Pollen Grain Morphology in Iranian Hedysareae (Fabaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Bean Bag
The Bean Bag A newsletter to promote communication among research scientists concerned with the systematics of the Leguminosae/Fabaceae Issue 62, December 2015 CONTENT Page Letter from the Editor ............................................................................................. 1 In Memory of Charles Robert (Bob) Gunn .............................................................. 2 Reports of 2015 Happenings ................................................................................... 3 A Look into 2016 ..................................................................................................... 5 Legume Shots of the Year ....................................................................................... 6 Legume Bibliography under the Spotlight .............................................................. 7 Publication News from the World of Legume Systematics .................................... 7 LETTER FROM THE EDITOR Dear Bean Bag Fellow This has been a year of many happenings in the legume community as you can appreciate in this issue; starting with organizational changes in the Bean Bag, continuing with sad news from the US where one of the most renowned legume fellows passed away later this year, moving to miscellaneous communications from all corners of the World, and concluding with the traditional list of legume bibliography. Indeed the Bean Bag has undergone some organizational changes. As the new editor, first of all, I would like to thank Dr. Lulu Rico and Dr. Gwilym Lewis very much for kindly -
(Alhagi Maurorum) As New Sources of Bioactive Compounds Using GC-MS Technique
POJ 12(01):70-77 (2019) ISSN:1836-3644 doi: 10.21475/poj.12.01.19.pt1971 Assessment of camel thorn (Alhagi maurorum) as new sources of bioactive compounds using GC-MS technique Reham M. Mostafa, Heba S. Essawy* Botany Department, Facukty of Science, Benha University, Egypt Corresponding author: [email protected] Abstract Alhagi maurorum (A. maurorum) is one of the medicinally important plants belonging to the family leguminasae, commonly known as camel thorn. This research was amid to identify the chemical compounds in the aerial part of A. maurorum using GC-mass analysis. Three solvents with different polarities were used for the extraction of chemical constituents (water, methanol and petroleum ether). The results of GC-MS analysis led to identification of various compounds. In total, thirty-nine compounds from petroleum ether extract, thirty-two compounds in methanolic extract and seventeen compounds in aqueous extract were identified. Majority of the identified compounds have been reported to possess many biological activities. Among them, we reported 10 new anticancer compounds (Vitamin E; Hexadecanoic acid; Stigmast-5-en-3-ol; Phytol,2-hexadecen-1-ol,3,7,11,15-tetramethyl; Squalene; Hexadecanoic acid; 2-hydroxy-1-(hydroxymethyl) ethyl ester; Oxime,methoxy-phenyl,methyl N-hydroxyben- zenecarboximidoate; Ergost-5-en-3-ol; 9,12- Octadecad-ienoic acid and Farnesol) from A. maurorum using three solvent, while the best effective solvent was petroluem ether. Therefore, we report that A. maurorum has great potential to be developed into anticancer drugs. Keywords: Secondary metabolites; Alhagi maurarum; GC-mass spectroscopy; anticancer compounds. Introduction Natural products have useful and interesting biological tissue-repairing properties (Al-Snafi, 2015). -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
A Phylogeny of Legumes (Leguminosae) Based on Analysis of the Plastid Matk Gene Resolves Many Well-Supported Subclades Within the Family1
