Thesis Style Document

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Style Document Ecological and environmental controls on the fine-scale distribution of cold-water corals in the North-East Atlantic Laurence Hélène De Clippele Submitted for the degree of Doctor of Philosophy Heriot-Watt University The School of Energy, Geoscience, Infrastructure and Society February 2018 The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. ABSTRACT This thesis integrated acoustic, high-definition video and hydrodynamic data to study the distribution, morphology and ecology of cold-water corals (CWC) in the Mingulay Reef area (Chapter 2), the Tisler Reef area (Chapter 3) and the Logachev Mound area (Chapter 4). A new British Geological Survey (BGS) ArcGIS seabed mapping toolbox was developed and quantified semi-automatically the morphometric and acoustic characteristics of CWC reefs. Over 500 Lophelia pertusa reef mounds were delineated and characterised at the Mingulay Reef Complex (Chapter 2), 14 at the Tisler Reef (Norway) (Chapter 3) and 123 in the Logachev Area (Chapter 4). These reefs all had large amounts of small round-shaped mounds. Additionally, the Logachev area had very large dendriform-shaped mounds. A microbathymetric grid of the central area of the Mingulay Reef was used to identify individual live coral colonies (1-7 m) that provided data to predict the likelihood of presence of live coral colonies on biogenic reef mounds (Chapter 2). The distribution and morphology of L. pertusa colonies and the sponges Mycale lingua and Geodia sp. within the Tisler Reef, revealed the importance of local hydrodynamics and substrate availability (Chapter 3). Non- scleractinian corals associated with the Logachev mounds (Chapter 4) proved to be abundant, biodiverse and function as a habitat for associated organisms. Differences in their distribution were found to be related to food supply, the availability and stability of settling substrates. This thesis showed that the BGS Seabed Mapping Toolbox is useful to study the ecology and morphology of reef mounds within and between reefs. Studies on the fine-scale spatial distribution of corals within reefs provided information on the ecology of CWCs. ii ACKNOWLEDGEMENTS I would like to start by thanking my academic supervisor Murray Roberts for broadening my expertise, always enthusiastically introducing me to the wider scientific community and allowing me to take up “non-academic” opportunities which prepared me for post-PhD life. I would also like to thank my second supervisor Veerle Huvenne for being a great inspiration, giving endless amounts of feedback, kind words and for encouraging my critical thinking. I’m also immensely grateful for the Heriot-Watt University James Watt Scholarship which funded my PhD. Doing this PhD, moving to Edinburgh and meeting wonderful people along the way has truly been the best thing that has ever happened to me, and for this I am eternally grateful. My great thanks go to Lene and Pål Buhl-Mortensen, Tomas Lundälv, Susanna Strömberg and Ann Vanreusel. Thank you for taking me under your wings at the beginning of my career and introducing me to the beauty and science of cold-water coral habitats. I also owe thanks to Seb, Fiona, Lea-Anne, Alan, Laura, Katherine, Kat, Laure, Johanne, Afiq and Lissie. Thank you for being amazing colleagues and friends, and for supporting me throughout the good and more difficult times. I treasure the laughs and experiences from Skye, Boston, Portugal, Southampton, Tjärnö and the Celtic Explorer. Special thanks go to Joanna and Cova, for their kindness, critical thinking and for sharing their wisdom and skills which have helped me a lot throughout writing this PhD and publishing papers. I am blessed to have the family I do and couldn’t be more grateful to them. Thank you for being supportive of my career, life choices and for sending me endless amounts of Chokotoffs! I am grateful for my incredible friends Jennie, Nikki, Heather, Hannah MC, Anna, Leila, Loris, Jon, Mounsey and Swany. I would like to offer my special thanks to Hannah I. for being an amazing friend, inspiration and stimulation during my PhD. Thank you all for being so supportive at all times. Deep gratitude is reserved for my schattie Jack, who I would like to thank for all the stimulating discussions and feedback but especially for the love, silliness and laughter which added much happiness throughout this adventure. iii DECLARATION STATEMENT ACADEMIC REGISTRY Research Thesis Submission Name: Laurence De Clippele School: The School of Energy, Geoscience, Infrastructure and Society Version: First Degree Sought: Doctor of Philosophy Declaration In accordance with the appropriate regulations I hereby submit my thesis and I declare that: 1) the thesis embodies the results of my own work and has been composed by myself 2) where appropriate, I have made acknowledgement of the work of others and have made reference to work carried out in collaboration with other persons 3) the thesis is the correct version of the thesis for submission and is the same version as any electronic versions submitted*. 4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian may require 5) I understand that as a student of the University I am required to abide by the Regulations of the University and to conform to its discipline. 