Dielectric Permittivity Model for Polymer–Filler Composite Materials by the Example of Ni- and Graphite-Filled Composites for High-Frequency Absorbing Coatings
coatings Article Dielectric Permittivity Model for Polymer–Filler Composite Materials by the Example of Ni- and Graphite-Filled Composites for High-Frequency Absorbing Coatings Artem Prokopchuk 1,*, Ivan Zozulia 1,*, Yurii Didenko 2 , Dmytro Tatarchuk 2 , Henning Heuer 1,3 and Yuriy Poplavko 2 1 Institute of Electronic Packaging Technology, Technische Universität Dresden, 01069 Dresden, Germany; henning.heuer@ikts.fraunhofer.de 2 Department of Microelectronics, National Technical University of Ukraine, 03056 Kiev, Ukraine; yu.didenko@kpi.ua (Y.D.); dmitry.tatarchuk@gmail.com (D.T.); yu.poplavko@kpi.ua (Y.P.) 3 Department of Systems for Testing and Analysis, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany * Correspondence: artem.prokopchuk1@tu-dresden.de (A.P.); ivan.zozulia@tu-dresden.de (I.Z.); Tel.: +49-3514-633-6426 (A.P. & I.Z.) Abstract: The suppression of unnecessary radio-electronic noise and the protection of electronic devices from electromagnetic interference by the use of pliable highly microwave radiation absorbing composite materials based on polymers or rubbers filled with conductive and magnetic fillers have been proposed. Since the working frequency bands of electronic devices and systems are rapidly expanding up to the millimeter wave range, the capabilities of absorbing and shielding composites should be evaluated for increasing operating frequency. The point is that the absorption capacity of conductive and magnetic fillers essentially decreases as the frequency increases. Therefore, this Citation: Prokopchuk, A.; Zozulia, I.; paper is devoted to the absorbing capabilities of composites filled with high-loss dielectric fillers, in Didenko, Y.; Tatarchuk, D.; Heuer, H.; which absorption significantly increases as frequency rises, and it is possible to achieve the maximum Poplavko, Y.
[Show full text]