The Evolution of Mitochondrial Genome Structure and Function in Insects

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Mitochondrial Genome Structure and Function in Insects THE EVOLUTION OF MITOCHONDRIAL GENOME STRUCTURE AND FUNCTION IN INSECTS by James Bruce Stewart B.Sc.H, University of Waterloo, Waterloo, Ontario, 1997 M.Sc. Simon Fraser University, Burnaby, British Columbia, 2001 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Molecular Biology and Biochemistry O James Bruce Stewart, 2005 SIMON FRASER UNIVERSITY Summer 2005 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. Approval Name: James Bruce Stewart Degree: Doctor of Philosophy Title of thesis: The Evolution of Mitochondria1 Genome Structure and Function in Insects Examining Committee: Chair: Dr. Nicholas Harden, Associate Professor, Department of Molecular Biology and Biochemistry Dr. Andrew T. Beckenbach, Professor Senior Supervisor Department of Biological Sciences Dr. David L. Baillie, Professor Supervisory Committee Member Department of Molecular Biology and Biochemistry Dr. Peter J. Unrau, Assistant Professor Supervisory Committee Member Department of Molecular Biology and Biochemistry Dr. Esther M. Verheyen, Associate Professor Public Examiner Department of Molecular Biology and Biochemstry Dr. Laurie S. Kaguni, Professor External Examiner Department of Biochemistry and Molecular Biology Michigan State University Date Approved: August 19,2005 SIMON FRASER UNIVERSITY PARTIAL COPYRIGHT LICENCE The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection. The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without the author's written permission. \ Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence. The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive. W. A. C. Bennett Library Simon Fraser University Burnaby, BC, Canada Abstract The mitochondrial genomes (mt-genomes) of animals are very compact in structure, encoding thirteen protein genes involved in the production of ATP, and the key components of the translation system to express these proteins. The mitochondrial expression system, which functions separately from that of the nucleus, shows characteristics of both prokaryotic and eukaryotic expression systems, and has diverged greatly from that currently observed in the closest living relatives of mitochondria, the a-proteobacteria. Current understanding of transcript maturation is that large multi-gene transcripts are processed by the removal of intervening tRNA genes, leaving behind RNA templates to be matured into the functional mRNAs and rRNAs. One of the most striking features of insect mt-genomes has been the apparent replacement of a start codon with a stop codon for the essential mitochondrial gene cytochrome c oxidase subunit 1 (coxl). When first observed in Drosophila, Clary and Wolstenholme proposed a highly unusual four-base "ATAA" start codon. With the expanded sampling of mitochondrial sequence across the various insect orders, the data does not support the use of this aberrant initiation for coxl. At the initiation of this study, the diversity of insect groups represented by complete mt-genome sequence was very poor. To address this deficit, I undertook sequencing projects to increase the number of insect orders represented in the mitochondrial sequence databases. I report the complete mt-genome sequences for two insects, the spittlebug Philaenus spumarius, and the giant stonefly Pteronarcys princeps. The sequences are annotated and compared to other insect mt-genomes in the sequence databases. I report the cDNA sequences of Drosophila melanogaster mitochondrial mRNAs, rRNA subunits, and a population of pre-mRNA molecules that are intermediates of the RNA processing system. Models to explain mitochondrial transcript maturation in light of these new observations are proposed. Comparative analyses were undertaken to apply the information gained from the mitochondrial transcripts of D. melanogaster to the mitochondrial structure and annotations of mt-genomes from the other insects. These analyses suggest a 5' specific modification to the tRNA punctuation model for insect mitochondria. This modification may represent a further evolutionary simplification of the mitochondrial expression system. To Laila, for everything, And to You who we patiently await. In memory: Grandpa Bruce Stewart December 6,1922 - February 27,200 1 and Great-Grandpa Ted Baxter October 20,1897 - May 5,1990 Acknowledgements To my senior supervisor Andy Beckenbach, for allowing me the chance to explore this project and believing that I could get it done. The last