6) I confirm that the thesis has been verified against plagiarism via an approved plagiarism detection application e.g. Turnitin. * Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted. Signature of Date: Candidate: Submission Submitted By (name in capitals): Signature of Individual Submitting: Date Submitted: iv For Completion in the Student Service Centre (SSC) Received in the SSC by (name in capitals): Method of Submission (Handed in to SSC; posted through internal/external mail): E-thesis Submitted (mandatory for final theses) Signature: Date: v CONTENT CHAPTER 1 - INTRODUCTION ............................................................................................................... 1 1.1 General Introduction ................................................................................................................... 1 1.2 What are cold-water coral reefs? ................................................................................................ 2 1.3 Why are cold-water coral reefs important? ................................................................................. 4 1.4 Environmental controls on cold-water coral reefs ...................................................................... 4 1.5 Morphology of cold-water coral reefs ........................................................................................ 5 1.6 Cold-water corals as ecosystem engineers .................................................................................. 7 1.7 Threats ........................................................................................................................................ 8 1.8 Policy and management .............................................................................................................. 9 1.9 Studying cold-water coral reefs ................................................................................................ 10 1.10 Aims of this thesis .................................................................................................................... 11 CHAPTER 2 - USING NOVEL ACOUSTIC AND VISUAL MAPPING TOOLS TO PREDICT THE SMALL-SCALE SPATIAL DISTRIBUTION OF LIVE BIOGENIC REEF FRAMEWORK IN COLD- WATER CORAL HABITATS .................................................................................................................. 12 2.1 Introduction .............................................................................................................................. 12 2.2 Methods .................................................................................................................................... 15 2.2.1 Bathymetry ........................................................................................................................... 15 2.2.2 High definition video data .................................................................................................... 16 2.2.3 Current information .............................................................................................................. 17 2.2.4 The BGS Seabed Mapping Toolbox and visual mapping ..................................................... 17 2.2.5 Spatial distribution modelling .............................................................................................. 24 2.3 Results ...................................................................................................................................... 26 2.3.1 Mound delineation and morphometric characteristics .......................................................... 26 2.3.2 Presence of living coral framework ...................................................................................... 28 2.3.3 Random forest classification ................................................................................................ 29 2.4 Discussion ................................................................................................................................
Recommended publications
  • OCS Study BOEM 2017-024
    OCS Study BOEM 2017-024 Deepwater Reconnaissance of Potentially Sensitive Biological Features Surrounding Shelf-Edge Topographical Banks in the Northern Gulf of Mexico U.S. Department of the Interior Bureau of Ocean Energy Management Gulf of Mexico OCS Region OCS Study BOEM 2017-024 Deepwater Reconnaissance of Potentially Sensitive Biological Features Surrounding Shelf-Edge Topographical Banks in the Northern Gulf of Mexico Author Paul Sammarco Prepared under BOEM Contract M11AC00005 by Louisiana Universities Marine Consortium 8124 Highway 56 Baton Rouge, LA 70344-2110 Published by U.S. Department of the Interior New Orleans, LA Bureau of Ocean Energy Management February 2017 Gulf of Mexico OCS Region DISCLAIMER This report was prepared under contract between the Bureau of Ocean Energy Management (BOEM) and Louisiana Universities Marine Consortium (LUMCON). This report has been technically reviewed by BOEM, and it has been approved for publication. Approval does not necessarily signify that the contents reflect the views and policies of BOEM, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this Gulf of Mexico OCS Region report, go to the U.S. Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program Information System website and search on OCS Study BOEM 2017-024. This report can be viewed at select Federal Depository Libraries. It can also be obtained from the National Technical Information Service; the contact information is below. U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd. Springfield, Virginia 22312 Phone: (703) 605-6000, 1(800)553-6847 Fax: (703) 605-6900 Website: http://www.ntis.gov/ CITATION Sammarco, Paul W.
