Mitochondrial Genome of the Stonefly Kamimuria Wangi (Plecoptera: Perlidae) and Phylogenetic Position of Plecoptera Based on Mitogenomes

Total Page:16

File Type:pdf, Size:1020Kb

Mitochondrial Genome of the Stonefly Kamimuria Wangi (Plecoptera: Perlidae) and Phylogenetic Position of Plecoptera Based on Mitogenomes Mitochondrial Genome of the Stonefly Kamimuria wangi (Plecoptera: Perlidae) and Phylogenetic Position of Plecoptera Based on Mitogenomes Qian Yu-Han1,2, Wu Hai-Yan1, Ji Xiao-Yu1, Yu Wei-Wei1, Du Yu-Zhou1* 1 School of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, Jiangsu, China, 2 College of Forestry, Southwest Forestry University, Kunming, Yunnan, China Abstract This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848– 15651) and stem-loop 2 (15965–15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera. Citation: Yu-Han Q, Hai-Yan W, Xiao-Yu J, Wei-Wei Y, Yu-Zhou D (2014) Mitochondrial Genome of the Stonefly Kamimuria wangi (Plecoptera: Perlidae) and Phylogenetic Position of Plecoptera Based on Mitogenomes. PLoS ONE 9(1): e86328. doi:10.1371/journal.pone.0086328 Editor: Patrick C. Y. Woo, The University of Hong Kong, China Received July 17, 2013; Accepted December 9, 2013; Published January 23, 2014 Copyright: ß 2014 Yu-Han et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by National Natural Science Foundation of China (No. 31071958). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction basal group, diverging early after the split between the Paleoptera and Neopteran ancestors, and before other Neopteran diversifi- The order Plecoptera is comprised of 16 families and includes cation [11,12]. At the same time, the relationship about 3,497 species [1]; these occur on all continents except Antarctica Styloperlidae, Peltoperlidae, Chloroperlidae, Perlidae and Perlo- [2]. Plecoptera is a small order of hemimetabolous insects that are didae was controversial [13,14]. The aim of this study was to primarily associated with clean, cool, running water and cool, discuss the phylogenetic position of Plecoptera based on mtDNA. damp terrestrial environments [3]. The nymphs generally have In this work, we present the complete mitochondrial genome of their highest density in riffle areas of streams where rocks, gravel, the stonefly, Kamimuria wangi Du, 2012 (Perlidae) and reconstructed snags, and accumulated leaves are abundant. Their potential use phylogenies of 17 major basal Pterygote lineages based on 13 as biological indicators of water quality is well-known [4]. PCGs obtained from mitochondrial genomes. The insects mitochondrial genome is a circular molecule ranging from 15 to 20 kp; it generally encodes two rRNA genes, 22 tRNA genes, 13 protein-coding genes (PCGs), and an A+T-rich Results and Discussion region varying in length among taxa [5,6]. Recently, whole Genome organization, structure and composition mitochondrial DNA (mtDNA) sequences have been used in The full-length mtDNA of K. wangi is a circular molecule of phylogenetic analyses of various insect orders. After the complete 16,179 nucleotides, just slightly longer than that of P. princeps mitochondrial genome of Pteronarcys princeps was published [7], (16004 bp). The K. wangi mtDNA contains 37 genes (13 PCGs, 22 increasing numbers of researchers used this data for phylogenetic tRNA genes, two rRNA