few years have been a lot of fun, and I will miss our lab chats. A special thanks to my former lab-mate Russ Watkins for keeping in touch after moving on, and for supplying a key tip for my early RNA struggles. To my lab-mates Andrea Scouras, Dave Russell, Alison Cloutier, Karen Beckenbach, Denise Reichow, Cam Muir and Mike Vankoeveringe. Thanks for all the tips, advice and silliness. Thanks to the RNA-work troubleshooters Alex Ebhardt and Don Sinclair, and to the computer guys Jeff Bryer and Duncan Napier. To Jillian Smith, Darrell Bessette and Theresa Kitos for the help with cell culture. To my committee members Peter Unrau and Dave Baillie for their time, effort and advice over the course of my degree work. I would also like to thank Mike Smith for his role as unofficial committee member. Thank-you to Jamie Cates for the very important discussion of translation at a key time. To Laurie Kaguni and Esther Verheyen, my external examining committee members, for the useful, constructive and kind comments regarding my thesis. To my fellow graduate students in Biology and the MBB for all the fun and for the shop talk. I especially want to thank John Taylor, Ian Hamilton, Jeremy Mitchell, Tom Chapman, Lynnette Kuervers, Nigel O'Neil, Greg Vatcher, Steve Springer, Michelle Harrison, Susanne Kiihnholz, Richard Fahlman, Anat Feldman, Carrie Simms and Daniela Ginta for important discussions over the course of my study. My personal thanks to the Biergarten Entrepreneurs, past and present. Where else would the discussions take place? To Carlo Artieri, Leslie Mitchell and Connie Roth for seminar practice sessions. To our Vancouver friends; Annick, Kevin and Giselle; Cam; Cathy and Rasmus; David; Kym, Dana and Tayme; Kat and Greg; Tina and Olie; Jennifer and Stevo; Markus, Lisa and Anna; Cris and Diana; Anna, Jurgen, Max and Sophie; Nat, Dirk, Steffen and Gabby; Leah, Omar and Arnira; Melissa. From Ontario, to Pete, Tina, Mason and Rowan; Jilly, Bomina, Susan and Carole; Scott, Kurt and Karl and Christine for continued support and friendship. Thanks to Cathy, Don, Mike, Kelly Joel, Ardis, Fred, and to Norm, Joe, Vicky, Rob, Tracy, Mary and all the rest of my family, for your patience, support, and well wishes over the years. Thank-you to Agneta and Zubin for welcoming me. Table of Contents .. Approval ....................................................................................................................................11 Abstract .................................................................................................................................111 Dedication ..............................................................................................................................iv Acknowledgements................................................................................................................ v Table of Contents ..................................................................................................................vi List of Tables........................................................................................................................ ix List of Figures .........................................................................................................................x CHAPTER 1. Introduction.................................................................................................. 1 1.1. Mitochondria ......................................................................................................1 1.2. Mitochondria1 Evolution ...................................................................................2 1.3. Animal Mitochondria1 Genomes....................................................................... 5 1.3.1. Animal mitochondria1 gene content ..................................................... 5 1.3.2. Animal mitochondria1 genome structure.............................................
Recommended publications
  • Mitochondrial Genome of the Stonefly Kamimuria Wangi (Plecoptera: Perlidae) and Phylogenetic Position of Plecoptera Based on Mitogenomes
    Mitochondrial Genome of the Stonefly Kamimuria wangi (Plecoptera: Perlidae) and Phylogenetic Position of Plecoptera Based on Mitogenomes Qian Yu-Han1,2, Wu Hai-Yan1, Ji Xiao-Yu1, Yu Wei-Wei1, Du Yu-Zhou1* 1 School of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, Jiangsu, China, 2 College of Forestry, Southwest Forestry University, Kunming, Yunnan, China Abstract This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848– 15651) and stem-loop 2 (15965–15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.
