The Effects of Piezoelectric Ceramic Dissipation Factor on the Performance of Ultrasonic Transducers

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Piezoelectric Ceramic Dissipation Factor on the Performance of Ultrasonic Transducers The Effects of Piezoelectric Ceramic Dissipation Factor on the Performance of Ultrasonic Transducers Dominick A. DeAngelis and Gary W. Schulze 7 Dies Transducer Tool Device Forming Gas Wand for Cu Ball Bonded Stacked Die Device (SEM) Wire Bonding in Action with Fine Copper Wire (20 Wires/Sec) COPPER OR GOLD WIRE Kulicke & Soffa’s Flagship Capillary Semiconductor Tool Wire Bonding Machine Ultrasonic Transducer Used For Wire Bonding Machine Primary steps of the Wire Bond Cycle 41 th UIA Symposium, San Francisco, CA, USA 18-Apr-12 -1- OUTLINE Specific Application and Definition of Dissipation Factor ( DF ) How Does DF Affect Transducer Performance? Ball After EFO Research Summary Equivalent Circuit Model for DF Measuring DF Model Parameters Measuring Porosity of Piezo Ceramics Mixing Rules for Piezo Properties FEA Modeling and Experimental Results Conclusions Questions? 41 th UIA Symposium, San Francisco, CA, USA 18-Apr-12 -2- SPECIFIC TRANSDUCER APPLICATION K&S is the leading MFG of semiconductor wire bonding equipment Transducer delivers energy to a capillary tool for welding tiny wires Patented single piece “Unibody” design is ideal for research studies Portability across 100’s of machines required for same customer device Piezo Stack Transducer Transducer Specs Body On IConn Machine 500 mA Max Current 50/120 kHz Operating Modes Transducer 80 Ohm Max Impedance 1¢ US Operation 40 Bonds/Sec Capillary Device Bond Duration ~10 mSec PZT8 Ceramics (4X) New IConn Capillary Transducer Tool EFO (Spark) Diced Parts (thk=1mm) 1¢ US Typical Capillary Tool with Wire PZT8 Piezoelectric Ceramics Actual Wire Bonds From Compared to Sewing Needle Multi-Tier Package 41 th UIA Symposium, San Francisco, CA, USA 18-Apr-12 -3- DEFINITION OF DISSIPATION FACTOR ( DF) Ratio of Equivalent Series Resistance ( ESR ) and the magnitude of capacitance reactance ( Xc), i.e., DF = ESR /| Xc| Also known as loss tangent or tan (δ), where angle δ is deviation from 90°between voltage and current for an ideal capacit or (i.e., no losses) Ratio of (energy lost)/(energy stored) or Re /| Im | of the impedance Typically measured at 120 Hz (for AC) and 1000 Hz (more common) The higher the DF the more heat is generated via I2ESR heating Series Model Complex Impedance ( Z) Plane (Voltage /Current ) Parallel Model Imaginary Z(ω) =Re( ω) + Im ( ω ) j = ESR R s ( j) ESR Real For Constant C and ESR , DF Cideal C Rp p Increases Linearly with 1 Frequency ω C X = Z c ωC R 1 δ Re (Z ) 1 ESR = p C= C 1 + tan ()δ=ESR ω C == DF = +ω 2 2 2 p ω 2 2 2 − −Im ()Z Q 1 Cp R p Cp R p jX c 41 th UIA Symposium, San Francisco, CA, USA 18-Apr-12 -4- HOW DOES DF AFFECT TRANSDUCERS? DF is an important material property of the piezo ceramics It governs the amount of self-heating under resonant conditions It quantifies a particular material type for either an actuator or resonator High DF materials with higher output ( d33 ) are better for actuators Low DF materials with typically lower d33 are better for resonators Designers must often compromise between mechanical output and DF in the selection of piezo ceramics for power ultrasonic applications Abnormally high DF is one of the main causes of production stoppages of power transducers used in wirebonding Abnormally high DF is typically caused by moisture absorption due to poor piezo ceramic porosity (manufacturing issue) MFG’s often use heat drying after aqueous degreasing to remove polling oil: this can mask DF issues in final inspection before shipping Moisture absorption can cause voltage leakage effects; e.g., first seen in production when setting piezo stack preload via charge amp Corresponding