genes) and an AT-rich control region. analyses, which resulted in various theories on the phylogenetic The number and arrangement of these genes is consistent with position of Plecoptera. Zhang et al. and Lin et al. [8,9] used 13 insect mitochondrial DNA [5,15] and identical to the P. princeps PCGs of mtDNA data to support relatedness between Ephemer- mitogenome (Figure 1). In 12 locations of the mtDNA, genes optera and Plecoptera within the Neoptera. overlapped by 1–47 bp (excluding the A+T-rich region; see The stoneflies are an ancient group of insects. Their fossil record Table 1). The mtDNA of K. wangi also contained intergenic regions extends into the Lower Permian [10]. But the phylogenetic (1–28 bp in length) in 13 locations. position of Plecoptera has long been under debate. Some of the competing evolutionary hypotheses place the stoneflies in a single PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e86328 Mitochondrial Genome and Phylogenetic of Stonefly Table 1. Annotation of the mitochondrial genome of K. wangi. a Feature Region Length Codon IGNb From To Start Stop tRNAIle(I) 16868 tRNAGln(Q) (69 137) 69 0 tRNAMet(M) 139 207 69 1 ND2 208 1245 1038 ATG TAA 0 tRNATrp(W) 1245 1311 67 21 tRNACys(C) (1304 1372) 69 28 tRNATyr(Y) (1372 1437) 66 21 COI 1397 2983 1587 ATA TAA 241 tRNALeu(UUR) 2939 3004 66 245 COII 3010 3705 686 ATG TAA 56 tRNALys(K) 3706 3776 71 0 tRNAAsp(D) 3778 3846 69 1 Figure 1. A map of the mitogenome of Kamimuria wangi. Transfer RNA genes are designated by single-letter amino acid codes. CR ATP8 3856 4005 150 ATA TAA 9 represents the A+T-rich region. The gene name without underline ATP6 3999 4676 678 ATG TAA 27 indicates the direction of transcription from left to right, and with underline indicates right to left. COIII 4676 5464 789 ATG TAA 21 doi:10.1371/journal.pone.0086328.g001 tRNAGly(G) 5467 5533 67 2 ND3 5534 5887 354 ATT TAA 0 tRNAAla(A) 5889 5953 65 1 Thirteen PCGs in K. wangi utilize the conventional translational Arg(R) start and stop codons for invertebrate mtDNA. For example, nine tRNA 5954 6017 64 0 PCGs (ND2, COII, ATP6, COIII, ND5, ND4, ND4L, ND6 and tRNAAsn(N) 6018 6084 67 0 CytB) contained ATG codons. Three PCGs (COI, ATP8 and tRNASer(AGN) 6085 6151 67 0 ND1) initiated with ATA codons, and one PCG (ND3) contained tRNAGlu(E) 6152 6217 66 0 ATT as the start site. However, in P. princeps, ND2 and ND5 tRNAPhe(F) (6224 6289) 66 6 initiated with GTG, ND6 and ATP8 with ATT, and ND1 gene ND5 (6273 8021) 1749 ATG TAA 217 initiated with TTG. Thirteen PCGs used the typical termination His(H) codons TAA and TAG in K. wangi. In contrast, only two PCGs tRNA (8022 8089) 68 0 encode conventional termination codons in P. princeps, e.g. TAA ND4 (8091 9455) 1365 ATG TAG 1 for ND4 and TAG for ND1. ND4L (9449 9745) 297 ATG TAA 27 The relative synonymous codon usage (RSCU) values showed a tRNAThr(T) 9748 9813 66 2 biased use of A and T nucleotides in K. wangi (Table 2). The high tRNAPro(P) (9814 9880) 67 0 incidence of anticodons NNA and NNU indicated partiality for ND6 9882 10397 516 ATG TAA 1 AT in the anticodon of PCGs. Ile (8.12%), Leu (11.61%), Ser (11.99%) and Thr (7.03%) were the most frequent amino acids in CYTB 10397 11536 1140 ATG TAG 21 K. wangi mtDNA PCGs, and Ser showed the highest incidence. In tRNASer(UCN) 11535 11604 70 22 P. princeps PCGs, Ile (7.51%), Leu (12.23%), Asn (7.48%) and Ser ND1 (11558 12541) 984 ATA TAA 247 (12.15%) were the most common amino acids, and Leu occurred tRNALeu(CUN) (12570 12636) 67 28 most frequently. lr RNA(16s) (12638 13982) 1345 1 The overall AT content in K. wangi mtDNA was 69.6%, which Val(V) was slightly lower than that of P. princeps (70.6%). The average AT tRNA (13991 14061) 71 8 content across all PCGs in K. wangi was 68.0%, which also lower sr RNA(12s) (14062 14928) 867 0 than that of P. princeps (70.5%). The nucleotide composition of the D-loop 14929 16179 1251 0 insect mitogenome was biased toward A and T nucleotides. The aPositions with parentheses indicate the genes encoded by N strand. AT content of the third codon (73.3%) was much higher than the bIGN: Intergenic nucleotide; minus (-) indicates overlap between genes. first (63.5%) and second codon positions (67.1%); this suggested doi:10.1371/journal.pone.0086328.t001 that both higher mutation rates and the increased AT occurrence are related and dependent on relaxed selection at the third codon by a total of 1484 nucleotides; tRNAs ranged from 64 to 71 bp position. However, the A+T% at the second codon (65.7%) was and the A+T content was 72.4%. Fourteen tRNAs were encoded lower than the first (71.0%) and third codon positions (74.9%) in P. by the H-strand and the remaining eight were encoded by the L- princeps. Furthermore, we present the detailed comparison in the strand.
Recommended publications
  • The Mitochondrial Genomes of Palaeopteran Insects and Insights
    www.nature.com/scientificreports OPEN The mitochondrial genomes of palaeopteran insects and insights into the early insect relationships Nan Song1*, Xinxin Li1, Xinming Yin1, Xinghao Li1, Jian Yin2 & Pengliang Pan2 Phylogenetic relationships of basal insects remain a matter of discussion. In particular, the relationships among Ephemeroptera, Odonata and Neoptera are the focus of debate. In this study, we used a next-generation sequencing approach to reconstruct new mitochondrial genomes (mitogenomes) from 18 species of basal insects, including six representatives of Ephemeroptera and 11 of Odonata, plus one species belonging to Zygentoma. We then compared the structures of the newly sequenced mitogenomes. A tRNA gene cluster of IMQM was found in three ephemeropteran species, which may serve as a potential synapomorphy for the family Heptageniidae. Combined with published insect mitogenome sequences, we constructed a data matrix with all 37 mitochondrial genes of 85 taxa, which had a sampling concentrating on the palaeopteran lineages. Phylogenetic analyses were performed based on various data coding schemes, using maximum likelihood and Bayesian inferences under diferent models of sequence evolution. Our results generally recovered Zygentoma as a monophyletic group, which formed a sister group to Pterygota. This confrmed the relatively primitive position of Zygentoma to Ephemeroptera, Odonata and Neoptera. Analyses using site-heterogeneous CAT-GTR model strongly supported the Palaeoptera clade, with the monophyletic Ephemeroptera being sister to the monophyletic Odonata. In addition, a sister group relationship between Palaeoptera and Neoptera was supported by the current mitogenomic data. Te acquisition of wings and of ability of fight contribute to the success of insects in the planet.