    [Show full text]
  • III. Black Coral Fishery Management
    An Update on Recent Research and Management of Hawaiian Black Corals Chapter 6 in The State of Deep‐Sea Coral and Sponge Ecosystems of the United States Report Recommended citation: Wagner D, Opresko DM, Montgomery AD, Parrish FA (2017) An Update on Recent Research and Management of Hawaiian Black Corals. In: Hourigan TF, Etnoyer, PJ, Cairns, SD (eds.). The State of Deep‐Sea Coral and Sponge Ecosystems of the United States. NOAA Technical Memorandum NMFS‐OHC‐4, Silver Spring, MD. 44 p. Available online: http://deepseacoraldata.noaa.gov/library. Black coral Bathypathes on a rocky ridge crest of Johnston Atoll. Courtesy of the NOAA Office of Ocean Exploration and Research. RECENT RESEARCH & MANAGEMENT OF HAWAIIAN BLACK CORALS • • • AN UPDATE ON RECENT RESEARCH AND MANAGEMENT Daniel Wagner1*, Dennis M. OF HAWAIIAN Opresko2, Anthony D. Montgomery3, BLACK CORALS and Frank A. Parrish4 • • • 1 NOAA Papahānaumokuākea I. Introduction Marine National Monument Antipatharians, commonly known as black corals, are a Honolulu, HI little studied order of anthozoan hexacorals that currently encompasses over 235 described species (Cairns 2007, Daly (current affiliation: JHT, Inc., et al. 2007, Bo 2008). Black corals occur worldwide in all NOAA National Centers of oceans from polar to tropical regions, and have a wide Coastal Ocean Science depth distribution ranging from 2-8,600 m (reviewed by Charleston, SC) Wagner et al. 2012a). Despite this wide bathymetric range, * Corresponding Author: black corals are primarily found in deeper waters below [email protected] the photic zone, with over 75% of known species occurring exclusively below 50 m (Cairns 2007). At these depths, 2 National Museum of antipatharians are often abundant and dominant faunal Natural History, Smithsonian components, and create habitat for a myriad of associated Institution, Washington DC organisms (reviewed by Wagner et al.
    [Show full text]
  • Metabarcoding Analysis on European Coastal Samples Reveals New
    www.nature.com/scientificreports OPEN Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity Received: 8 November 2017 David López-Escardó1, Jordi Paps2, Colomban de Vargas3,4, Ramon Massana5, Accepted: 5 June 2018 Iñaki Ruiz-Trillo 1,6,7 & Javier del Campo1,5 Published: xx xx xxxx Although animals are among the best studied organisms, we still lack a full description of their diversity, especially for microscopic taxa. This is partly due to the time-consuming and costly nature of surveying animal diversity through morphological and molecular studies of individual taxa. A powerful alternative is the use of high-throughput environmental sequencing, providing molecular data from all organisms sampled. We here address the unknown diversity of animal phyla in marine environments using an extensive dataset designed to assess eukaryotic ribosomal diversity among European coastal locations. A multi-phylum assessment of marine animal diversity that includes water column and sediments, oxic and anoxic environments, and both DNA and RNA templates, revealed a high percentage of novel 18S rRNA sequences in most phyla, suggesting that marine environments have not yet been fully sampled at a molecular level. This novelty is especially high among Platyhelminthes, Acoelomorpha, and Nematoda, which are well studied from a morphological perspective and abundant in benthic environments. We also identifed, based on molecular data, a potentially novel group of widespread tunicates. Moreover, we recovered a high number of reads for Ctenophora and Cnidaria in the smaller fractions suggesting their gametes might play a greater ecological role than previously suspected. Te animal kingdom is one of the best-studied branches of the tree of life1, with more than 1.5 million species described in around 35 diferent phyla2.