large increases in capacitance can also be associated with poor porosity, which is counterintuitive unless there is moisture absorption or electrodes are wicking/penetrating 41 th UIA Symposium, San Francisco, CA, USA 18-Apr-12 -5- RESEARCH SUMMARY Investigated the mechanisms for abnormally high DF in piezo ceramics, and its corresponding effect on transducer performance Investigated if DF is only affected by the bulk dielectric properties of the piezo ceramics (e.g. porosity and moisture), or also influenced by non- uniform electric field effects such as from electrode wicking Explored if higher DF ceramics can affect transducer current/voltage to displacement gain stability via moisture expulsion at higher drive levels Investigation focused solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding Transducers were built with both normal DF piezo ceramics, and those with abnormally high DF ceramics which caused production stoppages Several metrics were investigated such as impedance, capacitance, displacement/current gain and displacement/voltage gain The experimental and theoretical research methods included Bode plots, equivalent circuits, scanning laser vibrometry and coupled-field finite element analysis 41 th UIA Symposium, San Francisco, CA, USA 18-Apr-12 -6- EQUIVALENT CIRCUIT MODEL FOR DF C: Nominal Capacitance Rs: Series Resistance Rp: Parallel Resistance C0: Dielectric Absorption R0: Dielectric Loss ω: Frequency RDC = Rs + Rp ω120 = 2π(120) ω1k = 2π(1000) DF 120 = DF at 120 Hz C120 = Capacitance at 120 Hz DF 1k = DF at 1000 Hz C1k = Capacitance at 1000 Hz 1 ()ω = + Equivalent Impedance ( ZEQ ) of Circuit ZCRCRREQ,, p ,0 , 0 , s R s 111++ + 1 + 1 − j R j RjR10 100 j p R − 0 − 0 − ωC 0 ω ω ω C0 10 C 0 100 C 0 Equations for Solve Block (Mathcad) to Determine Unknowns from Equivalent Circuit = ω ω DF120Re( ZEQ( 120 ,,,,, CRCRR p 00 s )) 120120 C Relation for Dissipation Factor at 120 Hz = ω ω DF1kRe( Z EQk( 1 ,,,,, CRCRR p 00 skk)) 11 C Relation for Dissipation Factor 1000 Hz −1 = Im()Z()ω ,,,,, CRCRR ω EQ120 p 00 s Relation for Capacitance at 120 Hz 120C 120 −1 = Im()Z()ω ,,,,, CRCRR Relation for Capacitance at 1000 Hz ω EQk1 p 0 0 s 1kC 1 k = + Series and Parallel (Leakage) Resistance at DC RDC R s R p 41 th UIA Symposium, San Francisco, CA, USA 18-Apr-12 -7- MEASURING DF MODEL PARAMETERS LCR meter used to measure capacitance and dissipation factor at 120 Hz & 1000 Hz (BK 878). Tiny probes avoids inductance errors Multi Meter w/ Probe Piezo Conductance (G) LCR Meter Tweezers Range 100000 Megohms G=1/R 1¢ US Parallel resistance Rp is very high, but can ionize with moisture to cause shorts at DC. Used conductance measurement ( 1/R) with Fluke 187 Conductance is affected by moisture expulsion due to current heating from multimeter, and typically decreases rapidly for times longer than RC time constant. This is not an accurate method for measuring RDC Conductivity of moisture is not a major factor for dissipation factor with respect to leakage across electrodes, but rather affects internal operation of capacitor to store charge due to local ionization with AC Typical measurements for excellent, good and bad piezo ceramics Type DF 120 C120 (pF) DF 1k C1k (pF) G (nS) Excellent .001 268 .001 268 0 Good .001 283 .004 282 0 Bad .073 269 .034 252 Varies 41 th UIA Symposium, San Francisco, CA, USA 18-Apr-12 -8- MEASURING DF MODEL CON’T Parallel or leakage resistance ( Rp) reduces when taking transducer based measurements for DF with many piezo ceramics are in parallel =1 = 1 + + + + Req R p Piezo Piezo Piezo 1 1 1 1 Rp Piezo Rp Rp Rp + + + 4 −−− −−− −−− −−− Rp R p R p R p Parallel leakage resistance (Rp) also decreases in similar fashion when several conductive percolation paths (in red ) appear due to moisture =1 = Req 2 R 1+ 1 4R 4 R When using piezo ceramics to set preload, RC time constant ( τ) for