1987Apj. . .321. .233E the Astrophysical Journal, 321

Total Page:16

File Type:pdf, Size:1020Kb

1987Apj. . .321. .233E the Astrophysical Journal, 321 .233E The Astrophysical Journal, 321:233-250,19S7 October 1 © 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. .321. 1987ApJ. BROAD-BAND PROPERTIES OF THE CfA SEYFERT GALAXIES. II. INFRARED TO MILLIMETER PROPERTIES R. A. Edelson Owens Valley Radio Observatory, California Institute of Technology M. A. Malkan1,2 Department of Astronomy, University of California, Los Angeles AND G. H. Rieke Steward Observatory, University of Arizona Received 1986 November 14; accepted 1987 March 18 ABSTRACT Observations between 1.2 jum and 1.3 mm are presented for an unbiased, spectroscopically selected sample of 48 Seyfert galaxies. Most have complete infrared detections, but none were detected at 1.3 mm. The infrared spectra of optically selected Seyfert 2 galaxies are steep (a2.2_25/an= -1.56), in sharp contrast to optically selected quasars, which have flat infrared spectra (â2 2_25Aim = —1.09). This suggests that the infrared emission is predominantly thermal in Seyfert 2 galaxies and nonthermal in quasars. For optically selected Seyfert 1 galaxies, a2.2_25/im= -1.15, and -70% have flat spectra similar to quasars and unlike Seyfert 2 galaxies. Thus, the near- and mid-infrared emission from most Seyfert 1 galaxies appears to be dominated by non- thermal radiation, although thermal dust radiation is clearly important for others. Half of the objects detected at three or more IRAS wavelengths have far-infrared spectra which turn over shortward of 100 /un. For the relatively dust-free Seyfert 1 galaxies, this suggests that the infrared emission is dominated by unreprocessed radiation from a synchrotron self-absorbed source of the order of a light-day in size, about the same size as the hypothesized accretion disks. For the Seyfert 2 galaxies and other dusty objects, it implies minimum dust temperatures of 35-65 K, significantly warmer than dust in normal galaxies. In many of the objects with undetected turnovers, emission from cool dust in the galactic disk appears to mask the turnover. This strong “cool excess,” which dominates the 60-100 /mi emission from these objects, is correlated with the 11 /mi source size, suggesting that Seyfert nuclei tend to reside in galaxies undergoing strong star formation. Subject headings: galaxies: Seyfert — infrared: spectra — quasars — radiation mechanisms radio sources: galaxies — spectrophotometry I. INTRODUCTION thermally reradiate a significant portion of the optical and ultraviolet continuum (Rieke and Lebofsky 1979). The thermal Although Seyfert galaxies have been studied extensively at emission produces a very steep spectrum which curves down- near-infrared wavelengths (A < 10 /mi; cf. Rieke 1978, here- ward at shorter wavelengths, owing to the Wien cutoff* below after R78), the Infrared Astronomical Satellite (IRAS) all-sky the peak wavelength of emission from the hottest surviving survey at 12, 25, 60, and 100 /mi only recently provided the dust grains. Thermal far-infrared emission is also frequently first far-infrared detections of a significant number of active associated with dust reddening of the nuclear emission lines galactic nuclei (AGNs). Edelson and Malkan (1986, hereafter and nonstellar continuum. EM found correlations between EM) used IRAS, IUE, and ground-based data to study spec- steepness of the infrared spectra and internal reddening and tral energy distributions of a heterogeneous sample of other dust indicators. 29 AGNs between 0.1 and 100 /mi. Miley, Neugebauer, and However, some active galactic nuclei produce their infrared Soifer (1985) reported that far-infrared colors of 120 active continua by nonthermal processes. In the case of violently vari- galaxies. Neugebauer et al. (1986) reported IRAS observations able quasars and BL Lacertae objects, the rapid variability in of 179 quasars (of which 74 were detected in at least one IRAS the infrared and high polarization conclusively demonstrate wavelength), and Edelson (1986, hereafter E86) analyzed IRAS this (Angel and Stockman 1980). They also tend to have flat observations of the brightest PG/BQS quasars. Landau et al. infrared spectra (Impey and Neugebauer 1987). In quasars and (1986), Impey and Neugebauer (1987), and others have studied luminous, unreddened Seyfert 1 nuclei, the case for nonthermal the broad-band properties of blazars. infrared (and optical) emission is less direct, since the contin- Virtually every known Seyfert galaxy emits a large fraction uum is neither highly polarized nor violently variable. The of its total energy at infrared wavelengths. In some cases, this is strongest indication is the relatively flat shape of the far- the result of the presence of dust. The dust can absorb and infrared to optical continuum, which is well described by a a 1 power law with a> —1.3 (Fv oc v , EM). Optically selected Presidential Young Investigator. quasars have flat infrared spectra (â _ ^ = —1.09 E86), 2 Visiting Astronomer at the Infrared Telescope Facility, which is operated 2i2 25 by the University of Hawaii under contract to the National Aeronautics and which were identified as predominantly nonthermal emission. Space Administration. The correlation found between the 3.5 gm and 2 keV X-ray © American Astronomical Society • Provided by the NASA Astrophysics Data System .233E 234 EDELSON, MALKAN, AND RIEKE Vol. 321 .321. flux of quasars and Seyfert 1 galaxies (but not Seyfert 2 . turnover and the relation between far-infrared and millimeter galaxies) suggests that the same process is responsible for emis- emission are discussed in § IV. The relationship between infra- sion at both wavelengths, implying that the lower frequency red properties and those derived at other wavelengths are emission from these objects is nonthermal in origin (Malkan investigated in § V, and the 60 fim infrared luminosity function 1987ApJ. 1984). of Seyfert galaxies is derived and discussed in § VI. A summary In this paper, the infrared properties of a complete, of the major results of this paper is given in § VII. Positions of unbiased, spectroscopically selected sample of Seyfert galaxies six Seyfert galaxies which were not included in Paper I are are studied to determine the importance of different emission given in the Appendix. mechanisms. Previous AGN studies have been biased by the 1 -1 Throughout this paper, a value of H0 = 75 km s" Mpc selection techniques used to construct their samples. For is assumed. As the largest redshift in this sample is z = 0.06, no example, selection by ultraviolet excess (such as that used by corrections were made for cosmological effects in the lumi- Markarian 1972 and Schmidt and Green 1983) has been shown nosity distance or for evolution. to bias samples against strong infrared emitters (R78). This problem was avoided by examining the infrared to millimeter II. DATA spectral energy distributions of the CfA Seyfert galaxies—a a) Near-Infrared Data well-defined, unbiased, spectroscopically selected sample—to Near-infrared photometry was obtained with standard deduce the properties of the class as a whole. The CfA sample single-element InSb detectors on the Steward Observatory contains 26 type 1 and 22 type 2 Seyfert galaxies selected by Catalina 61 inch (1.55 m) reflector and the IRTF 3 m telescope. optical spectroscopy (Huchra and Berg 1987). Because of their The usual photometric bands, J (1.2 /un), JT (1.6 /mi), and K optical brightness, these objects are relatively easy to detect (2.2 /mi) were used, with absolute flux calibrations from and study at other wavelengths as well. Unlike objects selected Campins, Rieke, and Lebofsky (1985). New infrared photom- by ultraviolet excess, this sample has no known biases or selec- etry was obtained for 29 of the Seyfert galaxies in the near- tion effects due to dust content. The selection of the sample is infrared (1.1—2.2 /mi). Measurements of 13 bright objects were discussed in detail in Edelson (1987, hereafter Paper I), which also made at L (3.5 /mi) or L (3.6 /mi), and 12 objects were also described their radio properties. (One object, NGC 3227, observed at N (10.6 /mi). These observations were combined was incorrectly classified as a Seyfert 2 galaxy in Paper I). with those available in the literature (R78; Rudy, LeVan, and The near-infrared, IRAS, and millimeter-wave data are dis- Rodriguez Espinosa 1982; Cruz-Gonzales and Huchra 1984; cussed in the next section. The nature of the infrared contin- Devereux, Becklin, and Scoville 1987; Neugebauer et al 1987), uum emission is discussed in § III, and the far-infrared to provide near-infrared data for a total of 44 objects (95%), TABLE 1 CfA Seyfert Galaxy Near-Infrared Data Sl.2fim ^2.2nm $3.5 (im SlQ.6(xm Source (mJy) (mJy) (mJy) (mJy) (mJy) Date Mkn 334 14.3 ± 0.7 20.8 ± 1.0 27.5 ± 1.4 15 Mar 84 0048+29 11.1 ± 