American Journal of Botany 91(11): 1846±1862. 2004. A PHYLOGENY OF LEGUMES (LEGUMINOSAE) BASED ON ANALYSIS OF THE PLASTID MATK GENE RESOLVES MANY WELL-SUPPORTED SUBCLADES WITHIN THE FAMILY1 MARTIN F. W OJCIECHOWSKI,2,5 MATT LAVIN,3 AND MICHAEL J. SANDERSON4 2School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501 USA; 3Department of Plant Sciences, Montana State University, Bozeman, Montana 59717 USA; and 4Section of Evolution and Ecology, University of California, Davis, California 95616 USA Phylogenetic analysis of 330 plastid matK gene sequences, representing 235 genera from 37 of 39 tribes, and four outgroup taxa from eurosids I supports many well-resolved subclades within the Leguminosae. These results are generally consistent with those derived from other plastid sequence data (rbcL and trnL), but show greater resolution and clade support overall. In particular, the monophyly of subfamily Papilionoideae and at least seven major subclades are well-supported by bootstrap and Bayesian credibility values. These subclades are informally recognized as the Cladrastis clade, genistoid sensu lato, dalbergioid sensu lato, mirbelioid, millettioid, and robinioid clades, and the inverted-repeat-lacking clade (IRLC). The genistoid clade is expanded to include genera such as Poecilanthe, Cyclolobium, Bowdichia, and Diplotropis and thus contains the vast majority of papilionoids known to produce quinolizidine alkaloids. The dalbergioid clade is expanded to include the tribe Amorpheae. The mirbelioids include the tribes Bossiaeeae and Mirbelieae, with Hypocalypteae as its sister group. The millettioids comprise two major subclades that roughly correspond to the tribes Millettieae and Phaseoleae and represent the only major papilionoid clade marked by a macromorphological apomorphy, pseu- doracemose in¯orescences. -
Plant Press, Vol. 18, No. 3
Special Symposium Issue continues on page 12 Department of Botany & the U.S. National Herbarium The Plant Press New Series - Vol. 18 - No. 3 July-September 2015 Botany Profile Seed-Free and Loving It: Symposium Celebrates Pteridology By Gary A. Krupnick ern and lycophyte biology was tee Chair, NMNH) presented the 13th José of this plant group. the focus of the 13th Smithsonian Cuatrecasas Medal in Tropical Botany Moran also spoke about the differ- FBotanical Symposium, held 1–4 to Paulo Günter Windisch (see related ences between pteridophytes and seed June 2015 at the National Museum of story on page 12). This prestigious award plants in aspects of biogeography (ferns Natural History (NMNH) and United is presented annually to a scholar who comprise a higher percentage of the States Botanic Garden (USBG) in has contributed total vascular Washington, DC. Also marking the 12th significantly to flora on islands Symposium of the International Orga- advancing the compared to nization of Plant Biosystematists, and field of tropical continents), titled, “Next Generation Pteridology: An botany. Windisch, hybridization International Conference on Lycophyte a retired profes- and polyploidy & Fern Research,” the meeting featured sor from the Universidade Federal do Rio (ferns have higher rates), and anatomy a plenary session on 1 June, plus three Grande do Sul, was commended for his (some ferns have tree-like growth using additional days of focused scientific talks, extensive contributions to the systematics, root mantle or have internal reinforce- workshops, a poster session, a reception, biogeography, and evolution of neotro- ment by sclerenchyma instead of lateral a dinner, and a field trip. -
VASCULAR PLANTS of MINNESOTA a Checklist and Atlas