    [Show full text]
  • Phylogeographic and Nested Clade Analysis of the Stonefly Pteronarcys
    J. N. Am. Benthol. Soc., 2004, 23(4):824–838 q 2004 by The North American Benthological Society Phylogeographic and nested clade analysis of the stonefly Pteronarcys californica (Plecoptera:Pteronarcyidae) in the western USA JOHN S. K. KAUWE1 Department of Biology, Washington University, St. Louis, Missouri 63110 USA DENNIS K. SHIOZAWA2 Department of Integrative Biology, Brigham Young University, Provo, Utah 84602 USA R. PAUL EVANS3 Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602 USA Abstract. Long-distance dispersal by aquatic insects can be difficult to detect because direct mea- surement methods are expensive and inefficient. When dispersal results in gene flow, signs of that dispersal can be detected in the pattern of genetic variation within and between populations. Four hundred seventy-five base pairs of the mitochondrial gene, cytochrome b, were examined to inves- tigate the pattern of genetic variation in populations of the stonefly Pteronarcys californica and to determine if long-distance dispersal could have contributed to this pattern. Sequences were obtained from 235 individuals from 31 different populations in the western United States. Sequences also were obtained for Pteronarcella badia, Pteronarcys dorsata, Pteronarcys princeps, Pteronarcys proteus, and Pter- onarcys biloba. Phylogenies were constructed using all of the samples. Nested clade analysis on the P. californica sequence data was used to infer the processes that have generated the observed patterns of genetic variation. An eastern North American origin and 2 distinct genetic lineages of P.californica could be inferred from the analysis. Most of the current population structure in both lineages was explained by a pattern of restricted gene flow with isolation by distance (presumably the result of dispersal via connected streams and rivers), but our analyses also suggested that long-distance, over- land dispersal has contributed to the observed pattern of genetic variation.
    [Show full text]
  • Annual Newsletter and Bibliography of the International Society of Plecopterologists PERLA NO. 28, 2010
    PERLA Annual Newsletter and Bibliography of The International Society of Plecopterologists Pteronarcella regularis (Hagen), Mt. Shasta City Park, California, USA. Photograph by Bill P. Stark PERLA NO. 28, 2010 Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA PERLA Annual Newsletter and Bibliography of the International Society of Plecopterologists Available on Request to the Managing Editor MANAGING EDITOR: Boris C. Kondratieff Department of Bioagricultural Sciences And Pest Management Colorado State University Fort Collins, Colorado 80523 USA E-mail: [email protected] EDITORIAL BOARD: Richard W. Baumann Department of Biology and Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 USA E-mail: [email protected] J. Manuel Tierno de Figueroa Dpto. de Biología Animal Facultad de Ciencias Universidad de Granada 18071 Granada, SPAIN E-mail: [email protected] Kenneth W. Stewart Department of Biological Sciences University of North Texas Denton, Texas 76203, USA E-mail: [email protected] Shigekazu Uchida Aichi Institute of Technology 1247 Yagusa Toyota 470-0392, JAPAN E-mail: [email protected] Peter Zwick Schwarzer Stock 9 D-36110 Schlitz, GERMANY E-mail: [email protected] 2 TABLE OF CONTENTS Subscription policy……………………………………………………………………….4 Publication of the Proceedings of the International Joint Meeting on Ephemeroptera and Plecoptera 2008…………………………………….………………….………….…5 Ninth North American Plecoptera Symposium………………………………………….6
    [Show full text]
  • Universita' Degli Studi Di Padova
    UNIVERSITA' DEGLI STUDI DI PADOVA ___________________________________________________________________ SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE DELLE PRODUZIONI VEGETALI INDIRIZZO PROTEZIONE DELLE COLTURE - CICLO XXII Dipartimento Di Agronomia Ambientale e Produzioni Vegetali Genetics and genomics of pine processionary moths and their parasitoids Direttore della Scuola : Ch.mo Prof. Andrea Battisti Supervisore : Ch.mo Prof. Andrea Battisti Dottorando : Mauro Simonato DATA CONSEGNA TESI 01 febbraio 2010 Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text. February 1st, 2010 Mauro Simonato A copy of the thesis will be available at http://paduaresearch.cab.unipd.it/ Dichiarazione Con la presente affermo che questa tesi è frutto del mio lavoro e che, per quanto io ne sia a conoscenza, non contiene materiale precedentemente pubblicato o scritto da un'altra persona né materiale che è stato utilizzato per l’ottenimento di qualunque altro titolo o diploma dell'università o altro istituto di apprendimento, a eccezione del caso in cui ciò venga riconosciuto nel testo. 1 febbraio 2010 Mauro Simonato Una copia della tesi sarà disponibile presso http://paduaresearch.cab.unipd.it/ Table of contents