    [Show full text]
  • Phylogeographic and Nested Clade Analysis of the Stonefly Pteronarcys
    J. N. Am. Benthol. Soc., 2004, 23(4):824–838 q 2004 by The North American Benthological Society Phylogeographic and nested clade analysis of the stonefly Pteronarcys californica (Plecoptera:Pteronarcyidae) in the western USA JOHN S. K. KAUWE1 Department of Biology, Washington University, St. Louis, Missouri 63110 USA DENNIS K. SHIOZAWA2 Department of Integrative Biology, Brigham Young University, Provo, Utah 84602 USA R. PAUL EVANS3 Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602 USA Abstract. Long-distance dispersal by aquatic insects can be difficult to detect because direct mea- surement methods are expensive and inefficient. When dispersal results in gene flow, signs of that dispersal can be detected in the pattern of genetic variation within and between populations. Four hundred seventy-five base pairs of the mitochondrial gene, cytochrome b, were examined to inves- tigate the pattern of genetic variation in populations of the stonefly Pteronarcys californica and to determine if long-distance dispersal could have contributed to this pattern. Sequences were obtained from 235 individuals from 31 different populations in the western United States. Sequences also were obtained for Pteronarcella badia, Pteronarcys dorsata, Pteronarcys princeps, Pteronarcys proteus, and Pter- onarcys biloba. Phylogenies were constructed using all of the samples. Nested clade analysis on the P. californica sequence data was used to infer the processes that have generated the observed patterns of genetic variation. An eastern North American origin and 2 distinct genetic lineages of P.californica could be inferred from the analysis. Most of the current population structure in both lineages was explained by a pattern of restricted gene flow with isolation by distance (presumably the result of dispersal via connected streams and rivers), but our analyses also suggested that long-distance, over- land dispersal has contributed to the observed pattern of genetic variation.
    [Show full text]
  • Annual Newsletter and Bibliography of the International Society of Plecopterologists PERLA NO. 28, 2010
    PERLA Annual Newsletter and Bibliography of The International Society of Plecopterologists Pteronarcella regularis (Hagen), Mt. Shasta City Park, California, USA. Photograph by Bill P. Stark PERLA NO. 28, 2010 Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA PERLA Annual Newsletter and Bibliography of the International Society of Plecopterologists Available on Request to the Managing Editor MANAGING EDITOR: Boris C. Kondratieff Department of Bioagricultural Sciences And Pest Management Colorado State University Fort Collins, Colorado 80523 USA E-mail: [email protected] EDITORIAL BOARD: Richard W. Baumann Department of Biology and Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 USA E-mail: [email protected] J. Manuel Tierno de Figueroa Dpto. de Biología Animal Facultad de Ciencias Universidad de Granada 18071 Granada, SPAIN E-mail: [email protected] Kenneth W. Stewart Department of Biological Sciences University of North Texas Denton, Texas 76203, USA E-mail: [email protected] Shigekazu Uchida Aichi Institute of Technology 1247 Yagusa Toyota 470-0392, JAPAN E-mail: [email protected] Peter Zwick Schwarzer Stock 9 D-36110 Schlitz, GERMANY E-mail: [email protected] 2 TABLE OF CONTENTS Subscription policy……………………………………………………………………….4 Publication of the Proceedings of the International Joint Meeting on Ephemeroptera and Plecoptera 2008…………………………………….………………….………….…5 Ninth North American Plecoptera Symposium………………………………………….6
    [Show full text]
  • Universita' Degli Studi Di Padova
    UNIVERSITA' DEGLI STUDI DI PADOVA ___________________________________________________________________ SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE DELLE PRODUZIONI VEGETALI INDIRIZZO PROTEZIONE DELLE COLTURE - CICLO XXII Dipartimento Di Agronomia Ambientale e Produzioni Vegetali Genetics and genomics of pine processionary moths and their parasitoids Direttore della Scuola : Ch.mo Prof. Andrea Battisti Supervisore : Ch.mo Prof. Andrea Battisti Dottorando : Mauro Simonato DATA CONSEGNA TESI 01 febbraio 2010 Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text. February 1st, 2010 Mauro Simonato A copy of the thesis will be available at http://paduaresearch.cab.unipd.it/ Dichiarazione Con la presente affermo che questa tesi è frutto del mio lavoro e che, per quanto io ne sia a conoscenza, non contiene materiale precedentemente pubblicato o scritto da un'altra persona né materiale che è stato utilizzato per l’ottenimento di qualunque altro titolo o diploma dell'università o altro istituto di apprendimento, a eccezione del caso in cui ciò venga riconosciuto nel testo. 1 febbraio 2010 Mauro Simonato Una copia della tesi sarà disponibile presso http://paduaresearch.cab.unipd.it/ Table of contents
