitocondrial em Estudos Evolutivos 11 2.2.2. Ordem Genética em Mitocôndrias 12 2.3. Filogenia Molecular 13 2.3.1. Métodos para Seleção de Regiões 16 xiii Filogeneticamente Informativas 2.4. Genômica Comparativa 19 3. Objetivos 21 4. Material e Métodos 22 4.1. Criação do Banco de Dados 22 4.1.1. Construção do Banco de Dados Local 22 4.2. Seleção de Genomas 23 4.3. Análise de Sintenia 24 4.4. Alinhamento de Sequências 24 4.5. Análises de Variabilidade 25 4.6. Identificação de Regiões Problemáticas 26 4.7. Definição de Iniciadores Para Amplificação do Genoma Mitocondrial
Recommended publications
  • Mitochondrial Genome of the Stonefly Kamimuria Wangi (Plecoptera: Perlidae) and Phylogenetic Position of Plecoptera Based on Mitogenomes
    Mitochondrial Genome of the Stonefly Kamimuria wangi (Plecoptera: Perlidae) and Phylogenetic Position of Plecoptera Based on Mitogenomes Qian Yu-Han1,2, Wu Hai-Yan1, Ji Xiao-Yu1, Yu Wei-Wei1, Du Yu-Zhou1* 1 School of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, Jiangsu, China, 2 College of Forestry, Southwest Forestry University, Kunming, Yunnan, China Abstract This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848– 15651) and stem-loop 2 (15965–15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.
    [Show full text]
  • Insecta: Phasmatodea) and Their Phylogeny
    insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y.
    [Show full text]
  • Phylogeographic and Nested Clade Analysis of the Stonefly Pteronarcys
    J. N. Am. Benthol. Soc., 2004, 23(4):824–838 q 2004 by The North American Benthological Society Phylogeographic and nested clade analysis of the stonefly Pteronarcys californica (Plecoptera:Pteronarcyidae) in the western USA JOHN S. K. KAUWE1 Department of Biology, Washington University, St. Louis, Missouri 63110 USA DENNIS K. SHIOZAWA2 Department of Integrative Biology, Brigham Young University, Provo, Utah 84602 USA R. PAUL EVANS3 Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602 USA Abstract. Long-distance dispersal by aquatic insects can be difficult to detect because direct mea- surement methods are expensive and inefficient. When dispersal results in gene flow, signs of that dispersal can be detected in the pattern of genetic variation within and between populations. Four hundred seventy-five base pairs of the mitochondrial gene, cytochrome b, were examined to inves- tigate the pattern of genetic variation in populations of the stonefly Pteronarcys californica and to determine if long-distance dispersal could have contributed to this pattern. Sequences were obtained from 235 individuals from 31 different populations in the western United States. Sequences also were obtained for Pteronarcella badia, Pteronarcys dorsata, Pteronarcys princeps, Pteronarcys proteus, and Pter- onarcys biloba. Phylogenies were constructed using all of the samples. Nested clade analysis on the P. californica sequence data was used to infer the processes that have generated the observed patterns of genetic variation. An eastern North American origin and 2 distinct genetic lineages of P.californica could be inferred from the analysis. Most of the current population structure in both lineages was explained by a pattern of restricted gene flow with isolation by distance (presumably the result of dispersal via connected streams and rivers), but our analyses also suggested that long-distance, over- land dispersal has contributed to the observed pattern of genetic variation.