charge amp needs to be greater than ~30 sec in practice for accuracy τ 30 R≥ = =Ω15 M p + + µ C0 Ca 1550 pF 2 F Percolated conduction paths due to moisture can cause rapid decay or excessive preload due to charge leakage via Rp (production stoppage) 41 th UIA Symposium, San Francisco, CA, USA 18-Apr-12 -9- DF CIRCUIT MODEL EXAMPLES DF model predictions based on individual piezo ceramic measurements Type DF 120 C120 (pF) DF 1k C1k (pF) C (pF) Rp (M Ω) C0 (pF) R0 (M Ω) Rs (M Ω) Good .001 283 .004 282 281 2e12 2 64 0 Bad .073 269 .034 252 248 131 22 33 6637 DF Vs Frequency (Good Part) DF Vs Frequency (Bad Part) 0.005 0.08 Bad Part has More: 0.004 0.07 Leakage, Dielectric Absorption (Moisture), and Series Resistance 0.003 0.06 DF DF 0.002 0.05 0.001 0.04 0 0.03 0 200 400 600 800 1000 0 100 200 300 400 500 600 700 800 900 1000 Frequency (Hz) Frequency (Hz) Capacitance Vs Frequency (Good Part) Capacitance Vs Frequency (Bad Part) 270 283.5 283.25 265 283 260 282.75 282.5 Capacitance(pF) Capacitance(pF) 255 282.25 250 282 0 100 200 300 400 500 600 700 800 900 1000 0 200 400 600 800 1000 Frequency (Hz) Frequency (Hz) 41 th UIA Symposium, San Francisco, CA, USA 18-Apr-12 -10- DF CIRCUIT MODEL EXAMPLES DF Model predictions based on transducer assembly measurements Type DF 120 C120 (pF) DF 1k C1k (pF) C (pF) Rp (M Ω) C0 (pF) R0 (M Ω) Rs (M Ω) Good .001 1564 .004 1557 1551 16470822 12 16 16 Bad .023 1558 .011 1530 1524 100 45 23 548 DF Vs Frequency (Good Transducer) DF Vs Frequency (Bad Transducer) 0.0045 0.024 0.00406 0.0222 Bad Transducer has More: Leakage, Dielectric 0.00363 0.0205 Absorption (Moisture), Dielectric Loss and Series 0.00319 0.0188 Resistance 0.00275 DF 0.017 DF 0.00231 0.0153 0.00188 0.0135 0.00144 0.0117 0.001 0.01 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 Frequency (Hz) Frequency (Hz) Frequency (Hz) Frequency (Hz) Capacitance Vs Freqeuncy (Good Transducer) Capacitance Vs Freqeuncy (Bad
Recommended publications
  • Uprating of Electrolytic Capacitors
    White Paper Uprating of Electrolytic Capacitors By Joelle Arnold Uprating of Electrolytic Capacitors Aluminum electrolytic capacitors are comprised of two aluminum foils, a cathode and an anode, rolled together with an electrolyte-soaked paper spacer in between. An oxide film is grown on the anode to create the dielectric. Aluminum electrolytic capacitors are primarily used to filter low-frequency electrical signals, primarily in power designs. The critical functional parameters for aluminum electrolytic capacitors are defined as capacitance (C), leakage current (LC), equivalent series resistance (ESR), impedance (Z), and dissipation factor (DF). These five parameters are interrelated through the following schematic. Physically, leakage current (LC) tends to be primarily driven by the behavior of the dielectric. ESR is primarily driven by the behavior of the electrolyte. Physically, impedance (Z) is a summation of all the resistances throughout the capacitor, including resistances due to packaging. Electrically, Z is the summation of ESR and either the capacitive reactance (XC), at low frequency, or the inductance (LESL), at high frequency (see Figure 1). Dissipation factor is the ratio of ESR over XC. Therefore, a low ESR tends to give a low impedance and a low dissipation factor. 1.1 Functional Parameters (Specified in Datasheet) The functional parameters that can be provided in manufacturers’ datasheets are listed below 1.1.1 Capacitance vs. Temperature It can be seen that the manufacturer’s guarantee of ±20% stability of the capacitance is only relevant at room temperature. While a source of potential concern when operating aluminum electrolytic capacitors over an extended temperature range, previous research has demonstrated that the capacitance of this capacitor is extremely stable as a function of temperature (see Figure 2 and Figure 4).