    [Show full text]
  • Phenology and Diversity of Adult Stoneflies (Plecoptera) of a Small Coastal Stream, California
    Bottorff, Richard L., Loren D. Bottorff, 2007. Phenology and diversity of adult stoneflies (Plecoptera) of a small coastal stream, California. Illiesia, 3(1):1‐9. Available online: http://www2.pms‐lj.si/illiesia/Illiesia03‐01.pdf PHENOLOGY AND DIVERSITY OF ADULT STONEFLIES (PLECOPTERA) OF A SMALL COASTAL STREAM, CALIFORNIA Richard L. Bottorff1 and Loren D. Bottorff 2 11963 Toppewetah Street, South Lake Tahoe, CA 96150, E‐mail: [email protected] 23265 Sandhurst Court, Cameron Park, CA 95682, E‐mail: [email protected] ABSTRACT Collections of adult stoneflies over a full year at Irish Gulch Creek, Mendocino Co., California, revealed 23 species. Adults were present at all times of the year. Species number varied from an autumnal low of 2 to a spring peak of 13. Adults of most species were present for less than 3 months, but Malenka depressa adults were present year‐round. Hesperoperla hoguei was the only strictly autumnal‐emerging species. The report of Suwallia dubia from Irish Gulch Creek represents a new California record. The stonefly faunas of Irish Gulch Creek (low coastal) and Sagehen Creek (high Sierra Nevada) were compared. Both creeks had similar numbers of species, but the species composition differed greatly, reflecting dissimilar environments (elevation, water temperature, thermal accumulation, and discharge). Irish Gulch Creek had uniform warmer temperatures; Sagehen Creek had variable colder temperatures. Peak emergence at Irish Gulch Creek occurred 2 months earlier than at Sagehen Creek. Keywords: Plecoptera, seasonal flight period, biodiversity, thermal stability, North Coast bioregion INTRODUCTION we studied these aspects for a small stream on the As might be expected from its varied topography, north coast of California.
    [Show full text]
  • The Compact Mitochondrial Genome of Zorotypus Medoensis Provides
    Ma et al. BMC Genomics 2014, 15:1156 http://www.biomedcentral.com/1471-2164/15/1156 RESEARCH ARTICLE Open Access The compact mitochondrial genome of Zorotypus medoensis provides insights into phylogenetic position of Zoraptera Chuan Ma1,3, Yeying Wang1, Chao Wu1, Le Kang1,3 and Chunxiang Liu1,2* Abstract Background: Zoraptera, generally regarded as a member of Polyneoptera, represents one of the most enigmatic insect orders. Although phylogenetic analyses based on a wide array of morphological and/or nuclear data have been performed, the position of Zoraptera is still under debate. Mitochondrial genome (mitogenome) information is commonly considered to be preferable to reconstruct phylogenetic relationships, but no efforts have been made to incorporate it in Zorapteran phylogeny. To characterize Zoraptera mitogenome features and provide insights into its phylogenetic placement, here we sequenced, for the first time, one complete mitogenome of Zoraptera and reconstructed the phylogeny of Polyneoptera. Results: The mitogenome of Zorotypus medoensis with an A + T content of 72.50% is composed of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a noncoding A + T-rich region. The gene content and arrangement are identical to those considered ancestral for insects. This mitogenome shows a number of very unusual features. First, it is very compact, comprising 14,572 bp, and is the smallest among all known polyneopteran mitogenomes. Second, both noncoding sequences and coding genes exhibit a significant decrease in size compared with those of other polyneopterans. Third, Z. medoensis mitogenome has experienced an accelerated substitution rate. Fourth, truncated secondary structures of tRNA genes occur with loss of dihydrouridine (DHU) arm in trnC, trnR,and trnS(AGN) and loss of TΨCarmintrnH and trnT.