    [Show full text]
  • Annual Newsletter and Bibliography of the International Society of Plecopterologists PERLA NO. 28, 2010
    PERLA Annual Newsletter and Bibliography of The International Society of Plecopterologists Pteronarcella regularis (Hagen), Mt. Shasta City Park, California, USA. Photograph by Bill P. Stark PERLA NO. 28, 2010 Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA PERLA Annual Newsletter and Bibliography of the International Society of Plecopterologists Available on Request to the Managing Editor MANAGING EDITOR: Boris C. Kondratieff Department of Bioagricultural Sciences And Pest Management Colorado State University Fort Collins, Colorado 80523 USA E-mail: [email protected] EDITORIAL BOARD: Richard W. Baumann Department of Biology and Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 USA E-mail: [email protected] J. Manuel Tierno de Figueroa Dpto. de Biología Animal Facultad de Ciencias Universidad de Granada 18071 Granada, SPAIN E-mail: [email protected] Kenneth W. Stewart Department of Biological Sciences University of North Texas Denton, Texas 76203, USA E-mail: [email protected] Shigekazu Uchida Aichi Institute of Technology 1247 Yagusa Toyota 470-0392, JAPAN E-mail: [email protected] Peter Zwick Schwarzer Stock 9 D-36110 Schlitz, GERMANY E-mail: [email protected] 2 TABLE OF CONTENTS Subscription policy……………………………………………………………………….4 Publication of the Proceedings of the International Joint Meeting on Ephemeroptera and Plecoptera 2008…………………………………….………………….………….…5 Ninth North American Plecoptera Symposium………………………………………….6
    [Show full text]
  • Universita' Degli Studi Di Padova
    UNIVERSITA' DEGLI STUDI DI PADOVA ___________________________________________________________________ SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE DELLE PRODUZIONI VEGETALI INDIRIZZO PROTEZIONE DELLE COLTURE - CICLO XXII Dipartimento Di Agronomia Ambientale e Produzioni Vegetali Genetics and genomics of pine processionary moths and their parasitoids Direttore della Scuola : Ch.mo Prof. Andrea Battisti Supervisore : Ch.mo Prof. Andrea Battisti Dottorando : Mauro Simonato DATA CONSEGNA TESI 01 febbraio 2010 Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text. February 1st, 2010 Mauro Simonato A copy of the thesis will be available at http://paduaresearch.cab.unipd.it/ Dichiarazione Con la presente affermo che questa tesi è frutto del mio lavoro e che, per quanto io ne sia a conoscenza, non contiene materiale precedentemente pubblicato o scritto da un'altra persona né materiale che è stato utilizzato per l’ottenimento di qualunque altro titolo o diploma dell'università o altro istituto di apprendimento, a eccezione del caso in cui ciò venga riconosciuto nel testo. 1 febbraio 2010 Mauro Simonato Una copia della tesi sarà disponibile presso http://paduaresearch.cab.unipd.it/ Table of contents
    [Show full text]
  • Phasmid Studies ISSN 0966-0011 Volume 9, Numbers 1 & 2
    Phasmid Studies ISSN 0966-0011 volume 9, numbers 1 & 2. Contents Species Report PSG. 122, Anisomorpha monstrosa Hebard Paul A. Hoskisson . 1 Cigarrophasma, a new genus of stick-insect (Phasmatidae) from Australia Paul D. Brock & Jack Hasenpusch . 0 •••••• 0 ••• 0 ••••••• 4 A review of the genus Medaura Stal, 1875 (Phasmatidae: Phasmatinae), including the description of a new species from Bangladesh Paul Do Brock & Nicolas Cliquennois 11 First records and discovery of two new species of Anisomorpha Gray (Phasmida: Pseudophasmatidae) in Haiti and Dominican Republic Daniel E. Perez-Gelabert 0 .. .. 0 • • • • • • 0 • • • • 0 • • 0 • 0 • • 0 0 • • • 27 Species report on Pharnacia biceps Redtenbacher, PSG 203 Wim Potvin 0 ••• 28 How Anisomorpha got its stripes? Paul Hoskisson . 33 Reviews and Abstracts Book Reviews . 35 Phasmid Abstracts 38 Cover illustr ation : Orthonecroscia pulcherrima Kirby, drawing by PoE. Bragg. Species Report PSG. 122, Anisomorpha monstrosa Hebard Paul A. Hoskisson, School of Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, 13 3AF, UK. With illustrations by P.E. Bragg. Abstract This report summarises the care and breeding of Anisomorpha monstrosa Hebard, the largest species in the genus. Behaviour and defence mechanism are also discussed along with descriptions of the eggs, nymphs, and adults. Key words Phasmida, Anisomorpha monstrosa, Pseudophasmatinae, Rearing, Distribution, Defence. Taxonomy Anisomorpha monstrosa belongs to the sub-family Pseudophasmatinae. It was described in 1932 by Hebard (1932: 214) and is the largest species in the genus. The type specimen is a female collected from Merida, in Yucatan, Mexico. Culture History The original culture of this species was collected in Belize, approximately 150km north of Belize City by Jan Meerman in 1993 or 1994 (D'Hulster, personal communication).