VASCULAR PLANTS of MINNESOTA This page intentionally left blank VASCULAR PLANTS of MINNESOTA A Checklist and Atlas Gerald B. Ownbey and Thomas Morley UNIVERSITY OF MINNESOTA MINNEAPOLIS • LONDON The University of Minnesota Press gratefully acknowledges the generous assistance provided for the publication of this book by the Margaret W. Harmon Fund Minnesota Department of Transportation Minnesota Landscape Arboretum Minnesota State Horticultural Society Olga Lakela Herbarium Fund—University of Minnesota—Duluth Natural Heritage Program of the Minnesota Department of Natural Resources Copyright © 1991 by the Regents of the University of Minnesota. First paperback printing 1992 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Published by the University of Minnesota Press 2037 University Avenue Southeast, Minneapolis, MN 55455 Printed in the United States of America on acid-free paper Library of Congress Cataloging-in-Publication Data Ownbey, Gerald B., 1916- Vascular plants of Minnesota : a checklist and atlas / Gerald B. Ownbey and Thomas Morley. p. cm. Includes bibliographical references and index. ISBN 0-8166-1915-8 1. Botany-Minnesota. 2. Phytogeography—Minnesota— Maps. I. Morley, Thomas. 1917- . II. Title. QK168.096 1991 91-2064 582.09776-dc20 CIP The University of Minnesota is an equal-opportunity educator and employer. Contents Introduction vii Part I. Checklist of the Vascular Plants of Minnesota 1 Pteridophytes 3 Gymnosperms 6 Angiosperms 7 Appendix 1. Excluded names 81 Appendix 2. Tables 82 Part II. Atlas of the Vascular Plants of Minnesota 83 Index of Generic and Common Names 295 This page intentionally left blank Introduction The importance of understanding the vegetation of al distributional comments. -
I PROCEEDINGS of an INTERNATIONAL SYMPOSIUM
PROCEEDINGS OF AN INTERNATIONAL SYMPOSIUM AND WORKSHOP ON NATIE SEEDS IN RESTORATION OF DRYLAND ECOSYSTEMS NOVEMBER 20 – 23, 2017 STATE OF KUWAIT Organized by Kuwait Institute for Scientific Research (KISR) International Network for Seed-based Restoration (INSR) Sponsored by Kuwait National Focal Point (KNFP) Kuwait Foundation for the Advancement of Sciences (KFAS) Islamic Development Bank (IDB) i PROCEEDINGS OF AN INTERNATIONAL SYMPOSIUM AND WORKSHOP ON NATIE SEEDS IN RESTORATION OF DRYLAND ECOSYSTEMS NOVEMBER 20 – 23, 2017 2017 ii Disclaimer The contents provided in individual papers are the opinion of the author (s) and Editors and KISR hold no responsibility for views expressed. Submissions have been included in the e-version of the proceedings with only minor editing. However, these submissions will be subjected to in-depth technical review/ editing prior to their inclusion in the printed version of symposium proceedings. iii Table of Contents Preface ………………………..……………………………………..………… vii Symposium Committees ……………………………………………..………... ix Section 1: Native Plant Conservation and Selection 1 Assessing the Ex-situ Seed Bank Collections in Conservation of Endangered Native Plants in Kuwait. T. A. Madouh ……………………………………………………………..…... 2 Steps Towards In-situ Conservation for Threatened Plants in Egypt 10 K. A. Omar ………………………………………………………..…………... Conservation and Management of Prosopis cineraria (L) Druce in the State of Qatar. E. M. Elazazi, M. Seyd, R. Al-Mohannadi, M. Al-Qahtani, N. Shahsi, A. Al- 26 Kuwari and M. Al-Marri …………………………………………….………….. The Lonely Tree of Kuwait. 38 M. K. Suleiman, N. R. Bhat, S. Jacob and R. Thomas ……..…………………. Species Restoration Through Ex situ Conservation: Role of Native Seeds in Reclaiming Lands and Environment. S. Saifan …………………………………………………….…………………… 49 Conservation of Native Germplasm Through Seed Banking In the United Arab Emirates: Implications for Seed-Based Restoration S. -
Molecular Cytogenetics of Eurasian Species of the Genus Hedysarum L
plants Article Molecular Cytogenetics of Eurasian Species of the Genus Hedysarum L. (Fabaceae) Olga Yu. Yurkevich 1, Tatiana E. Samatadze 1, Inessa Yu. Selyutina 2, Svetlana I. Romashkina 3, Svyatoslav A. Zoshchuk 1, Alexandra V. Amosova 1 and Olga V. Muravenko 1,* 1 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia; [email protected] (O.Y.Y.); [email protected] (T.E.S.); [email protected] (S.A.Z.); [email protected] (A.V.A.) 2 Central Siberian Botanical Garden, SB Russian Academy of Sciences, 101 Zolotodolinskaya St, 630090 Novosibirsk, Russia; [email protected] 3 All-Russian Institute of Medicinal and Aromatic Plants, 7 Green St, 117216 Moscow, Russia; [email protected] * Correspondence: [email protected] Abstract: The systematic knowledge on the