View That the BLR Is Indeed Spherically Syaaetric

Total Page:16

File Type:pdf, Size:1020Kb

View That the BLR Is Indeed Spherically Syaaetric INFORMATION TO L'SERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. U n iv erse Microfilms International 300 N. Zeeb Road Ann Arbor, Ml 48106 8518929 Crenshaw, Daniel Michael AN ANALYSIS OF THE BROAD EMISSION LINE PROFILES OF SEYFERT 1 GALAXIES The Ohio State University PH.D. 1985 University Microfilms International 300 N. Zeeb Road, Ann Arbor, Ml 48106 Copyright 1985 by Crenshaw, Daniel Michael All Rights Reserved An Analysis of the Broad Emission Line Profiles of Seyfert 1 Galaxies DISSEBTATION Presented in Partial Fulfillment of the Requireaents for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Daniel Michael Crenshaw* B.S. The Ohio S tate U niversity 1985 Reading Coaaittee: Approved By Dr. Eugene R. C a p rio tti Dr. David G. Lawrie Dr. Bradley H. Peterson adley HiMl Peterson*Pet<Bradley Adviser Departaent of Astronoay ©Copyright by Daniel Michael Crenshaw 1965 DEDICATION To Jo - i i - ACKIOULIbGEBENTS This dissertation would not have been possible without the guidance of ay adviser. Professor Bradley fl. Peterson. 1 would like to thank Professor Peterson for his original suggestion of the nain topic of this dissertation, and for his valuable coaaents and advice on various aspects of this work. I would like to thank Professor Eugene B. C ap rio tti, for his helpful suggestions and encourageaent throughout the course of ay research on this topic. 1 aa also indebt­ ed to Professor David G. Lawrie, for his suggestions and coaaents concerning earlier drafts of this aanuscript. Dr. Paul L. Byard is responsible for the development of the Ohio State University iaage dissector scanner, which proved to be an ideal detector for this study. I an alsc grateful to Dr. Arthur A. Hoag and the staff of Lowell Observatory, for their hospitality during ay visits to Flagstaff. Special thanks go to Dr. Karie A. Beyers, for her assistance with the observations and contributions to the IDS reduction software needed for the analysis of the data. - i i i - Finally, I would like to express ay gratitude to ay wife, Jo, for her constant lowe and support. I aa p a rtic u ­ larly proud of her own acadeaic success, which she attained despite aany sacrifices aade on ay behalf. - i» - m i March 16, 1957. Born - Rock Hill, South Carolina 1979 ...................................... B. S., Georgia State University, Atlanta, Georgia 1979 - 1982 . Teaching Associate, Department of Astronomy, The Ohio State University Columbus, Ohio 1982 - 1983 . Research Assistant, Department of Astronomy, The Ohio Sta te Uni ve rs i t y Columbus, Ohio 1983, Lovell Observatory Summer Fellov, Lovell Observatory, Flagstaff, A rizcna 1983 - 1989 . Perkins Research Assistant, Department of Astronomy, The Ohio State University, Columbus, Ohio 19 89 - 1985 . Teaching Associate, Department of Astronomy, The Ohio State University Columbus, Ohio PUBLICATIONS "Redshifts of 16 Harkarian Galaxies", D. H. Crenshav, B. H. Peterson, C. B. Foltz, and P. L. Byard, pub, Astron. Soc. Pacific, 94, 16-18, (1982). "The Variability of the Spectrum of Akn 120", B. If. Peterson, C. B. Foltz, H. S. Hiller, R. M. Vagner, D. H- Crenshav, K. A. Meyers, and P. L. Byard, Astron, J.. 88, 926-933 (1983). "Variability of the Emission-Line Spectra and Optical Continua of Seyfert 1 Galaxies. II.", B. H. Peterson, C. B. Foltz, D. M. Crenshav, K. A. Meyers, and P. L. Byard, Astronhvs. J .. 