1.1 14.5 ± 1.4 15.6 ± 1.5 13 Sep 84 Mkn 993 13.8 ± 0.6 19.0 ± 0.7 16.0 ± 0.8 10 ± 18+4 21 Dec 86 Mkn 573 22.0 ± 2.0 29.5 ± 3.0 26.3 ± 2.4 23 ± 167 ± 15 26 Sep 85 0152+06 6.0 ± 0.4 8.0 ± 0.5 7.4 ± 0.5 16 Sep 84 NGC 1144 12.2 ± 2.4 29.4 ± 3.0 31.5 ± 3.6 158 ± 34 04 Mar 85 Mkn 1243 5.8 ± 0.6 7.4 ± 0.7 7.9 ± 0.8 Mar 86 NGC 3079 31.0 ± 2.2 71.3 ± 4.0 91.9 ± 5.0 73+6 210 ± 20 14 Apr 84 NGC 3362 5.8 ± 0.5 6.8 ± 0.6 5.2 ± 0.5 Mar 86 1058+45 Mkn 744 19.8 ± 2.0 25.9 ± 2.0 27.8 2.4 31+3 15 Apr 84 NGC 3982 9.2 ± 0.9 12.4 1.2 < 32 14 Apr 84 NGC 4235 21.1 ± 2.0 35.4 ± 3.0 29.9 2.4 22 + 2 16 Apr 84 Mkn 766 23.1 ± 2.0 42.6 ± 3.0 50.1 4.0 288 ± 28 Mar 86 NGC 4388 30.8 ± 2.0 48.5 ± 2.5 46.9 2.5 74 ± 04 Mar 85 NGC 5033 44.1 ± 3.5 61.6 ± 5.0 47.8 3.0 43 ± 3 < 144 04 Mar 85 Mkn 789
Recommended publications
  • June 2013 BRAS Newsletter
    www.brastro.org June 2013 What's in this issue: PRESIDENT'S MESSAGE .............................................................................................................................. 2 NOTES FROM THE VICE PRESIDENT ........................................................................................................... 3 MESSAGE FROM THE HRPO ...................................................................................................................... 4 OBSERVING NOTES ..................................................................................................................................... 6 MAY ASTRONOMICAL EVENTS .................................................................................................................... 9 PRESIDENT'S MESSAGE Greetings Everyone, Summer is here and with it the humidity and bugs, but I hope that won't stop you from getting out to see some of the great summer time objects in the sky. Also, Saturn is looking quite striking as the rings are now tilted at a nice angle allowing us to see the Casini Division and shadows on and from the planet. Don't miss it! I've been asked by BREC to make sure our club members are all aware of the Park Rules listed on BREC's website. Many of the rules are actually ordinances enacted by the city of Baton Rouge (e.g., No smoking permitted in public areas, No alcohol brought onto or sold on BREC property, No Gambling, No Firearms or Weapons, etc.) Please make sure you observe all of the Park Rules while at the HRPO and provide good examples for the general public. (Many of which are from outside East Baton Rouge Parish and are likely unaware of some of the policies.) For a full list of BREC's Park Rules, you may visit their Park Rules section of their website at http://brec.org/index.cfm/page/555/n/75 I'm sorry I had to miss the outing to LIGO, but it will be good to see some folks again at our meeting on Monday, June 10th.
    [Show full text]
  • Profile Variability of the Hα and Hβ Broad Emission Lines in NGC 5548
    Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Profile variability of the Hα and Hβ broad emission lines in NGC 5548 A.I. Shapovalova1,5, V.T. Doroshenko2,7, N.G. Bochkarev2, A.N. Burenkov1,5, L. Carrasco3, V.H. Chavushyan3, S. Collin4, J.R. Vald´es3, N. Borisov1, A.-M. Dumont4, V.V. Vlasuyk1, I. Chillingarian2, I.S. Fioktistova1, and O.M. Martinez6 1 Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia, 369167, Russia 2 Sternberg Astronomical Institute, University of Moscow, Universitetskij Prospect 13, Moscow 119899, Russia 3 Instituto Nacional de Astrof´isica, Optica y Electr´onica, INAOE, Apartado Postal 51 y 216, 7200, Puebla, Pue., M´exico 4 LUTH, Observatoire de Paris, Section de Meudon, Place Janssen, 92195, Meudon France 5 Isaac Newton Institute of Chile, SAO Branch, Russia 6 Benem´erita Universidad Aut´onoma de Puebla, Facultad de Ciencias F´ısico-Matem´aticas, Apdo. Postal 1152, C.P. 72000, Puebla, Pue. M´exico 7 Isaac Newton Institute of Chile, Crimean Branch, Ukraine Received: 10 November 2003 / Accepted: 26 April 2004 Abstract. Between 1996 and 2002, we have carried out a spectral monitoring program for the Seyfert galaxy NGC 5548 with the 6 m and 1 m telescopes of SAO (Russia) and with the 2.1 m telescope of Guillermo Haro Observatory (GHO) at Cananea, M´exico. High quality spectra with S/N> 50 in the continuum near Hα and Hβ were obtained, covering the spectral range ∼(4000 – 7500) A˚ with a (4.5 to 15) A-resolution.˚ We found that both the flux in the lines and the continuum gradually decreased, reaching minimum values during May-June 2002.