    [Show full text]
  • Equivalent Series Resistance (ESR) of Capacitors
    Application Note 1 of 5 Equivalent Series Resistance (ESR) of Capacitors Questions continually arise concerning the correct definition of the ESR (Equivalent Series Resistance) of a capacitor and, more particularly, the difference between ESR and the actual physical series resistance (which we'll call Ras), the ohmic resistance of the leads and plates or foils. The definition and application of the term ESR has often been misconstrued. We hope this note will answer any questions and clarify any confusion that might exist. Very briefly, ESR is a measure of the total lossiness of a capacitor. It is larger than Ras because the actual series resistance is only one source of the total loss (usually a small part). The Series Equivalent Circuit At one frequency, a measurement of complex impedance gives two numbers, the real part and the imaginary part: Z = Rs + jXs. At that frequency, the impedance behaves like a series combination of an ideal resistance Rs and an ideal reactance Xs (Figure 1). Rs RS XS CS Figure 1: Equivalent series circuit representation If Xs is negative, the impedance is capacitive, and the general reactance can be replaced with a capacitance of: −1 Cs = ωXs We now have an equivalent circuit that is correct only at the measurement frequency. The resistance of this equivalent circuit is the equivalent series resistance ESR = Rs = Real part of Z © IET LABS, Inc., September 2019 Printed in U.S.A 035002 Rev. A4 1 of 5 Application Note 2 of 5 Add the dissipation FACTOR energy lost Real part of Z If we define the dissipation factor D as D = = energy stored (− Imaginary part of Z) Rs Then D = =Rsω C = (ESR) ω C (− )Xs If one took a pure resistance and a pure capacitance and connected them in series, then one could say that the ESR of the combination was indeed equal to the actual series resistance.
    [Show full text]
  • Application Note: ESR Losses in Ceramic Capacitors by Richard Fiore, Director of RF Applications Engineering American Technical Ceramics
    Application Note: ESR Losses In Ceramic Capacitors by Richard Fiore, Director of RF Applications Engineering American Technical Ceramics AMERICAN TECHNICAL CERAMICS ATC North America ATC Europe ATC Asia [email protected] [email protected] [email protected] www.atceramics.com ATC 001-923 Rev. D; 4/07 ESR LOSSES IN CERAMIC CAPACITORS In the world of RF ceramic chip capacitors, Equivalent Series Resistance (ESR) is often considered to be the single most important parameter in selecting the product to fit the application. ESR, typically expressed in milliohms, is the summation of all losses resulting from dielectric (Rsd) and metal elements (Rsm) of the capacitor, (ESR = Rsd+Rsm). Assessing how these losses affect circuit performance is essential when utilizing ceramic capacitors in virtually all RF designs. Advantage of Low Loss RF Capacitors Ceramics capacitors utilized in MRI imaging coils must exhibit Selecting low loss (ultra low ESR) chip capacitors is an important ultra low loss. These capacitors are used in conjunction with an consideration for virtually all RF circuit designs. Some examples of MRI coil in a tuned circuit configuration. Since the signals being the advantages are listed below for several application types. detected by an MRI scanner are extremely small, the losses of the Extended battery life is possible when using low loss capacitors in coil circuit must be kept very low, usually in the order of a few applications such as source bypassing and drain coupling in the milliohms. Excessive ESR losses will degrade the resolution of the final power amplifier stage of a handheld portable transmitter image unless steps are taken to reduce these losses.
    [Show full text]
  • LOSSY CAPACITORS 1 Dielectric Loss
    Chapter 3—Lossy Capacitors 3–1 LOSSY CAPACITORS 1 Dielectric Loss Capacitors are used for a wide variety of purposes and are made of many different materials in many different styles. For purposes of discussion we will consider three broad types, that is, capacitors made for ac, dc, and pulse applications. The ac case is the most general since ac capacitors will work (or at least survive) in dc and pulse applications, where the reverse may not be true. It is important to consider the losses in ac capacitors. All dielectrics (except vacuum) have two types of losses. One is a conduction loss, representing the flow of actual charge through the dielectric. The other is a dielectric loss due to movement or rotation of the atoms or molecules in an alternating electric field. Dielectric losses in water are the reason for food and drink getting hot in a microwave oven. One way of describing dielectric losses is to consider the permittivity as a complex number, defined as = − j = ||e−jδ (1) where = ac capacitivity = dielectric loss factor δ = dielectric loss angle Capacitance is a complex number C∗ in this definition, becoming the expected real number C as the losses go to zero. That is, we define C∗ = C − jC (2) One reason for defining a complex capacitance is that we can use the complex value in any equation derived for a real capacitance in a sinusoidal application, and get the correct phase shifts and power losses by applying the usual rules of circuit theory. This means that most of our analyses are already done, and we do not need to start over just because we now have a lossy capacitor.