279, 529-540 (1984). "the Effects of Stellar Absorption Features on the Broad- Line Profiles of Seyfert 1 Galaxies", D. *1* Crenshav and B. B. Peterson, Astrophvs. J.. 291, 677 (1985). "Variability of the Eaission-Line Spectra and Optical Continua of Seyfert 1 Galaxies. III. Results for a Hoaogeneous Saaple", B. H. Peterson, D. W. Crenshav, and K. A. Beyers, As+roohys J. 298, in press (1985). ABSIBACTS "The Effects of Stellar Absorption Features on the Broad- Line Profiles of Seyfert 1 Galaxies", D. H. Crenshav, -BnHx-ix-ix-S*, 16, 659 (1986). "The Broad Emission Line P ro files of Seyfert 1 Galaxies", D. D. Crenshav, Bull. A. A. S.. 16, 98B (1986). FIELDS OF STUDY Hajor Field: Astronosy Studies in Seyfert 1 Galaxies and QSOs. Professors Bradley B • Peterson and Eugene R. Capriotti Studies in Eaission-Line Galaxies. Professor Bradley N. Peterson Studies in Early- and Late-Type Stars. Professors Arne E. Slettebak and Phillip C. Keenan - v i - TIBLE OF COITEVTS Page Dedication . ...................................... i i Acknowledge neats ............................................................................i i i V i t a ........................................................................................................................... v List of Figores .............. ......................... ix List of Tables .............. ......................... x i Chapter I. introduction ........... .................... ..1 XI. Observations ................. 10 2.1 Instrumentation ............ 10 2.2 Observatioual Parameters ....... 14 2.3 Data Seduction ............ 17 III. Contanination of the Profiles by S t e l la r Absorption Features ....................... 20 3.1 Introduction . ............ 20 3.2 Synthetic Profiles ..... ...................... 21 3.3 Stellar Fractions ..... .................... • 30 3.4 Removal of the Stellar Contanination • 36 3.5 Discussion 42 - v i i - IT. Contaainatioa of the Profiles by Baission F ea tu res ................ 44 4. I introduction . ........................ 44 4.2 continuua Banges . .......... 47 4.3 Heaoval of the Narrow Lines ...........................48 4.4 Reaoval of the Shelf of Baission froa H 6 ....................................................................................53 4.5 Discussion .............. 62 T. The Decontaeiaated Profiles and Profile Katios 64 5.1 Resolution Corrections ..................................... 64 5.2 Analysis of the Profiles ....... 65 5.3 Analysis of the Profile Ratios .... 71 TI. Interpretation of the Profile Ratios ..................... 78 6.1 Relation to Profile Hidths ...... 73 6.2 Relation to Luainosity ........ S3 6.3 Suaaary ................ 30 hPPSIOIXBS A. Broad-Line Profiles .............. 94 B. P r o f ile B a tio s ........... ..................... 107 Bibliography ............................ 115 - w iii - LIST OP FI60KSS Figare Page 1. fiesolution as a function of channel p o sitio n . .......... .......................... 13 2. Synthetic profiles .............. 25 3. Measured properties of the synthetic p ro file s ................... 27 4. Asyanetry of the synthetic H6 profiles .... 23 5. Portions of the spectra of M32 and three Seyfert 1 galaxies ........ ........................... 31 6. IDS scan of HGC 3516: observed (upper) and corrected ................... 38 7. IDS scan of NGC 4593: observed (upper) and corrected ................... 39 8. IDS scan of Mrk 590: observed (upper) and corrected . ......................... 40 9. IBS scan of Mrk 335 (observed) ...................................41 10. Mrk 509 deolend assuning shelf is entirely F e l l ..............................................................................................................55 11. Mrk 110 deblend assuaing shelf is entirely F e l l ..............................................................................................................56 12. Mrk 509 deblend assuaing shelf is Fe II and broad [0 III ] ..........................................................................................57 13. Mrk 110 deblend assuaing shelf is Fe II and broad £0 I II ] ........................................................ 58 14. H8/Ha p ro file r a t i c for NGC 3516 ....... 73 15. H6/Ha p ro file r a tio for Mrk 509 ........ 74 - ix - 16.