    [Show full text]
  • The Soft X-Ray Variability and Spectrum of 1H0419-577From A
    The Soft X-ray Variability and Spectrum of 1H0419-577from a long EUVE Observation H. L. Marshall 1 Eureka Scientific, Inc., 2452 Delmer St, Suite 100, Oakland, CA, 94602 J. P. Halpern Columbia University K. Leighly Columbia University Received ; accepted 1Mailing address: 5 Whipple Rd., Lexington, MA 02173. 2 ABSTRACT The active galaxy associatedwith the hard X-ray source1H0419-577was observedwith EUVE for about 25 days to obtain a long, contiguouslight curve and an EUV spectrum. An EUV sourcewas detectedwhich was about asbright asthe AGN and was later identified asan AM Her type system(Halpern et al. 1999). The AGN showedvariations as large as a factor of two over 5-10day time scalesand occasionallyvaried by 20-30%in < 0.5day. The spectrum is dominated by a continuum that is poorly fit by a simple powerlaw. There are possibleemissionlines without positive identifications but the lines are likely to be spurious. Subject headings: quasars - Individual: LB1727 -3- 1. Introduction There were less than 10 active galactic nuclei (AGN) detected in the EUVE all-sky survey that were bright enough to be considered detected unambiguously (Marshall, Fruscione, & Carone 1995). Of these, only a few have brbad lines and are bright enough to be detected well using the EUVE spectrometer. There has been significant controversy regarding the extreme ultraviolet (EUV) spectra of the few AGN that have been observed. While there are claims of possible emission lines in some active galaxies (NGC 5548: Kaastra et al. (1995); Mrk 478 and Ton S180 Hwang, C.-Y. &: Bowyer, S. 1997), there is also evidence that the AGN spectra are dominated by continua and that any lines must very weak (Mrk 478: Marshall et al.
    [Show full text]
  • Optical Astronomy Observatories
    NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES FY 1994 PROVISIONAL PROGRAM PLAN June 25, 1993 TABLE OF CONTENTS I. INTRODUCTION AND PLAN OVERVIEW 1 II. SCIENTIFIC PROGRAM 3 A. Cerro Tololo Inter-American Observatory 3 B. Kitt Peak National Observatory 9 C. National Solar Observatory 16 III. US Gemini Project Office 22 IV. MAJOR PROJECTS 23 A. Global Oscillation Network Group (GONG) 23 B. 3.5-m Mirror Project 25 C. WIYN 26 D. SOAR 27 E. Other Telescopes at CTIO 28 V. INSTRUMENTATION 29 A. Cerro Tololo Inter-American Observatory 29 B. Kitt Peak National Observatory 31 1. KPNO O/UV 31 2. KPNO Infrared 34 C. National Solar Observatory 38 1. Sacramento Peak 38 2. Kitt Peak 40 D. Central Computer Services 44 VI. TELESCOPE OPERATIONS AND USER SUPPORT 45 A. Cerro Tololo Inter-American Observatory 45 B. Kitt Peak National Observatory 45 C. National Solar Observatory 46 VII. OPERATIONS AND FACILITIES MAINTENANCE 46 A. Cerro Tololo 47 B. Kitt Peak 48 C. NSO/Sacramento Peak 48 D. NOAO Tucson Headquarters 49 VIII. SCIENTIFIC STAFF AND SUPPORT 50 A. CTIO 50 B. KPNO 50 C. NSO 51 IX. PROGRAM SUPPORT 51 A. NOAO Director's Office 51 B. Central Administrative Services 52 C. Central Computer Services 52 D. Central Facilities Operations 53 E. Engineering and Technical Services 53 F. Publications and Information Resources 53 X. RESEARCH EXPERIENCES FOR UNDERGRADUATES PROGRAM 54 XI. BUDGET 55 A. Cerro Tololo Inter-American Observatory 56 B. Kitt Peak National Observatory 56 C. National Solar Observatory 57 D. Global Oscillation Network Group 58 E.