    [Show full text]
  • Physical Data and Biological Data for Algae, Aquatic Invertebrates, and Fish from Selected Reaches on the Carson and Truckee Rivers, Nevada and California, 1993–97
    U.S. Department of the Interior U.S. Geological Survey Physical Data and Biological Data for Algae, Aquatic Invertebrates, and Fish from Selected Reaches on the Carson and Truckee Rivers, Nevada and California, 1993–97 Open-File Report 02–012 Prepared as part of the NATIONAL WATER-QUALITY ASSESSMENT PROGRAM U.S. Department of the Interior U.S. Geological Survey Physical Data and Biological Data for Algae, Aquatic Invertebrates, and Fish from Selected Reaches on the Carson and Truckee Rivers, Nevada and California, 1993–97 By Stephen J. Lawrence and Ralph L. Seiler Open-File Report 02–012 Prepared as part of the NATIONAL WATER QUALITY ASSESSMENT PROGRAM Carson City, Nevada 2002 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government For additional information contact: District Chief U.S. Geological Survey U.S. Geological Survey Information Services 333 West Nye Lane, Room 203 Building 810 Carson City, NV 89706–0866 Box 25286, Federal Center Denver, CO 80225–0286 email: [email protected] http://nevada.usgs.gov CONTENTS Abstract.................................................................................................................................................................................. 1 Introduction...........................................................................................................................................................................
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • The Stoneflies (Plecoptera) of California
    Typical Adult Stonefly and Cast Nymphal Skin (Courtesy of Dr. E. S. Ross, California Academy of Sciences) BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 6, NO. 6 THE STONEFLIES (PLECOPTERA) OF CALIFORNIA BY STANLEY G. JEWETT, JR (U.S. Bureau ofCommercia1 Fisheries, Portland, Oregon) UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES l%O BULLETIN OF THE CALIFORNIA INSECT SURVEY Editors: E. G. Linsley, S. B. Freeborn, P. D.Hurd, R. L. Usinger Volume 6, No. 6, pp. 125 - 178,41 figures in text, frontis. Submitted by Editors, February 10,1959 Issued June 17, 1960 Price $1.25 UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES CALIFORNIA CAMBRIDGE UNIVERSEY PRESS LONDON, ENGLAND PRINTED BY OFFSET IN THE UNITED STATES OF AMERICA THE STONEFLIES (PLECOPTERA) OF CALIFORNIA BY STANLEY G. JEWETT, JR. INTRODUCTION cipally vegetarian and the Setipalpia mostly car- nivorous - both the physical character of the Plecoptera is a relatively small order of aquatic aquatic environment and its biota govern the kinds insects with a world fauna of approximately 1,200 of stoneflies which occur in a habitat. Much valu- species. They require moving water for develop- able work could be done in determining the eco- ment of the nymphs, and for that reason the adults logical distribution of stoneflies in California, are usually found near streams. In some northern and the results could have application in fishery regions their early life is passed in cold lakes management and pollution studies. where the shore area is composed of gravel, but In general, the stonefly fauna of the western in most areas the immature stages are passed in cordilleran region is of similar aspect.
    [Show full text]
  • Larvae of North American Species of Pteronarcys (Plecoptera: Pteronarcyidae)
    Myers, L.W. and B.C. Kondratieff. 2017. Larvae of North American species of Pteronarcys (Plecoptera: Pteronarcyidae). Illiesia, 13(16):192-224. https://doi.org/10.25031/2017/13.16 http://zoobank.org/ urn:lsid:zoobank.org:pub:68D355B3-CD8A-4699-AC4E-94527D18FE24 LARVAE OF NORTH AMERICAN SPECIES OF PTERONARCYS (PLECOPTERA: PTERONARCYIDAE) L.W. Myers1 and B.C. Kondratieff2 1 Lake Champlain Research Institute, SUNY Plattsburgh, Plattsburgh, NY 12901, U.S.A. E-mail: [email protected] 2 Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523, U.S.A. E-mail: [email protected] ABSTRACT Larvae of the eight North American Pteronarcys (Plecoptera: Pteronarcyidae) species have been difficult or impossible to identify over the past century. This stems from the lack of rigorous comparisons of reared material. The absence of a reliable key diminishes the importance of Pteronarcys larvae in aquatic ecological and biomonitoring studies. We provide comparative larval descriptions and a key illustrated with high resolution photographs of important diagnostic characters for the eight North American species of Pteronarcys. Earlier descriptions are reviewed and supplemented with new photographs, illustrations and morphometric data to aid in the separation of morphologically similar species. Keywords: Stonefly larvae, Plecoptera, Pteronarcyidae, Pteronarcys, North America INTRODUCTION Hanson (1971) originally recognized six species The stonefly genus Pteronarcys Newman, 1838 is groups, whereas Stark & Szczytko (1982) only represented by eight valid species in North America recognized three species groups within Pteronarcys. (Stark & Szczytko 1982, Nelson 2000, DeWalt et al. Larvae of species that possessed abdominal spines 2017). Two more species, P.