Recommended publications
  • June 2013 BRAS Newsletter
    www.brastro.org June 2013 What's in this issue: PRESIDENT'S MESSAGE .............................................................................................................................. 2 NOTES FROM THE VICE PRESIDENT ........................................................................................................... 3 MESSAGE FROM THE HRPO ...................................................................................................................... 4 OBSERVING NOTES ..................................................................................................................................... 6 MAY ASTRONOMICAL EVENTS .................................................................................................................... 9 PRESIDENT'S MESSAGE Greetings Everyone, Summer is here and with it the humidity and bugs, but I hope that won't stop you from getting out to see some of the great summer time objects in the sky. Also, Saturn is looking quite striking as the rings are now tilted at a nice angle allowing us to see the Casini Division and shadows on and from the planet. Don't miss it! I've been asked by BREC to make sure our club members are all aware of the Park Rules listed on BREC's website. Many of the rules are actually ordinances enacted by the city of Baton Rouge (e.g., No smoking permitted in public areas, No alcohol brought onto or sold on BREC property, No Gambling, No Firearms or Weapons, etc.) Please make sure you observe all of the Park Rules while at the HRPO and provide good examples for the general public. (Many of which are from outside East Baton Rouge Parish and are likely unaware of some of the policies.) For a full list of BREC's Park Rules, you may visit their Park Rules section of their website at http://brec.org/index.cfm/page/555/n/75 I'm sorry I had to miss the outing to LIGO, but it will be good to see some folks again at our meeting on Monday, June 10th.
    [Show full text]
  • Profile Variability of the Hα and Hβ Broad Emission Lines in NGC 5548
    Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Profile variability of the Hα and Hβ broad emission lines in NGC 5548 A.I. Shapovalova1,5, V.T. Doroshenko2,7, N.G. Bochkarev2, A.N. Burenkov1,5, L. Carrasco3, V.H. Chavushyan3, S. Collin4, J.R. Vald´es3, N. Borisov1, A.-M. Dumont4, V.V. Vlasuyk1, I. Chillingarian2, I.S. Fioktistova1, and O.M. Martinez6 1 Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia, 369167, Russia 2 Sternberg Astronomical Institute, University of Moscow, Universitetskij Prospect 13, Moscow 119899, Russia 3 Instituto Nacional de Astrof´isica, Optica y Electr´onica, INAOE, Apartado Postal 51 y 216, 7200, Puebla, Pue., M´exico 4 LUTH, Observatoire de Paris, Section de Meudon, Place Janssen, 92195, Meudon France 5 Isaac Newton Institute of Chile, SAO Branch, Russia 6 Benem´erita Universidad Aut´onoma de Puebla, Facultad de Ciencias F´ısico-Matem´aticas, Apdo. Postal 1152, C.P. 72000, Puebla, Pue. M´exico 7 Isaac Newton Institute of Chile, Crimean Branch, Ukraine Received: 10 November 2003 / Accepted: 26 April 2004 Abstract. Between 1996 and 2002, we have carried out a spectral monitoring program for the Seyfert galaxy NGC 5548 with the 6 m and 1 m telescopes of SAO (Russia) and with the 2.1 m telescope of Guillermo Haro Observatory (GHO) at Cananea, M´exico. High quality spectra with S/N> 50 in the continuum near Hα and Hβ were obtained, covering the spectral range ∼(4000 – 7500) A˚ with a (4.5 to 15) A-resolution.˚ We found that both the flux in the lines and the continuum gradually decreased, reaching minimum values during May-June 2002.
    [Show full text]
  • The Soft X-Ray Variability and Spectrum of 1H0419-577From A
    The Soft X-ray Variability and Spectrum of 1H0419-577from a long EUVE Observation H. L. Marshall 1 Eureka Scientific, Inc., 2452 Delmer St, Suite 100, Oakland, CA, 94602 J. P. Halpern Columbia University K. Leighly Columbia University Received ; accepted 1Mailing address: 5 Whipple Rd., Lexington, MA 02173. 2 ABSTRACT The active galaxy associatedwith the hard X-ray source1H0419-577was observedwith EUVE for about 25 days to obtain a long, contiguouslight curve and an EUV spectrum. An EUV sourcewas detectedwhich was about asbright asthe AGN and was later identified asan AM Her type system(Halpern et al. 1999). The AGN showedvariations as large as a factor of two over 5-10day time scalesand occasionallyvaried by 20-30%in < 0.5day. The spectrum is dominated by a continuum that is poorly fit by a simple powerlaw. There are possibleemissionlines without positive identifications but the lines are likely to be spurious. Subject headings: quasars - Individual: LB1727 -3- 1. Introduction There were less than 10 active galactic nuclei (AGN) detected in the EUVE all-sky survey that were bright enough to be considered detected unambiguously (Marshall, Fruscione, & Carone 1995). Of these, only a few have brbad lines and are bright enough to be detected well using the EUVE spectrometer. There has been significant controversy regarding the extreme ultraviolet (EUV) spectra of the few AGN that have been observed. While there are claims of possible emission lines in some active galaxies (NGC 5548: Kaastra et al. (1995); Mrk 478 and Ton S180 Hwang, C.-Y. &: Bowyer, S. 1997), there is also evidence that the AGN spectra are dominated by continua and that any lines must very weak (Mrk 478: Marshall et al.