    [Show full text]
  • 188633377.Pdf
    The Astrophysical Journal Supplement Series, 225:29 (15pp), 2016 August doi:10.3847/0067-0049/225/2/29 © 2016. The American Astronomical Society. All rights reserved. EVIDENCE FOR PERIODICITY IN 43 YEAR-LONG MONITORING OF NGC 5548 E. Bon1,2, S. Zucker3, H. Netzer4, P. Marziani5, N. Bon1,2, P. JovanoviĆ1,2, A. I. Shapovalova6, S. Komossa7, C. M. Gaskell8,L.Č. PopoviĆ1,2, S. Britzen7, V. H. Chavushyan9, A. N. Burenkov6, S. Sergeev10, G. La Mura11, J. R. Valdés9, and M. Stalevski1,12,13 1 Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia 2 Isaac Newton Institute of Chile, Yugoslavia Branch Belgrade, Serbia 3 Department of Geosciences, Tel-Aviv University, Tel-Aviv 6997801, Israel 4 School of Physics and Astronomy and the Wise Observatory, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel 5 INAF, Osservatorio Astronomico di Padova, Padova, Italy 6 Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167, Russia 7 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 8 Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA 9 Instituto Nacional de Astrofsica, Óptica y Electrónica, Apartado Postal 51, CP 72000, Puebla, Pue, Mexico, Mexico 10 Crimean Astrophysical Observatory, P/O Nauchny, Republic of Crimea 298409, Russia 11 Dipartimento di Fisica e Astronomia “G. Galilei,” Università degli Studi di Padova, Vicolo dell’Osservatorio 3, I-35122—Padova, Italy 12 Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Casilla 36-D Santiago, Chile 13 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, Gent, B-9000, Belgium Received 2016 April 10; revised 2016 June 11; accepted 2016 June 14; published 2016 August 23 ABSTRACT We present an analysis of 43 years (1972 to 2015) of spectroscopic observations of the Seyfert 1 galaxy NGC 5548.
    [Show full text]
  • Vitae-Balonek-Full-2019 May 13
    Thomas J. Balonek Professor of Physics and Astronomy Department of Physics and Astronomy Colgate University 13 Oak Drive, Hamilton, NY 13346 (315) 228-7767 [email protected] EDUCATIONAL BACKGROUND Ph.D. (Astronomy) University of Massachusetts, Amherst, MA, 1982 M.S. (Astronomy) University of Massachusetts, Amherst, MA, 1977 B.A. (Physics) Cornell University, Ithaca, NY, 1974 PROFESSIONAL BACKGROUND Professor of Physics and Astronomy, Colgate University, Hamilton, NY (2002-present) Chair, Department of Physics and Astronomy, Colgate University, Hamilton, NY (2008-2011) Visiting Research Scientist, National Astronomy and Ionosphere Center, Cornell University, Ithaca, NY (2006-2007) Associate Professor of Physics and Astronomy, Colgate University, Hamilton, NY (1991-2002) Chair, Department of Physics and Astronomy, Colgate University, Hamilton, NY (1995-1998) Chair, New York Astronomical Corporation (1995-1998) Visiting Research Scientist, National Radio Astronomy Observatory, Tucson, AZ (1992-1993) Assistant Professor of Physics and Astronomy, Colgate University, Hamilton, NY (1985-1991) Visiting Assistant Professor of Astronomy, Williams College, Williamstown, MA (1983-1985) NASA-ASEE (National Aeronautics and Space Administration and American Society for Engineering Education) Summer Faculty Fellow, NASA-Ames Research Center, Moffett Field, CA (1983, 1984) Post-Doctoral Research Associate and Lecturer I, University of New Mexico, Albuquerque, NM (1982-1983) Planetarium Lecturer, Basset Planetarium, Amherst College, Amherst, MA (1979-1981)
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Referierte Publikationen
    14 Publikationslisten Referierte Publikationen Aasi, J., B.P. Abbott, R. Abbott, ..., A. v. Kienlin: Search Allevato, V., A. Finoguenov, F. Civano, N. Cappelluti, F. - Shankar, T. Miyaji, G. Hasinger, R. Gilli, G. Zamorani, G. tected by the Interplanetary Network. Phys. Rev. Lett. 113, Lanzuisi, M. Salvato, M. Elvis, A. Comastri and J. Silver- 011102 (2014). man: Clustering of Moderate Luminosity X-Ray-selected Achitouv, I., C. Wagner, J. Weller and Y. Rasera: Compu- Type 1 and Type 2 AGNS at Z ~ 3. Ap. J. 796, 4 (2014). tation of the halo mass function using physical collapse Amorín, R., V. Sommariva, M. Castellano, A. Grazian, parameters: application to