    [Show full text]
  • 16, Marriott Long Wharf, Boston, Ma
    2016 MA, USA BOSTON, WHARF, MARRIOTT LONG -16, 11 SEPTEMBER 6th International Symposium on Deep-Sea Corals, Boston, MA, USA, 11-16 September 2016 Greetings to the Participants of the 6th International Symposium on Deep-Sea Corals We are very excited to welcome all of you to this year’s symposium in historic Boston, Massachusetts. While you are in Boston, we hope that you have a chance to take some time to see this wonderful city. There is a lot to offer right nearby, from the New England Aquarium right here on Long Wharf to Faneuil Hall, which is just across the street. A further exploration might take you to the restaurants and wonderful Italian culture of the North End, the gardens and swan boats of Boston Common, the restaurants of Beacon Hill, the shops of Newbury Street, the campus of Harvard University (across the river in Cambridge) and the eclectic square just beyond its walls, or the multitude of art and science museums that the city has to offer. We have a great program lined up for you. We will start off Sunday evening with a welcome celebration at the New England Aquarium. On Monday, the conference will commence with a survey of the multitude of deep-sea coral habitats around the world and cutting edge techniques for finding and studying them. We will conclude the first day with a look at how these diverse and fragile ecosystems are managed. On Monday evening, we will have the first poster session followed by the debut of the latest State“ of the Deep-Sea Coral and Sponge Ecosystems of the U.S.” report.
    [Show full text]
  • Deep-Sea Coral Taxa in the U.S. Southeast Region: Depth and Geographic Distribution (V
    Deep-Sea Coral Taxa in the U.S. Southeast Region: Depth and Geographic Distribution (v. 2020) by Thomas F. Hourigan1, Stephen D. Cairns2, John K. Reed3, and Steve W. Ross4 1. NOAA Deep Sea Coral Research and Technology Program, Office of Habitat Conservation, Silver Spring, MD 2. National Museum of Natural History, Smithsonian Institution, Washington, DC 3. Cooperative Institute of Ocean Exploration, Research, and Technology, Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 4. Center for Marine Science, University of North Carolina, Wilmington This annex to the U.S. Southeast chapter in “The State of Deep-Sea Coral and Sponge Ecosystems in the United States” provides a list of deep-sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in U.S. waters from Cape Hatteras to the Florida Keys (Figure 1). Deep-sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 meters deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is an update of the peer-reviewed 2017 list (Hourigan et al. 2017) and includes taxa recognized through 2019, including one newly described species. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Figure 1. U.S. Southeast region delimiting the geographic boundaries considered in this work. The region extends from Cape Hatteras to the Florida Keys and includes the Jacksonville Lithoherms (JL), Blake Plateau (BP), Oculina Coral Mounds (OC), Miami Terrace (MT), Pourtalès Terrace (PT), Florida Straits (FS), and Agassiz/Tortugas Valleys (AT).