    [Show full text]
  • Optical Astronomy Observatories
    NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES FY 1994 PROVISIONAL PROGRAM PLAN June 25, 1993 TABLE OF CONTENTS I. INTRODUCTION AND PLAN OVERVIEW 1 II. SCIENTIFIC PROGRAM 3 A. Cerro Tololo Inter-American Observatory 3 B. Kitt Peak National Observatory 9 C. National Solar Observatory 16 III. US Gemini Project Office 22 IV. MAJOR PROJECTS 23 A. Global Oscillation Network Group (GONG) 23 B. 3.5-m Mirror Project 25 C. WIYN 26 D. SOAR 27 E. Other Telescopes at CTIO 28 V. INSTRUMENTATION 29 A. Cerro Tololo Inter-American Observatory 29 B. Kitt Peak National Observatory 31 1. KPNO O/UV 31 2. KPNO Infrared 34 C. National Solar Observatory 38 1. Sacramento Peak 38 2. Kitt Peak 40 D. Central Computer Services 44 VI. TELESCOPE OPERATIONS AND USER SUPPORT 45 A. Cerro Tololo Inter-American Observatory 45 B. Kitt Peak National Observatory 45 C. National Solar Observatory 46 VII. OPERATIONS AND FACILITIES MAINTENANCE 46 A. Cerro Tololo 47 B. Kitt Peak 48 C. NSO/Sacramento Peak 48 D. NOAO Tucson Headquarters 49 VIII. SCIENTIFIC STAFF AND SUPPORT 50 A. CTIO 50 B. KPNO 50 C. NSO 51 IX. PROGRAM SUPPORT 51 A. NOAO Director's Office 51 B. Central Administrative Services 52 C. Central Computer Services 52 D. Central Facilities Operations 53 E. Engineering and Technical Services 53 F. Publications and Information Resources 53 X. RESEARCH EXPERIENCES FOR UNDERGRADUATES PROGRAM 54 XI. BUDGET 55 A. Cerro Tololo Inter-American Observatory 56 B. Kitt Peak National Observatory 56 C. National Solar Observatory 57 D. Global Oscillation Network Group 58 E.
    [Show full text]
  • 188633377.Pdf
    The Astrophysical Journal Supplement Series, 225:29 (15pp), 2016 August doi:10.3847/0067-0049/225/2/29 © 2016. The American Astronomical Society. All rights reserved. EVIDENCE FOR PERIODICITY IN 43 YEAR-LONG MONITORING OF NGC 5548 E. Bon1,2, S. Zucker3, H. Netzer4, P. Marziani5, N. Bon1,2, P. JovanoviĆ1,2, A. I. Shapovalova6, S. Komossa7, C. M. Gaskell8,L.Č. PopoviĆ1,2, S. Britzen7, V. H. Chavushyan9, A. N. Burenkov6, S. Sergeev10, G. La Mura11, J. R. Valdés9, and M. Stalevski1,12,13 1 Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia 2 Isaac Newton Institute of Chile, Yugoslavia Branch Belgrade, Serbia 3 Department of Geosciences, Tel-Aviv University, Tel-Aviv 6997801, Israel 4 School of Physics and Astronomy and the Wise Observatory, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel 5 INAF, Osservatorio Astronomico di Padova, Padova, Italy 6 Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167, Russia 7 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 8 Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA 9 Instituto Nacional de Astrofsica, Óptica y Electrónica, Apartado Postal 51, CP 72000, Puebla, Pue, Mexico, Mexico 10 Crimean Astrophysical Observatory, P/O Nauchny, Republic of Crimea 298409, Russia 11 Dipartimento di Fisica e Astronomia “G. Galilei,” Università degli Studi di Padova, Vicolo dell’Osservatorio 3, I-35122—Padova, Italy 12 Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Casilla 36-D Santiago, Chile 13 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, Gent, B-9000, Belgium Received 2016 April 10; revised 2016 June 11; accepted 2016 June 14; published 2016 August 23 ABSTRACT We present an analysis of 43 years (1972 to 2015) of spectroscopic observations of the Seyfert 1 galaxy NGC 5548.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • 1987Apj. . .321. .233E the Astrophysical Journal, 321