genus Hedysarum L. (Fabaceae: Hedysareae) is still incomplete. The species from the section Hedysarum are valuable forage and medicinal resources. For eight Hedysarum species, we constructed the integrated schematic map of their distribution within Eurasia based on currently available scattered data. For the first time, we performed cytoge- nomic characterization of twenty accessions covering eight species for evaluating genomic diversity and relationships within the section Hedysarum. Based on the intra- and interspecific variability of chromosomes bearing 45S and 5S rDNA clusters, four main karyotype groups were detected in the studied accessions: (1) H. arcticum, H. austrosibiricum, H. flavescens, H. hedysaroides, and H. theinum (one chromosome pair with 45S rDNA and one pair bearing 5S rDNA); (2) H. alpinum and one accession of H. hedysaroides (one chromosome pair with 45S rDNA and two pairs bearing 5S rDNA); Citation: Yurkevich, O.Y.; Samatadze, (3) H. -
Chemical Identification of Specialized Metabolites from Sulla (Hedysarum
molecules Article Chemical Identification of Specialized Metabolites from Sulla (Hedysarum coronarium L.) Collected in Southern Italy Aldo Tava 1,* , Elisa Biazzi 1, Domenico Ronga 1,2 , Mariella Mella 3, Filippo Doria 3 , Trifone D’Addabbo 4 , Vincenzo Candido 5 and Pinarosa Avato 6 1 CREA Research Centre for Animal Production and Aquaculture, Viale Piacenza 29, 26900 Lodi, Italy; [email protected] (E.B.); [email protected] (D.R.) 2 Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy 3 Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; [email protected] (M.M.); fi[email protected] (F.D.) 4 Institute for Sustainable Plant Protection, National Council of Research, 70125 Bari, Italy; [email protected] 5 Department of European and Mediterranean Cultures, Environment and Cultural Heritage, University of Basilicata, Via Lanera 20, 75100 Matera, Italy; [email protected] 6 Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-03-714-0471 Abstract: Sulla (Hedysarum coronarium L.) is a biennal forage legume originated from the Mediter- ranean basin and used for animal feeding due to its high forage quality and palatability. Several species of Hedysarum have been considered for their nutritional, pharmaceutical, and biological properties, and different applications have been reported, both for human consumption and animal Citation: Tava, A.; Biazzi, E.; Ronga, nutrition. Although a systematic investigation of the chemical constituents of Hedysarum spp. has D.; Mella, M.; Doria, F.; D’Addabbo, been performed in order to provide chemotaxonomic evidences for the genus and to support the T.; Candido, V.; Avato, P. -
Wojciechowski Quark
Wojciechowski, M.F. (2003). Reconstructing the phylogeny of legumes (Leguminosae): an early 21st century perspective In: B.B. Klitgaard and A. Bruneau (editors). Advances in Legume Systematics, part 10, Higher Level Systematics, pp. 5–35. Royal Botanic Gardens, Kew. RECONSTRUCTING THE PHYLOGENY OF LEGUMES (LEGUMINOSAE): AN EARLY 21ST CENTURY PERSPECTIVE MARTIN F. WOJCIECHOWSKI Department of Plant Biology, Arizona State University, Tempe, Arizona 85287 USA Abstract Elucidating the phylogenetic relationships of the legumes is essential for understanding the evolutionary history of events that underlie the origin and diversification of this family of ecologically and economically important flowering plants. In the ten years since the Third International Legume Conference (1992), the study of legume phylogeny using molecular data has advanced from a few tentative inferences based on relatively few, small datasets into an era of large, increasingly multiple gene analyses that provide greater resolution and confidence, as well as a few surprises. Reconstructing the phylogeny of the Leguminosae and its close relatives will further advance our knowledge of legume biology and facilitate comparative studies of plant structure and development, plant-animal