    [Show full text]
  • Electrical and Capacitive Methods for Detecting Degradation in Wire Insulation Robert Thomas Sheldon Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Electrical and capacitive methods for detecting degradation in wire insulation Robert Thomas Sheldon Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Electronics Commons, and the Mechanics of Materials Commons Recommended Citation Sheldon, Robert Thomas, "Electrical and capacitive methods for detecting degradation in wire insulation" (2012). Graduate Theses and Dissertations. 12681. https://lib.dr.iastate.edu/etd/12681 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Electrical and capacitive methods for detecting degradation in wire insulation by Robert T. Sheldon A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Nicola Bowler, Major Professor Brian K. Hornbuckle Jiming Song Iowa State University Ames, Iowa 2012 Copyright c Robert T. Sheldon, 2012. All rights reserved. ii To my parents, Kevin and Victoria, and my sister, Laura, for their neverending love and support. iii TABLE OF CONTENTS LIST OF TABLES . vi LIST OF FIGURES . vii ABSTRACT . xii CHAPTER 1. GENERAL INTRODUCTION . 1 1.1 Introduction . .1 1.2 Literature survey . .1 1.2.1 Extant methods of insulation characterization . .1 1.2.2 Capacitive sensing .
    [Show full text]
  • Dielectric Loss and Ferroelectric Hysteresis
    SEPTEMBER 2018 I SS U E #117 TECHNICALTIDBITS MATERION PERFORMANCE ALLOYS DIELECTRIC LOSS AND FERROELECTRIC HYSTERESIS Last month we made the observation that the per- The amount of energy converted to heat during a polar- mittivity of an ideal capacitor is equal to the relative ization cycle is known as the dissipation factor (Df), permittivity (dielectric constant, abbreviated loss tangent or tan ( ), with being the loss angle. Dk or r) multiplied by the permittivity constant The derivation of the loss angle and the tangent thereof δ δ At a Loss! – A brief ( 0). This is true for direct current (DC) conditions, or can be a bit esoteric unless you are an electrical engi- ε discussion on energy lost for ideal, lossless dielectric materials. However, nature neer. Technical Tidbits always tries to strike a balance rarelyε presents us with ideal materials or conditions, between oversimplification (with a risk of inaccuracy) as waste heat in materials so we have to consider real-world cases. and getting too in depth for introductory material due to the presence of (getting lost in the weeds). However, if you are comfort- changing electric fields. As discussed last month, under the influence of an able with phasors as well as real and imaginary parts of externally applied electric field, the electric dipoles current and capacitance, then feel free to research on. in a polarizable material will align themselves with the field, if they are free to rotate or move, and if they Under AC conditions, all realistic dielectric materials will have enough time to do so. Of course, such movement have losses.
    [Show full text]
  • Cornell Dubilier – Aluminum Electrolytic Capacitor Application
    Aluminum Electrolytic Capacitor Application Guide This guide is a full handbook on aluminum electrolytic capacitors, of course with emphasis on Cornell Dubilier’s types. It covers construction in depth and discloses the latest information on performance and application for the major aluminum electrolytic types made worldwide. We encourage you to tell us what more you’d like to know, so we can improve this guide. CONTENTS PAGE Capacitor Construction 2 Other Types of Capacitors Comparison 4 Characterization and Circuit Model 5 TABLES PAGE Temperature Range 6 Capacitor Parameter Formulas 6 Capacitance 7 Base Lives and Max Core Temperatures 14 Dissipation Factor (DF) 7 Thermal Resistance Screw Terminal Capacitors 17 Equivalent Series Resistance (ESR) 8 Thermal Resistance for Snap-in Capacitors 19 Impedance (Z) 8 Pressure Relief Device Clearance 21 Low-Temperature Impedance 8 Screw Tightening Torque for Screw Terminals 21 DC Leakage Current (DCL) 8 Maximum Currents for Screw Terminals 21 Voltage Withstanding 9 Tightening Torque for Nylon Mounting Nuts 22 Ripple Current 10 Inductance 10 Self-Resonant Frequency 10 Dielectric Absorption 11 Insulation and Grounding 11 Elevation & External Pressure 11 Vibration Withstanding Capability 11 Safety Considerations 11 Capacitor Bank Configurations 12 Non-Polar and Motor Start Capacitors 13 Reliability and Lifetime 13 Cooling and Thermal Resistance 16 Process Considerations 19 Mounting 20 Disposal of Capacitors 22 ALUMINUM ELECTROLYTIC CAPACITOR OVERVIEW electrolyte. The positive plate is the anode foil; the dielectric is the insulating aluminum oxide on the anode foil; the true negative Except for a few surface-mount technology (SMT) aluminum plate is the conductive, liquid electrolyte, and the cathode foil electrolytic capacitor types with solid electrolyte systems, an connects to the electrolyte.