    [Show full text]
  • An Overview of Molecular Odonate Studies, and Our Evolutionary Understanding of Dragonfly and Damselfly (Insecta: Odonata) Behavior
    International Journal of Odonatology Vol. 14, No. 2, June 2011, 137–147 Dragons fly, biologists classify: an overview of molecular odonate studies, and our evolutionary understanding of dragonfly and damselfly (Insecta: Odonata) behavior Elizabeth F. Ballare* and Jessica L. Ware Department of Biological Sciences, Rutgers, The State University of New Jersey, 195 University Ave., Boyden Hall, Newark, NJ, 07102, USA (Received 18 November 2010; final version received 3 April 2011) Among insects, perhaps the most appreciated are those that are esthetically pleasing: few capture the interest of the public as much as vibrantly colored dragonflies and damselflies (Insecta: Odonata). These remarkable insects are also extensively studied. Here, we review the history of odonate systematics, with an emphasis on discrepancies among studies. Over the past century, relationships among Odonata have been reinterpreted many times, using a variety of data from wing vein morphology to DNA. Despite years of study, there has been little consensus about odonate taxonomy. In this review, we compare odonate molecular phylogenetic studies with respect to gene and model selection, optimality criterion, and dataset completeness. These differences are discussed in relation to the evolution of dragonfly behavior. Keywords: Odonata; mitochondrion; nuclear; phylogeny; systematic; dragonfly; damselfly Introduction Why study Odonata? The order Odonata comprises three suborders: Anisozygoptera, Anisoptera, and Zygoptera. There are approximately 6000 species of Odonata described worldwide (Ardila-Garcia & Gregory, 2009). Of the three suborders Anisoptera and Zygoptera are by far the most commonly observed and collected, because there are only two known species of Anisozygoptera under the genus Epiophlebia. All odonate nymphs are aquatic, with a few rare exceptions such as the semi-aquatic Pseudocordulia (Watson, 1983), and adults are usually found near freshwater ponds, marshes, rivers (von Ellenrieder, 2010), streams, and lakes (although some species occur in areas of mild salinity; Corbet, 1999).
    [Show full text]
  • Phenology and Diversity of Adult Stoneflies (Plecoptera) of a Small Coastal Stream, California
    Bottorff, Richard L., Loren D. Bottorff, 2007. Phenology and diversity of adult stoneflies (Plecoptera) of a small coastal stream, California. Illiesia, 3(1):1‐9. Available online: http://www2.pms‐lj.si/illiesia/Illiesia03‐01.pdf PHENOLOGY AND DIVERSITY OF ADULT STONEFLIES (PLECOPTERA) OF A SMALL COASTAL STREAM, CALIFORNIA Richard L. Bottorff1 and Loren D. Bottorff 2 11963 Toppewetah Street, South Lake Tahoe, CA 96150, E‐mail: [email protected] 23265 Sandhurst Court, Cameron Park, CA 95682, E‐mail: [email protected] ABSTRACT Collections of adult stoneflies over a full year at Irish Gulch Creek, Mendocino Co., California, revealed 23 species. Adults were present at all times of the year. Species number varied from an autumnal low of 2 to a spring peak of 13. Adults of most species were present for less than 3 months, but Malenka depressa adults were present year‐round. Hesperoperla hoguei was the only strictly autumnal‐emerging species. The report of Suwallia dubia from Irish Gulch Creek represents a new California record. The stonefly faunas of Irish Gulch Creek (low coastal) and Sagehen Creek (high Sierra Nevada) were compared. Both creeks had similar numbers of species, but the species composition differed greatly, reflecting dissimilar environments (elevation, water temperature, thermal accumulation, and discharge). Irish Gulch Creek had uniform warmer temperatures; Sagehen Creek had variable colder temperatures. Peak emergence at Irish Gulch Creek occurred 2 months earlier than at Sagehen Creek. Keywords: Plecoptera, seasonal flight period, biodiversity, thermal stability, North Coast bioregion INTRODUCTION we studied these aspects for a small stream on the As might be expected from its varied topography, north coast of California.