interactions, plant-microbial symbiosis, and genome structure and dynamics. Phylogenetic relationships of Leguminosae — what has been accomplished since ILC-3? The Leguminosae (Fabaceae), with approximately 720 genera and more than 18,000 species worldwide (Lewis et al., in press) is the third largest family of flowering plants (Mabberley, 1997). Although greater in terms of the diversity of forms and number of habitats in which they reside, the family is second only perhaps to Poaceae (the grasses) in its agricultural and economic importance, and includes species used for foods, oils, fibre, fuel, timber, medicinals, numerous chemicals, cultivated horticultural varieties, and soil enrichment. -
Ancestral State Reconstruction of the Mycorrhizal Association for the Last Common Ancestor of Embryophyta, Given the Different Phylogenetic Constraints
Supplementary information Supplementary Figures Figure S1 | Ancestral state reconstruction of the mycorrhizal association for the last common ancestor of Embryophyta, given the different phylogenetic constraints. Pie charts show the likelihood of the ancestral states for the MRCA of Embryophyta for each phylogenetic hypothesis shown below. Letters represent mycorrhizal associations: (A) Ascomycota; (B) Basidiomycota; (G) Glomeromycotina; (M) Mucoromycotina; (-) Non-mycorrhizal. Combinations of letters represent a combination of mycorrhizal associations. Austrocedrus chilensis Chamaecyparis obtusa Sequoiadendron giganteum Prumnopitys taxifolia Prumnopitys Prumnopitys montana Prumnopitys Prumnopitys ferruginea Prumnopitys Araucaria angustifolia Araucaria Dacrycarpus dacrydioides Dacrycarpus Taxus baccata Podocarpus oleifolius Podocarpus Afrocarpus falcatus Afrocarpus Ephedra fragilis Nymphaea alba Nymphaea Gnetum gnemon Abies alba Abies balsamea Austrobaileya scandens Austrobaileya Abies nordmanniana Thalictrum minus Thalictrum Abies homolepis Caltha palustris Caltha Abies magnifica ia repens Ranunculus Abies religiosa Ranunculus montanus Ranunculus Clematis vitalba Clematis Keteleeria davidiana Anemone patens Anemone Tsuga canadensis Vitis vinifera Vitis Tsuga mertensiana Saxifraga oppositifolia Saxifraga Larix decidua Hypericum maculatum Hypericum Larix gmelinii Phyllanthus calycinus Phyllanthus Larix kaempferi Hieronyma oblonga Hieronyma Pseudotsuga menziesii Salix reinii Salix Picea abies Salix polaris Salix Picea crassifolia Salix herbacea -
A Review of the Genus Caesalpinia L.: Emphasis on the Cassane And
J. Med. Plants 2020; 19(76): 1-20 Journal of Medicinal Plants Journal homepage: www.jmp.ir Review Article A review of the genus Caesalpinia L.: emphasis on the cassane and norcassane compounds and cytotoxicity effects Narges Pournaghi1, Farahnaz Khalighi-Sigaroodi1,*, Elahe Safari2, Reza Hajiaghaee1 1 Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran 2 Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ARTICLE INFO Abstract Keywords: Background: Many herbal remedies have been used in medical systems for the Caesalpinia genus cure of diseases. One of these important applications is usage of them as cytotoxic Diterpenes agents for the treatment of cancers and tumors. Various studies have been Cassane conducted on several species of Caesalpinia genus including evaluation of Norcassane antimicrobial, antitumor, anti-inflammatory, antipsoriatic, antidiabetic, Cytotoxic antioxidant, antibacterial, immunomodulatory and hypoglycemic activities. Some reports have shown that these plants contain phytochemicals like polyphenols, glycosides, terpenoids, saponins and flavonoids. Objective: The aim of this study was to find species of the Caesalpinia genus containing diterpene compounds with the structure cassane and norcassane with emphasis on cytotoxic properties. Methods: In this study, keywords including Caesalpinia genus, cytotoxic and anticancer effects, and cassane and norcassane compounds were searched in Scopus and Science Direct databases. Results: Thirteen Caesalpinia