    [Show full text]
  • The Proper Usage Method of Conductive Polymer Solid Aluminum Electrolytic Capacitor
    The Proper Usage Method of Conductive Polymer Solid Aluminum Electrolytic Capacitor Ⅰ.Lifetime Estimation Subject series:FR/FH/FG/FF/FS/FL/FT/FP/VB/VP/VS Conductive polymer aluminum solid capacitors are finite life electronic components like aluminum electrolytic capacitors. The lifetime is affected by ambient temperature, humidity, ripple current and surge voltage. The lifetime of aluminum electrolytic capacitors is affected mainly by the loss of electrolyte as the result of the liquid electrolyte evaporating through the rubber seal materials, resulting in capacitance drop and tanδ rise.On the other hand, the lifetime of conductive polymer aluminum solid capacitors is affected mainly by oxidation degradation of the conductive polymer caused by osmose of oxygen or the thermal degradation of the conductive polymer by ambient temperature or self-heating, resulting in ESR rise and tanδ rise.The infiltration rate of the oxygen is depend on the temperature as the liquid electrolyte evaporation and the relationship follows the Arrhenius's Law, too. Similarly, thermal degradation of the conductive polymer by self-heating follows the Arrhenius's Law, too.Therefore, the lifetime estimation has been using the ℃ theory of lifetime increasing by 10 times at every 20 reducing of the ambient temperature. 1. Lifetime Estimation Equation (1) can be used for estimating the lifetime of the conductive polymer aluminum solid capacitors based on the ambient temperature and the rise of internal temperature due to ripple current. (T0-TX)/20 LX=L0X10 -----------------------------------------------(1) Lx:Estimation of actual lifetime (hour) Lo:Specified lifetime with the rated voltage at the upper limit of the category temperature (hour) To:Maximum category temperature (℃) Tx:Actual ambient temperature of the capacitor (℃) Longer lifetime is expected by lowering the ripple current and the ambient temperature.
    [Show full text]
  • Introduction Characteristics and Definitions Used for Film Capacitors
    Introduction www.vishay.com Vishay Characteristics and Definitions Used for Film Capacitors COMMON FILM DIELECTRICS USED IN FILM CAPACITORS PRODUCTS DIELECTRIC (1) PARAMETER UNIT KT KN KI KP Dielectric constant 1 kHz 3.3 3 3 2.2 - Dissipation factor 1 kHz 50 40 3 1 10-4 Dissipation factor 10 kHz 110 70 6 2 10-4 Dissipation factor 100 kHz 170 100 12 2 10-4 Dissipation factor 1 MHz 200 150 18 4 10-4 Volume resistivity 10+17 10+17 10+17 10+18 Ωcm Dielectric strength 400 300 250 600 V/μm Maximum application temperature 125 150 160 110 °C Power density at 10 kHz 50 40 2.5 0.6 W/cm3 Dielectric absorption 0.2 1.2 0.05 0.01 % Notes • Polyethylene terephthalate (PETP) and polyethylene naphtalate (PEN) films are generally used in general purpose capacitors for applications typically with small bias DC voltages and/or small AC voltages at low frequencies • Polyethylene terephthalate (PETP) has as its most important property, high capacitance per volume due to its high dielectric constant and availability in thin gauges • Polyethylene naphtalate (PEN) is used when a higher temperature resistance is required compared to PET • Polyphenylene sulfide (KI) film can be used in applications where high temperature is needed eventually in combination with low dissipation factor • Polypropylene (KP) films are used in high frequency or high voltage applications due to their very low dissipation factor and high dielectric strength. These films are used in AC and pulse capacitors and interference suppression capacitors for mains applications • Typical properties as functions of temperature or frequency are illustrated in the following chapters: “Capacitance”, “Dissipation factor”, and “Insulation resistance” (1) According to IEC 60062: KT = polyethylene terephthalate (PETP) KN = polyethylene naphtalate (PEN) KI = polyphenylene sulfide (PPS) KP = polypropylene (PP) Revision: 14-Jun-17 1 Document Number: 28147 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE.