    [Show full text]
  • Phenology and Diversity of Adult Stoneflies (Plecoptera) of a Small Coastal Stream, California
    Bottorff, Richard L., Loren D. Bottorff, 2007. Phenology and diversity of adult stoneflies (Plecoptera) of a small coastal stream, California. Illiesia, 3(1):1‐9. Available online: http://www2.pms‐lj.si/illiesia/Illiesia03‐01.pdf PHENOLOGY AND DIVERSITY OF ADULT STONEFLIES (PLECOPTERA) OF A SMALL COASTAL STREAM, CALIFORNIA Richard L. Bottorff1 and Loren D. Bottorff 2 11963 Toppewetah Street, South Lake Tahoe, CA 96150, E‐mail: [email protected] 23265 Sandhurst Court, Cameron Park, CA 95682, E‐mail: [email protected] ABSTRACT Collections of adult stoneflies over a full year at Irish Gulch Creek, Mendocino Co., California, revealed 23 species. Adults were present at all times of the year. Species number varied from an autumnal low of 2 to a spring peak of 13. Adults of most species were present for less than 3 months, but Malenka depressa adults were present year‐round. Hesperoperla hoguei was the only strictly autumnal‐emerging species. The report of Suwallia dubia from Irish Gulch Creek represents a new California record. The stonefly faunas of Irish Gulch Creek (low coastal) and Sagehen Creek (high Sierra Nevada) were compared. Both creeks had similar numbers of species, but the species composition differed greatly, reflecting dissimilar environments (elevation, water temperature, thermal accumulation, and discharge). Irish Gulch Creek had uniform warmer temperatures; Sagehen Creek had variable colder temperatures. Peak emergence at Irish Gulch Creek occurred 2 months earlier than at Sagehen Creek. Keywords: Plecoptera, seasonal flight period, biodiversity, thermal stability, North Coast bioregion INTRODUCTION we studied these aspects for a small stream on the As might be expected from its varied topography, north coast of California.
    [Show full text]
  • The Compact Mitochondrial Genome of Zorotypus Medoensis Provides
    Ma et al. BMC Genomics 2014, 15:1156 http://www.biomedcentral.com/1471-2164/15/1156 RESEARCH ARTICLE Open Access The compact mitochondrial genome of Zorotypus medoensis provides insights into phylogenetic position of Zoraptera Chuan Ma1,3, Yeying Wang1, Chao Wu1, Le Kang1,3 and Chunxiang Liu1,2* Abstract Background: Zoraptera, generally regarded as a member of Polyneoptera, represents one of the most enigmatic insect orders. Although phylogenetic analyses based on a wide array of morphological and/or nuclear data have been performed, the position of Zoraptera is still under debate. Mitochondrial genome (mitogenome) information is commonly considered to be preferable to reconstruct phylogenetic relationships, but no efforts have been made to incorporate it in Zorapteran phylogeny. To characterize Zoraptera mitogenome features and provide insights into its phylogenetic placement, here we sequenced, for the first time, one complete mitogenome of Zoraptera and reconstructed the phylogeny of Polyneoptera. Results: The mitogenome of Zorotypus medoensis with an A + T content of 72.50% is composed of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a noncoding A + T-rich region. The gene content and arrangement are identical to those considered ancestral for insects. This mitogenome shows a number of very unusual features. First, it is very compact, comprising 14,572 bp, and is the smallest among all known polyneopteran mitogenomes. Second, both noncoding sequences and coding genes exhibit a significant decrease in size compared with those of other polyneopterans. Third, Z. medoensis mitogenome has experienced an accelerated substitution rate. Fourth, truncated secondary structures of tRNA genes occur with loss of dihydrouridine (DHU) arm in trnC, trnR,and trnS(AGN) and loss of TΨCarmintrnH and trnT.