    [Show full text]
  • The Compact Mitochondrial Genome of Zorotypus Medoensis Provides
    Ma et al. BMC Genomics 2014, 15:1156 http://www.biomedcentral.com/1471-2164/15/1156 RESEARCH ARTICLE Open Access The compact mitochondrial genome of Zorotypus medoensis provides insights into phylogenetic position of Zoraptera Chuan Ma1,3, Yeying Wang1, Chao Wu1, Le Kang1,3 and Chunxiang Liu1,2* Abstract Background: Zoraptera, generally regarded as a member of Polyneoptera, represents one of the most enigmatic insect orders. Although phylogenetic analyses based on a wide array of morphological and/or nuclear data have been performed, the position of Zoraptera is still under debate. Mitochondrial genome (mitogenome) information is commonly considered to be preferable to reconstruct phylogenetic relationships, but no efforts have been made to incorporate it in Zorapteran phylogeny. To characterize Zoraptera mitogenome features and provide insights into its phylogenetic placement, here we sequenced, for the first time, one complete mitogenome of Zoraptera and reconstructed the phylogeny of Polyneoptera. Results: The mitogenome of Zorotypus medoensis with an A + T content of 72.50% is composed of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a noncoding A + T-rich region. The gene content and arrangement are identical to those considered ancestral for insects. This mitogenome shows a number of very unusual features. First, it is very compact, comprising 14,572 bp, and is the smallest among all known polyneopteran mitogenomes. Second, both noncoding sequences and coding genes exhibit a significant decrease in size compared with those of other polyneopterans. Third, Z. medoensis mitogenome has experienced an accelerated substitution rate. Fourth, truncated secondary structures of tRNA genes occur with loss of dihydrouridine (DHU) arm in trnC, trnR,and trnS(AGN) and loss of TΨCarmintrnH and trnT.
    [Show full text]
  • Physical Data and Biological Data for Algae, Aquatic Invertebrates, and Fish from Selected Reaches on the Carson and Truckee Rivers, Nevada and California, 1993–97
    U.S. Department of the Interior U.S. Geological Survey Physical Data and Biological Data for Algae, Aquatic Invertebrates, and Fish from Selected Reaches on the Carson and Truckee Rivers, Nevada and California, 1993–97 Open-File Report 02–012 Prepared as part of the NATIONAL WATER-QUALITY ASSESSMENT PROGRAM U.S. Department of the Interior U.S. Geological Survey Physical Data and Biological Data for Algae, Aquatic Invertebrates, and Fish from Selected Reaches on the Carson and Truckee Rivers, Nevada and California, 1993–97 By Stephen J. Lawrence and Ralph L. Seiler Open-File Report 02–012 Prepared as part of the NATIONAL WATER QUALITY ASSESSMENT PROGRAM Carson City, Nevada 2002 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government For additional information contact: District Chief U.S. Geological Survey U.S. Geological Survey Information Services 333 West Nye Lane, Room 203 Building 810 Carson City, NV 89706–0866 Box 25286, Federal Center Denver, CO 80225–0286 email: [email protected] http://nevada.usgs.gov CONTENTS Abstract.................................................................................................................................................................................. 1 Introduction...........................................................................................................................................................................