non-standard cosmologies. J. L.A.M. Tasca, A. Fontana, L. Pentericci, P. Cassata, B. of Cosmology and Astroparticle Phys. 10, 77 (2014). Garilli, V. Le Brun, O. Le Fèvre, D. Maccagni, R. Thomas, Ackermann, M., A. Albert, W.B. Atwood, ..., A.W. Strong, E. Vanzella, G. Zamorani, E. Zucca, S. Bardelli, P. Capak, et al.: The Spectrum and Morphology of the Fermi Bub- L.P. Cassará, A. Cimatti, J.G. Cuby, O. Cucciati, S. de la bles. Ap. J. 793, 64 (2014). Torre, A. Durkalec, M. Giavalisco, N.P. Hathi, O. Ilbert, B.C. Lemaux, C. Moreau, S. Paltani, B. Ribeiro, M. Sal- Ackermann, M., M. Ajello, A. Albert, ..., A.W. Strong, et al.: vato, D. Schaerer, M. Scodeggio, M. Talia, Y. Taniguchi, Inferred Cosmic-Ray Spectrum from Fermi Large Area Te- L. Tresse, D. Vergani, P.W. Wang, S. Charlot, T. Contini, S. Fotopoulou, C. López-Sanjuan, Y. Mellier and N.
    [Show full text]
  • Radio Structures of Seyfert Galaxies. VIII. a Distance and Magnitude
    Radio Structures of Seyfert Galaxies. VIII. A Distance and Magnitude Limited Sample of Early-Type Galaxies Neil M. Nagar, Andrew S. Wilson Department of Astronomy, University of Maryland, College Park, MD 20742; [email protected], [email protected] John S. Mulchaey Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101; [email protected] Jack F. Gallimore Max-Plank Institut f¨ur extraterrestriche Physik, Postfach 1603, D-85740 Garching bei M¨unchen, Germany; [email protected] To appear in ApJS, Vol. 120 #2, February 1999 ABSTRACT The VLA has been used at 3.6 and 20 cm to image a sample of about 50 early-type Seyfert galaxies with recessional velocities less than 7,000 km s−1 and total visual magnitude less than 14.5. Emission-line ([OIII] and Hα+[NII]) and continuum (green and red) imaging of this sample has been presented in a previous paper. In this paper, we present the radio results, discuss statistical relationships between the radio and other properties and investigate these relationships within the context of unified models of Seyferts. The mean radio arXiv:astro-ph/9901236v1 18 Jan 1999 luminosities of early-type Seyfert 1’s (i.e. Seyfert 1.0’s, 1.2’s and 1.5’s) and Seyfert 2.0’s are found to be similar (consistent with the unified scheme) and the radio luminosity is independent of morphological type within this sample. The fraction of resolved radio sources is larger in the Seyfert 2.0’s (93%) than in the Seyfert 1’s (64%).
    [Show full text]
  • Broad-Line Region Structure and Kinematics in the Radio Galaxy 3C 120,
    A&A 566, A106 (2014) Astronomy DOI: 10.1051/0004-6361/201423901 & c ESO 2014 Astrophysics Broad-line region structure and kinematics in the radio galaxy 3C 120, W. Kollatschny1, K. Ulbrich1,M.Zetzl1,S.Kaspi2,3, and M. Haas4 1 Institut für Astrophysik, Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany e-mail: [email protected] 2 School of Physics & Astronomy and the Wise Observatory, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel 3 Physics Department, Technion, 32000 Haifa, Israel 4 Astronomisches Institut, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany Received 28 March 2014 / Accepted 29 April 2014 ABSTRACT Context. Broad emission lines originate in the surroundings of supermassive black holes in the centers of active galactic nuclei (AGN). These broad-line emitting regions are spatially unresolved even for the nearest AGN. The origin and geometry of broad-line region (BLR) gas and their connection with geometrically thin or thick accretion disks is of fundamental importance for the understanding of AGN activity. Aims. One method to investigate the extent, structure, and kinematics of the BLR is to study the continuum and line profile variability in AGN. We selected the radio-loud Seyfert 1 galaxy 3C 120 as a target for this study. Methods. We took spectra with a high signal-to-noise ratio of 3C 120 with the 9.2 m Hobby-Eberly Telescope between Sept. 2008 and March 2009. In parallel, we photometrically monitored the continuum flux at the Wise observatory. We analyzed the continuum and line profile variations in detail (1D and 2D reverberation mapping) and modeled the geometry of the line-emitting regions based on the line profiles.