    [Show full text]
  • Black Corals (Antipatharia) from the Continental Slope and Adjacent Seamounts of the Ne Atlantic and Sw Indian Oceans
    BLACK CORALS (ANTIPATHARIA) FROM THE CONTINENTAL SLOPE AND ADJACENT SEAMOUNTS OF THE NE ATLANTIC AND SW INDIAN OCEANS FINAL REPORT FOR THE 2016 MARINE ALLIANCE SCIENCE TECHNOLOGY SCOTLAND (MASTS) VISITING FELLOWSHIP Dr. Tina Molodtsova (MASTS Visiting Fellow) P.P. Shirshov Institute of Oceanology RAS 36 Nakhimovsky prospekt Moscow 117997 Russia Dr. Bhavani Narayanaswamy (primary MASTS Visiting Fellow Host) Scottish Association for Marine Science Oban, Argyll PA37 1QA, UK Dr. Alan Jamieson (MASTS Visiting Fellow Host) Oceanlab, University of Aberdeen Institute of Biological and Environmental Sciences Newburgh, Aberdeenshire AB41 6AA 29 July 2016 1 SUMMARY During a 35 day visit to MASTS institutions, we were able to summarize recent and historical collection of deep-sea black corals from continental slope and adjacent seamounts of the North- East Atlantic and Indian Ocean. These samples were collected during a number fishery and scientific expeditions and had been deposited in several research centers in Scotland, namely SAMS, the Zoological Museum at Aberdeen University, the National Museum of Scotland – Edinburgh. There was also an opportunity to look at recent material from the shelves and slope of the Rockall Bank, Rockall Trough and adjacent area collected by Marine Science Scotland on board F/S Scotia. Nine species of Black coral, including three species new for science were identified in the material studied. The family Tylopathidae had not been previously reported in the North Atlantic. Three species of the deep-sea soft corals of the genera Anthomastus, Pseudoanthomastus and Heteropolypus were reported in material from the same area. All three species were earlier reported from the Reykjanes Ridge.
    [Show full text]
  • Notification to the Parties No. 2018/100
    CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA NOTIFICATION TO THE PARTIES No. 2018/100 Geneva, 17 December 2018 CONCERNING: Standard nomenclature Standard references to be considered at CoP18 1. In Resolution Conf. 12.11 (Rev. CoP17) on Standard nomenclature, the Conference of the Parties RECOMMENDS, in paragraph 2 i), that: the Secretariat be provided with the citations (and ordering information) of checklists that will be nominated for standard references at least six months before the meeting of the Conference of the Parties at which such checklists will be considered. The Secretariat shall include such information in a Notification to the Parties so that Parties can obtain copies to review if they wish before the meeting. 2. In compliance with this recommendation, the nomenclature specialists for the Animals and Plants Committees have proposed the citations of checklists that will be nominated for taxonomic standard references at the 18th meeting of the Conference of the Parties (CoP18, Colombo, 2019). These are listed below, along with a link to where each reference can be accessed or ordered. FAUNA 3. The proposed standard references for fauna are as follows: Mammalia Kitchener A. C., Breitenmoser-Würsten CH., Eizirik E., Gentry A., Werdelin L., Wilting A., Yamaguchi N., Abramov A. V., Christiansen P., Driscoll C., Duckworth J. W., Johnson W., Luo S.-J., Meijaard E., O’Donoghue P., Sanderson J., Seymour K., Bruford M., Groves C., Hoffmann M., Nowell K., Timmons Z. and Tobe S. (2017). A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group.
    [Show full text]
  • Report of the Workshop on Deep-Sea Species Identification, Rome, 2–4 December 2009
    FAO Fisheries and Aquaculture Report No. 947 FIRF/R947 (En) ISSN 2070-6987 Report of the WORKSHOP ON DEEP-SEA SPECIES IDENTIFICATION Rome, Italy, 2–4 December 2009 Cover photo: An aggregation of the hexactinellid sponge Poliopogon amadou at the Great Meteor seamount, Northeast Atlantic. Courtesy of the Task Group for Maritime Affairs, Estrutura de Missão para os Assuntos do Mar – Portugal. Copies of FAO publications can be requested from: Sales and Marketing Group Office of Knowledge Exchange, Research and Extension Food and Agriculture Organization of the United Nations E-mail: [email protected] Fax: +39 06 57053360 Web site: www.fao.org/icatalog/inter-e.htm FAO Fisheries and Aquaculture Report No. 947 FIRF/R947 (En) Report of the WORKSHOP ON DEEP-SEA SPECIES IDENTIFICATION Rome, Italy, 2–4 December 2009 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 The designations employed and the presentation of material in this Information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO.