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Lin, C-P., M-Y. Chen and J-P., Huang. 2010
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Gene 468 (2010) 20–29 Contents lists available at ScienceDirect Gene journal homepage: www.elsevier.com/locate/gene The complete mitochondrial genome and phylogenomics of a damselfly, Euphaea formosa support a basal Odonata within the Pterygota Chung-Ping Lin a,b,⁎, Ming-Yu Chen a,b, Jen-Pan Huang a,b,c a Department of Life Science, Tunghai University, Taichung, Taiwan b Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung, Taiwan c Biodiversity Research Center, Academia Sinica, Taipei, Taiwan article info abstract Article history: This study determined the first complete mitochondrial genome of a damselfly, Euphaea formosa (Insecta: Accepted 3 August 2010 Odonata: Zygoptera), and reconstructed a phylogeny based on thirteen protein-coding genes of mitochondrial Available online 8 August 2010 genomes in twenty-five representative hexapods to examine the relationships among the basal Pterygota. The damselfly's mitochondrial genome is a circular molecule of 15,700 bp long, and contains the entire set of thirty- Received by J.G.
    [Show full text]
  • The Stoneflies (Plecoptera) of California
    Typical Adult Stonefly and Cast Nymphal Skin (Courtesy of Dr. E. S. Ross, California Academy of Sciences) BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 6, NO. 6 THE STONEFLIES (PLECOPTERA) OF CALIFORNIA BY STANLEY G. JEWETT, JR (U.S. Bureau ofCommercia1 Fisheries, Portland, Oregon) UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES l%O BULLETIN OF THE CALIFORNIA INSECT SURVEY Editors: E. G. Linsley, S. B. Freeborn, P. D.Hurd, R. L. Usinger Volume 6, No. 6, pp. 125 - 178,41 figures in text, frontis. Submitted by Editors, February 10,1959 Issued June 17, 1960 Price $1.25 UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES CALIFORNIA CAMBRIDGE UNIVERSEY PRESS LONDON, ENGLAND PRINTED BY OFFSET IN THE UNITED STATES OF AMERICA THE STONEFLIES (PLECOPTERA) OF CALIFORNIA BY STANLEY G. JEWETT, JR. INTRODUCTION cipally vegetarian and the Setipalpia mostly car- nivorous - both the physical character of the Plecoptera is a relatively small order of aquatic aquatic environment and its biota govern the kinds insects with a world fauna of approximately 1,200 of stoneflies which occur in a habitat. Much valu- species. They require moving water for develop- able work could be done in determining the eco- ment of the nymphs, and for that reason the adults logical distribution of stoneflies in California, are usually found near streams. In some northern and the results could have application in fishery regions their early life is passed in cold lakes management and pollution studies. where the shore area is composed of gravel, but In general, the stonefly fauna of the western in most areas the immature stages are passed in cordilleran region is of similar aspect.
    [Show full text]
  • The Evolution of Mitochondrial Genome Structure and Function in Insects
    THE EVOLUTION OF MITOCHONDRIAL GENOME STRUCTURE AND FUNCTION IN INSECTS by James Bruce Stewart B.Sc.H, University of Waterloo, Waterloo, Ontario, 1997 M.Sc. Simon Fraser University, Burnaby, British Columbia, 2001 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Molecular Biology and Biochemistry O James Bruce Stewart, 2005 SIMON FRASER UNIVERSITY Summer 2005 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. Approval Name: James Bruce Stewart Degree: Doctor of Philosophy Title of thesis: The Evolution of Mitochondria1 Genome Structure and Function in Insects Examining Committee: Chair: Dr. Nicholas Harden, Associate Professor, Department of Molecular Biology and Biochemistry Dr. Andrew T. Beckenbach, Professor Senior Supervisor Department of Biological Sciences Dr. David L. Baillie, Professor Supervisory Committee Member Department of Molecular Biology and Biochemistry Dr. Peter J. Unrau, Assistant Professor Supervisory Committee Member Department of Molecular Biology and Biochemistry Dr. Esther M. Verheyen, Associate Professor Public Examiner Department of Molecular Biology and Biochemstry Dr. Laurie S. Kaguni, Professor External Examiner Department of Biochemistry and Molecular Biology Michigan State University Date Approved: August 19,2005 SIMON FRASER UNIVERSITY PARTIAL COPYRIGHT LICENCE The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.
    [Show full text]