    [Show full text]
  • Arxiv:Astro-Ph/9907379V1 27 Jul 1999
    A subarcsecond resolution near-infrared study of Seyfert and ‘normal’ galaxies: II. Morphology Johan H. Knapen1 Isaac Shlosman2 Reynier F. Peletier3,4 1Department of Physical Sciences, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK, E-mail: [email protected] 2 Department of Physics & Astronomy, University of Kentucky, Lexington, KY 40506-0055, USA, E-mail: [email protected] 3Dept. of Physics, University of Durham, South Road, Durham, DH1 3LE, UK 4School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK, E-mail: [email protected] ABSTRACT We present a detailed study of the bar fraction in the CfA sample of Seyfert galaxies, and in a carefully selected control sample of non-active galaxies, to investigate the rela- tion between the presence of bars and of nuclear activity. To avoid the problems related to bar classification in the RC3, e.g., subjectivity, low resolution and contamination by dust, we have developed an objective bar classification method, which we conservatively apply to our new sub-arcsecond resolution near-infrared imaging data set (Peletier et al. 1999). We are able to use stringent criteria based on radial profiles of ellipticity and major axis position angle to determine the presence of a bar and its axial ratio. Concen- arXiv:astro-ph/9907379v1 27 Jul 1999 trating on non-interacting galaxies in our sample for which morphological information can be obtained, we find that Seyfert hosts are barred more often (79%±7.5%) than the non-active galaxies in our control sample (59%±9%), a result which is at the ∼ 2.5σ significance level.
    [Show full text]
  • SRG/ART-XC All-Sky X-Ray Survey: Catalog of Sources Detected During the first Year M
    Astronomy & Astrophysics manuscript no. art_allsky ©ESO 2021 July 14, 2021 SRG/ART-XC all-sky X-ray survey: catalog of sources detected during the first year M. Pavlinsky1, S. Sazonov1?, R. Burenin1, E. Filippova1, R. Krivonos1, V. Arefiev1, M. Buntov1, C.-T. Chen2, S. Ehlert3, I. Lapshov1, V. Levin1, A. Lutovinov1, A. Lyapin1, I. Mereminskiy1, S. Molkov1, B. D. Ramsey3, A. Semena1, N. Semena1, A. Shtykovsky1, R. Sunyaev1, A. Tkachenko1, D. A. Swartz2, and A. Vikhlinin1, 4 1 Space Research Institute, 84/32 Profsouznaya str., Moscow 117997, Russian Federation 2 Universities Space Research Association, Huntsville, AL 35805, USA 3 NASA/Marshall Space Flight Center, Huntsville, AL 35812 USA 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA July 14, 2021 ABSTRACT We present a first catalog of sources detected by the Mikhail Pavlinsky ART-XC telescope aboard the SRG observatory in the 4–12 keV energy band during its on-going all-sky survey. The catalog comprises 867 sources detected on the combined map of the first two 6-month scans of the sky (Dec. 2019 – Dec. 2020) – ART-XC sky surveys 1 and 2, or ARTSS12. The achieved sensitivity to point sources varies between ∼ 5 × 10−12 erg s−1 cm−2 near the Ecliptic plane and better than 10−12 erg s−1 cm−2 (4–12 keV) near the Ecliptic poles, and the typical localization accuracy is ∼ 1500. Among the 750 sources of known or suspected origin in the catalog, 56% are extragalactic (mostly active galactic nuclei (AGN) and clusters of galaxies) and the rest are Galactic (mostly cataclysmic variables (CVs) and low- and high-mass X-ray binaries).
    [Show full text]