    [Show full text]
  • New Records of Heteropathes Opresko, 2011 (Anthozoa: Antipatharia) from the Mid- Atlantic Ridge Tina N. Molodtsova Tina N. M
    New records of Heteropathes Opresko, 2011 (Anthozoa: Antipatharia) from the Mid- Atlantic Ridge Tina N. Molodtsova Tina N. Molodtsova [email protected] P.P. Shirshov Institute of Oceanology RAS, 36 Nakhimovsky prospect, Moscow 117218 Russia Abstract Heteropathes opreski de Matos, Braga-Henriques, Santos and Ribeiro, 2014 (Antipatharia: Cladopathidae) was recently described based on a single specimen from northeast of the Oceanographer Fracture Zone, Mid-Atlantic. Several specimens of the same species were recently collected in the vicinity of Semenov and Irinovskoe ore clusters (northern subequatorial Mid-Atlantic Ridge). Based on this new material, a re-description of the species, an emended diagnosis and a comparison with hitherto known species of the genus are provided. Such a diagnosis is needed because two key characters outlined in the original description as distinctive for this species (short lateral pinnules and larger spines at lateral pinnules) appear to be misinterpreted features caused by the poor condition of the holotype, which was damaged and undergoing regeneration. H. opreski differs from all other known species of the genus by more densely set lateral pinnules and occasionally anastomosing subpinnules on the anterior primary pinnules. The species is known exclusively from the Mid-Atlantic Ridge (34°46.7’ N to 13°19.43’ N) at depths 1955-2738 m and is considered here as a putative endemic of the area. Keywords black corals, taxonomy, distribution, ore fields, growth disturbances Introduction The black coral fauna of the Mid-Atlantic Ridge is poorly known. In a review of the fauna of the black corals of the North-East Atlantic (Molodtsova 2006), only the northern part of the Mid- Atlantic Ridge including the Azores was studied.
    [Show full text]
  • Taxonomy of Black Coral Family Myriopathidae (Anthozoa: Antipatharia) from Korea
    Korean J. Syst. Zool. Vol. 24, No. 3: 251-263, November 2008 Taxonomy of Black Coral Family Myriopathidae (Anthozoa: Antipatharia) from Korea Hye-Won Moon and Jun-Im Song* Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 120-750, Korea ABSTRACT Eight species and four genera belonging to two families of antipatharians have been reported in Korea. In the present study, the major specimens were collected from the coastal areas of Jejudo Island from 2005 to 2006, and the other ones which have been deposited in the Natural History Museum and the Department of Life Science, Ewha Womans University during the period from 1965 to 2004 were reexamined. As a result of this work, four species, Myriopathes bifaria, M. stechowi, M. ulex and Plumapathes pennacea are new to Korean antipatharian fauna. In this study, total six species including previously recorded species of the family Myriopathidae were described. And the distribution range of Myriopathes lata was turned out to be expanded from southwestern sea to the eastern sea, up to Ulleungdo Is. of Korea. Especially, the sexuality and the gona- dal stage of M. lata which are collected during their reproduction period were also determined by means of histological analysis. Key words: taxonomy, Myriopathidae, Antipatharia, Anthozoa, Korea INTRODUCTION 2008). In the present study, four species within the family Myrio- The classification of black corals has been complicated for pathidae are turned out to be new to Korean fauna. They many years by the description of numerous species from in- were described with figures including the colonial external complete specimens and by the lack of a clearly defined features and microscopic skeletal features.