    .233E The Astrophysical Journal, 321:233-250,19S7 October 1 © 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. .321. 1987ApJ. BROAD-BAND PROPERTIES OF THE CfA SEYFERT GALAXIES. II. INFRARED TO MILLIMETER PROPERTIES R. A. Edelson Owens Valley Radio Observatory, California Institute of Technology M. A. Malkan1,2 Department of Astronomy, University of California, Los Angeles AND G. H. Rieke Steward Observatory, University of Arizona Received 1986 November 14; accepted 1987 March 18 ABSTRACT Observations between 1.2 jum and 1.3 mm are presented for an unbiased, spectroscopically selected sample of 48 Seyfert galaxies. Most have complete infrared detections, but none were detected at 1.3 mm. The infrared spectra of optically selected Seyfert 2 galaxies are steep (a2.2_25/an= -1.56), in sharp contrast to optically selected quasars, which have flat infrared spectra (â2 2_25Aim = —1.09). This suggests that the infrared emission is predominantly thermal in Seyfert 2 galaxies and nonthermal in quasars. For optically selected Seyfert 1 galaxies, a2.2_25/im= -1.15, and -70% have flat spectra similar to quasars and unlike Seyfert 2 galaxies. Thus, the near- and mid-infrared emission from most Seyfert 1 galaxies appears to be dominated by non- thermal radiation, although thermal dust radiation is clearly important for others. Half of the objects detected at three or more IRAS wavelengths have far-infrared spectra which turn over shortward of 100 /un. For the relatively dust-free Seyfert 1 galaxies, this suggests that the infrared emission is dominated by unreprocessed radiation from a synchrotron self-absorbed source of the order of a light-day in size, about the same size as the hypothesized accretion disks.
    [Show full text]
  • Vitae-Balonek-Full-2019 May 13
    Thomas J. Balonek Professor of Physics and Astronomy Department of Physics and Astronomy Colgate University 13 Oak Drive, Hamilton, NY 13346 (315) 228-7767 [email protected] EDUCATIONAL BACKGROUND Ph.D. (Astronomy) University of Massachusetts, Amherst, MA, 1982 M.S. (Astronomy) University of Massachusetts, Amherst, MA, 1977 B.A. (Physics) Cornell University, Ithaca, NY, 1974 PROFESSIONAL BACKGROUND Professor of Physics and Astronomy, Colgate University, Hamilton, NY (2002-present) Chair, Department of Physics and Astronomy, Colgate University, Hamilton, NY (2008-2011) Visiting Research Scientist, National Astronomy and Ionosphere Center, Cornell University, Ithaca, NY (2006-2007) Associate Professor of Physics and Astronomy, Colgate University, Hamilton, NY (1991-2002) Chair, Department of Physics and Astronomy, Colgate University, Hamilton, NY (1995-1998) Chair, New York Astronomical Corporation (1995-1998) Visiting Research Scientist, National Radio Astronomy Observatory, Tucson, AZ (1992-1993) Assistant Professor of Physics and Astronomy, Colgate University, Hamilton, NY (1985-1991) Visiting Assistant Professor of Astronomy, Williams College, Williamstown, MA (1983-1985) NASA-ASEE (National Aeronautics and Space Administration and American Society for Engineering Education) Summer Faculty Fellow, NASA-Ames Research Center, Moffett Field, CA (1983, 1984) Post-Doctoral Research Associate and Lecturer I, University of New Mexico, Albuquerque, NM (1982-1983) Planetarium Lecturer, Basset Planetarium, Amherst College, Amherst, MA (1979-1981)
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Referierte Publikationen
    14 Publikationslisten Referierte Publikationen Aasi, J., B.P. Abbott, R. Abbott, ..., A. v. Kienlin: Search Allevato, V., A. Finoguenov, F. Civano, N. Cappelluti, F. - Shankar, T. Miyaji, G. Hasinger, R. Gilli, G. Zamorani, G. tected by the Interplanetary Network. Phys. Rev. Lett. 113, Lanzuisi, M. Salvato, M. Elvis, A. Comastri and J. Silver- 011102 (2014). man: Clustering of Moderate Luminosity X-Ray-selected Achitouv, I., C. Wagner, J. Weller and Y. Rasera: Compu- Type 1 and Type 2 AGNS at Z ~ 3. Ap. J. 796, 4 (2014). tation of the halo mass function using physical collapse Amorín, R., V. Sommariva, M. Castellano, A. Grazian, parameters: application to non-standard cosmologies. J. L.A.M. Tasca, A. Fontana, L. Pentericci, P. Cassata, B. of Cosmology and