    [Show full text]
  • Plecoptera) of a Western Oregon
    AN ABSTRACT OF THE THESIS OF CARY DEAN KERST for the MASTER OF SCIENCE (Name) (Degree) in ENTOMOLOGY presentedon 1,--0"J, (Major) (Date) Title: THE SEASONAL OCCURRENCE AND DISTRIBUTION OF STONEFLIES (PLECOPTERA) OF A WESTERN OREGON STREAM Abstract approved: Redacted for Privacy N. H. Anderson Plecoptera were collected from four sampling stations selected to represent a range of conditions on Oak Creek, a small woodland stream originating in the foothills of the Oregon Coast Range.The elevation of Site I was 700 ft. while the lowest site was located at 225 ft.Monthly benthos samples were taken for one year from a riffle and glide section at each site using a stovepipe sampler (6 in. dia. ) and a standard tropical fish net.Samples were sorted in the laboratory and Plecoptera identified and placed into 1 mm size classes.Emer- gence of adults was measured for 13 months using a tent-shaped trap (1 m2) at each site.Traps were checked once or twice weekly. Forty-two species of Plecoptera were found in Oak Creek.The number of species is very large when compared with other studies. The stonefly fauna is fairly similar to that reported 35 years ago. Thirty-seven of the 42 species complete emergence during the spring.Temporal separation is marked in the emergence periods of Nemoura and Leuctra. Examples of split emergence periods and early emergence of males were found.Life cycle information is given for a number of species and genera. Using the Shannon-Wiener function, diversity of emerging adults ranks by season as: Spring > Summer > Winter > Fall.The diversity of the sites on a yearly basis is:II > I > III > IV.Using a percentage of similarity index it is concluded that Sites I and II are very similar.
    [Show full text]
  • BMC Genomics Biomed Central
    BMC Genomics BioMed Central Database Open Access IMGD: an integrated platform supporting comparative genomics and phylogenetics of insect mitochondrial genomes † † Wonhoon Lee 1,2,3, Jongsun Park 3,4,5,6, Jaeyoung Choi3,4,6, Kyongyong Jung3,4, Bongsoo Park7, Donghan Kim3,4,6, Jaeyoung Lee1, Kyohun Ahn4,WonhoSong4, Seogchan Kang7, Yong-Hwan Lee*3,4,5,6,8 and Seunghwan Lee*1,2,3 Address: 1Insect Biosystematics Laboratory, Seoul National University, Seoul 151–921, Korea, 2Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151–921, Korea, 3Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea, 4Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea, 5Center for Fungal Pathogenesis, Seoul National University, Seoul 151–921, Korea, 6Center for Fungal Genetic Resources, Seoul National University, Seoul 151–921, Korea, 7Department of Plant Pathology, Penn State University, University Park, PA 16802, USA and 8Center for Agricultural Biomaterials, Seoul National University, Seoul 151–921, Korea E-mail: Wonhoon Lee - [email protected]; Jongsun Park - [email protected]; Jaeyoung Choi - [email protected]; Kyongyong Jung - [email protected]; Bongsoo Park - [email protected]; Donghan Kim - [email protected]; Jaeyoung Lee - [email protected]; Kyohun Ahn - [email protected]; Wonho Song - [email protected]; Seogchan Kang - [email protected]; Yong-Hwan Lee* - [email protected]; Seunghwan Lee* - [email protected] *Corresponding author †Equal contributors Published: 07 April 2009 Received: 23 October 2008 BMC Genomics 2009, 10:148 doi: 10.1186/1471-2164-10-148 Accepted: 7 April 2009 This article is available from: http://www.biomedcentral.com/1471-2164/10/148 © 2009 Lee et al; licensee BioMed Central Ltd.
    [Show full text]