    [Show full text]
  • Anthozoa: Antipatharia) in the North-East Atlantic, with a Description of T
    Zootaxa 4700 (4): 431–444 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4700.4.2 http://zoobank.org/urn:lsid:zoobank.org:pub:1785D7AD-CBB6-4E4D-B65F-0B83AFBF9ED3 Trissopathes (Anthozoa: Antipatharia) in the north-east Atlantic, with a description of T. grasshoffi sp. nov. TINA N. MOLODTSOVA1, ÁLVARO ALTUNA2 & JASON M. HALL-SPENCER3, 4 1 P.P. Shirshov Institute of Oceanology RAS, 36 Nakhimovsky prospect, Moscow 117997 Russia. E-mail: [email protected] 2INSUB, Museo de Okendo, Zemoria 12, Apdo. 3223, 20013, Donostia-San Sebastián, Spain. E-mail: [email protected] 3School of Biological and Marine Sciences, University of Plymouth, PL4 8AA, UK. E-mail: [email protected] 4Shimoda Marine Research Centre, University of Tsukuba, Japan Abstract A new species of antipatharian (black coral) in the genus Trissopathes is described. It is common in the bathyal zone of the north-east Atlantic, including the Bay of Biscay, Celtic Slope and adjacent banks and seamounts. The species is often observed in underwater photographs from untrawled parts of carbonate mounds in the area. Trissopathes grasshoffi sp. nov. can be easily distinguished from its three congeners by having relatively sparse branching, a higher density of primary pinnules, and 3–6 secondary anterolateral pinnules as well as by the shape and size of its spines. The present state of knowledge of Trissopathes is reviewed. Key words: Cnidaria, Cladopathidae, deep-sea coral, marine taxonomy Introduction For most parts of our planet the deep sea remains unexplored, yet the benthos of the north-east Atlantic has been sampled extensively, starting with sampling of deep Norwegian fjords by Michael Sars in the 1830’s followed by a series of surveys of the continental slope starting with HMS Lightening in 1868 (Rozwadowski 2005).
    [Show full text]
  • Phylogenetics and Mitogenome Organisation in Black Corals (Anthozoa: Hexacorallia: Antipatharia): an Order-Wide Survey Inferred from Complete Mitochondrial Genomes
    ORIGINAL RESEARCH published: 23 June 2020 doi: 10.3389/fmars.2020.00440 Phylogenetics and Mitogenome Organisation in Black Corals (Anthozoa: Hexacorallia: Antipatharia): An Order-Wide Survey Inferred From Complete Mitochondrial Genomes Nick J. Barrett 1,2,3*, Raissa I. Hogan 4, A. Louise Allcock 4, Tina Molodtsova 5, 1 6 1 Edited by: Kevin Hopkins , Andrew J. Wheeler and Chris Yesson Luisa Fernanda Dueñas, 1 Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom, 2 Imperial College London, National University of London, United Kingdom, 3 Natural History Museum, London, United Kingdom, 4 School of Natural Sciences and Ryan Colombia, Colombia Institute, National University of Ireland, Galway, Ireland, 5 P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Reviewed by: Moscow, Russia, 6 School of Biological, Earth and Environmental Sciences/iCRAG/MaREI/ERI, University College Cork, Cork, Mercer Robert Brugler, Ireland New York City College of Technology (CUNY), United States Jaret Bilewitch, Black corals (Anthozoa: Antipatharia) are an ecologically and culturally important The University of group of deep-sea cnidarians. However, as the majority of species inhabit depths Queensland, Australia >50 m, they are relatively understudied. The inaccessibility of well-preserved tissue for *Correspondence: Nick J. Barrett species of interest has limited the scope of molecular analysis, and as a result only [email protected] a small number of antipatharian mitochondrial genomes have been published. Using next generation sequencing, 18 complete and five partial antipatharian mitochondrial Specialty section: genomes were assembled, increasing the number of complete mitochondrial genomes This article was submitted to Deep-Sea Environments and Ecology, to 22.
    [Show full text]