    [Show full text]
  • Physical Data and Biological Data for Algae, Aquatic Invertebrates, and Fish from Selected Reaches on the Carson and Truckee Rivers, Nevada and California, 1993–97
    U.S. Department of the Interior U.S. Geological Survey Physical Data and Biological Data for Algae, Aquatic Invertebrates, and Fish from Selected Reaches on the Carson and Truckee Rivers, Nevada and California, 1993–97 Open-File Report 02–012 Prepared as part of the NATIONAL WATER-QUALITY ASSESSMENT PROGRAM U.S. Department of the Interior U.S. Geological Survey Physical Data and Biological Data for Algae, Aquatic Invertebrates, and Fish from Selected Reaches on the Carson and Truckee Rivers, Nevada and California, 1993–97 By Stephen J. Lawrence and Ralph L. Seiler Open-File Report 02–012 Prepared as part of the NATIONAL WATER QUALITY ASSESSMENT PROGRAM Carson City, Nevada 2002 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government For additional information contact: District Chief U.S. Geological Survey U.S. Geological Survey Information Services 333 West Nye Lane, Room 203 Building 810 Carson City, NV 89706–0866 Box 25286, Federal Center Denver, CO 80225–0286 email: [email protected] http://nevada.usgs.gov CONTENTS Abstract.................................................................................................................................................................................. 1 Introduction...........................................................................................................................................................................
    [Show full text]
  • Thesis (PDF, 13.51MB)
    Insects and their endosymbionts: phylogenetics and evolutionary rates Daej A Kh A M Arab The University of Sydney Faculty of Science 2021 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Authorship contribution statement During my doctoral candidature I published as first-author or co-author three stand-alone papers in peer-reviewed, internationally recognised journals. These publications form the three research chapters of this thesis in accordance with The University of Sydney’s policy for doctoral theses. These chapters are linked by the use of the latest phylogenetic and molecular evolutionary techniques for analysing obligate mutualistic endosymbionts and their host mitochondrial genomes to shed light on the evolutionary history of the two partners. Therefore, there is inevitably some repetition between chapters, as they share common themes. In the general introduction and discussion, I use the singular “I” as I am the sole author of these chapters. All other chapters are co-authored and therefore the plural “we” is used, including appendices belonging to these chapters. Part of chapter 2 has been published as: Bourguignon, T., Tang, Q., Ho, S.Y., Juna, F., Wang, Z., Arab, D.A., Cameron, S.L., Walker, J., Rentz, D., Evans, T.A. and Lo, N., 2018. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. Molecular Biology and Evolution, 35(4), pp.970-983. The chapter was reformatted to include additional data and analyses that I undertook towards this paper. My role was in the paper was to sequence samples, assemble mitochondrial genomes, perform phylogenetic analyses, and contribute to the writing of the manuscript.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Using Mitochondrial Genomes to Infer Phylogenetic Relationships
    bioRxiv preprint doi: https://doi.org/10.1101/164459; this version posted August 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Using mitochondrial genomes to infer phylogenetic relationships 2 among the oldest extant winged insects (Palaeoptera) 3 Sereina Rutschmanna,b,c*, Ping Chend, Changfa Zhoud, Michael T. Monaghana,b 4 Addresses: 5 aLeibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 6 Berlin, Germany 7 bBerlin Center for Genomics in Biodiversity Research, Königin-Luise-Straße 6-8, 14195 Berlin, 8 Germany 9 cDepartment of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain 10 dThe Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing 11 Normal University, Nanjing 210046, China 12 13 *Correspondence: Sereina Rutschmann, Department of Biochemistry, Genetics and Immunology, 14 University of Vigo, 36310 Vigo, E-mail: [email protected] 15 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/164459; this version posted August 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 19 Abstract 20 Phylogenetic relationships among the basal orders of winged insects remain unclear, in particular the 21 relationship of the Ephemeroptera (mayflies) and the Odonata (dragonflies and damselflies) with the 22 Neoptera.
    [Show full text]