Astroparticle Phys. 10, 77 (2014). Garilli, V. Le Brun, O. Le Fèvre, D. Maccagni, R. Thomas, Ackermann, M., A. Albert, W.B. Atwood, ..., A.W. Strong, E. Vanzella, G. Zamorani, E. Zucca, S. Bardelli, P. Capak, et al.: The Spectrum and Morphology of the Fermi Bub- L.P. Cassará, A. Cimatti, J.G. Cuby, O. Cucciati, S. de la bles. Ap. J. 793, 64 (2014). Torre, A. Durkalec, M. Giavalisco, N.P. Hathi, O. Ilbert, B.C. Lemaux, C. Moreau, S. Paltani, B. Ribeiro, M. Sal- Ackermann, M., M. Ajello, A. Albert, ..., A.W. Strong, et al.: vato, D. Schaerer, M. Scodeggio, M. Talia, Y. Taniguchi, Inferred Cosmic-Ray Spectrum from Fermi Large Area Te- L. Tresse, D. Vergani, P.W. Wang, S. Charlot, T. Contini, S. Fotopoulou, C. López-Sanjuan, Y. Mellier and N.
    [Show full text]
  • Evaluation of the National Guideline Clearinghouse (NGC)
    Final Report Evaluation of AHRQ’s National Guideline Clearinghouse™ (NGC) Agency for Healthcare Research and Quality August 31, 2011 AFYA, Inc. 8101 Sandy Spring Road, Third Floor Laurel, MD 20707 Final Contract Report: NGC Evaluation Final Submitted: 9/29/2011 Final Contract Report Evaluation of AHRQ’s National Guideline Clearinghouse™ (NGC) Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Prepared by: AFYA, Inc. Analytical and Technical Support Division 8101 Sandy Spring Road, Third Floor Laurel, MD 20707 Authors: Michelle Bieber-Tregear AFYA, Inc. Jenice James AFYA, Inc. Debra Dekker AFYA, Inc. Craig Dearfield AFYA, Inc. Jaclyn Marshall Lewin Group Jacob Epstein Lewin Group Carol Simon Lewin Group Financial Declarations None of the authors has any affiliations or financial involvement that conflict with the material presented in this report. Policy Statement This report was prepared by AFYA, Inc. and The Lewin Group under Contract No. 4203; Order No. 3, entitled “Evaluation of the National Guideline Clearinghouse™ (NGC),” with the Department of Health and Human Services’ Agency for Healthcare Research and Quality. Table of Contents List of Figures............................................................................................................................ 5 List of Tables ............................................................................................................................. 6 AHRQ Contract No. 4203;
    [Show full text]
  • Radio Structures of Seyfert Galaxies. VIII. a Distance and Magnitude
    Radio Structures of Seyfert Galaxies. VIII. A Distance and Magnitude Limited Sample of Early-Type Galaxies Neil M. Nagar, Andrew S. Wilson Department of Astronomy, University of Maryland, College Park, MD 20742; [email protected], [email protected] John S. Mulchaey Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101; [email protected] Jack F. Gallimore Max-Plank Institut f¨ur extraterrestriche Physik, Postfach 1603, D-85740 Garching bei M¨unchen, Germany; [email protected] To appear in ApJS, Vol. 120 #2, February 1999 ABSTRACT The VLA has been used at 3.6 and 20 cm to image a sample of about 50 early-type Seyfert galaxies with recessional velocities less than 7,000 km s−1 and total visual magnitude less than 14.5. Emission-line ([OIII] and Hα+[NII]) and continuum (green and red) imaging of this sample has been presented in a previous paper. In this paper, we present the radio results, discuss statistical relationships between the radio and other properties and investigate these relationships within the context of unified models of Seyferts. The mean radio arXiv:astro-ph/9901236v1 18 Jan 1999 luminosities of early-type Seyfert 1’s (i.e. Seyfert 1.0’s, 1.2’s and 1.5’s) and Seyfert 2.0’s are found to be similar (consistent with the unified scheme) and the radio luminosity is independent of morphological type within this sample. The fraction of resolved radio sources is larger in the Seyfert 2.0’s (93%) than in the Seyfert 1’s (64%).
    [Show full text]