    [Show full text]
  • Dissipation Factor, Power Factor, and Relative Permittivity (Dielectric Constant)
    DISSIPATION FACTOR, POWER FACTOR, AND RELATIVE PERMITTIVITY (DIELECTRIC CONSTANT) By I.A.R. Gray Transformer Chemistry Services Background: There is a relationship between the dissipation factor, the power factor, and the permittivity or dielectric constant. They all relate to the dielectric losses in an insulating fluid when used in an alternating electric field. The permittivity is represented as a complex quantity in the following manner: e* = e' - j e" ; where e* is the complex permittivity, e' is the real or measured permittivity, and e" is the imaginary permittivity. In the presence of an alternating field there is created a capacitance current and a resistive current that are 90o out of phase with respect to each other. The vector sum of these two currents represents the total current and the angle between the capacitance current vector and the resultant total current vector is defined as the loss angle, d. The ratio of the imaginary to the real part of the permittivity is equal to tan d; i.e. tan d = e" / e'. The factor tan d is defined as the dissipation factor, D, and represents the dielectric loss in the insulating fluid. The power factor, P, is defined as sin d. The relationship between D and P is the following: D2 - F2 = D2 F2, thus if you know one value you can calculate the other. Furthermore for small values of d, tan d ~ sin d, thus for values of tan d up to 0.05 the power factor and the dissipation factor are the same within one part in a thousand.
    [Show full text]
  • Precision LCR Meter
    Precision LCR Meter LCR-800 USER MANUAL GW INSTEK PART NO. 82CR-81900MK1 This manual contains proprietary information, which is protected by copyright. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of the Good Will Instrument company. The information in this manual was correct at the time of printing. However, Good Will continues to improve products and reserves the right to change specifications, equipment, and maintenance procedures at any time without notice. ISO-9001 CERTIFIED MANUFACTURER Good Will Instrument Co., Ltd. No. 7-1, Jhongsing Rd., Tucheng City, Taipei County 236, Taiwan. SAFETY INSTRUCTIONS LCR-800 User Manual INTERACE ...................................................................... 111 RS232 Interface Configuration ........... 112 Table of Contents Signal Overview ................................. 116 SAFETY INSTRUCTIONS ................................................... 5 FAQ ............................................................................... 121 GETTING STARTED ......................................................... 10 APPENDIX ..................................................................... 123 Main Features ...................................... 11 Fuse Replacement .............................. 123 Measurement Type ............................... 12 Circuit Theory and Formula ................ 124 Front Panel Overview ........................... 13 Accuracy Definitions .........................
    [Show full text]
  • Film Capacitors
    Film Capacitors General technical information Date: June 2018 © EPCOS AG 2018. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited. EPCOS AG is a TDK Group Company. General technical information This data book describes fixed capacitors with plastic film dielectrics, also termed film capacitors or FK capacitors. 1 Classification of film capacitors 1.1 Classification by dielectric The characteristics and application possibilities of film capacitors are affected so strongly by the dielectric used that capacitors are grouped and designated according to the type of dielectric. Short identification codes for the type of construction, describing the dielectric and the basic tech- nology applied, are defined in standard DIN EN 60062:2005. The last character of the short code indicates the type of dielectric: T Polyethylene terephthalate (PET) P Polypropylene (PP) N Polyethylene naphthalate (PEN) AnM( metallization) is prefixed to the short identification code of capacitors with metallized films. Figure 1 Classification of film capacitors in DIN EN 60062:2005 *) MFP and MFT capacitors are constructed using a combination of metal foils and metallized plastic films. They are not covered by DIN EN 60062:2005. Please read Important notes Page2of41 and Cautions and warnings. General technical information Characteristics of plastic film dielectrics (generalized typical values) The following table is a summary of important technical data. Dielectric PP PET PEN Refer to section Dielectric constant (εr) 2.2 3.2 3.0 C drift with time (iz = ΔC/C) % 3 3 2 2.2.5 α -6 C temperature coefficient c 10 /K 250 +600 +200 2.2.2 -6 C humidity coefficient βc 10 /% r.h.
    [Show full text]