The Paradigm Revolution in the Distribution Grid

Total Page:16

File Type:pdf, Size:1020Kb

The Paradigm Revolution in the Distribution Grid Open Comput. Sci. 2020; 10:369–395 Review Article Thasnimol C M* and R. Rajathy The Paradigm Revolution in the Distribution Grid: The Cutting-Edge and Enabling Technologies https://doi.org/10.1515/comp-2020-0202 SCADA Supervisory Control And Data Acquisi- Received Aug 09, 2019; accepted Jan 21, 2020 tion Abstract: Bi-directional information and energy flow, re- RTP Real Time Pricing newable energy sources, battery energy storage, electric SDN Smart Distribution Network vehicle, self-healing capability, and demand response pro- MAS Multi Agent System grams, etc., revolutionized the traditional distribution net- DG Distributed Generator work into the smart distribution network. Adoption of SG Smart Grid modern technologies like intelligent meters such as ad- BSS Battery Storage System vanced metering infrastructure & Micro-phasor measure- DN Distribution Network ment units, data storage, and analysis techniques and DSM Demand Side Management incentive-based electricity trading mechanisms can bring PV Photo Voltaic this paradigm shift. This study presents an overview of CNN Convolutional Neural Network popular technologies that facilitate this transformation, giving focus on some prime technologies such as real-time RNN Recurrent Neural Network monitoring based on Micro-phasor measurement units, Multi-SVM Multi Class Support Vector Machine data storage and analytics, blockchain technology, multi- PCA Principal Component Analysis agent systems, and incentive-based energy trading mech- anisms Keywords: Big data, Energy market, Demand response, 1 Introduction Micro-phasor measurement units, Internet of energy, Blockchain Technology, Cloud computing Today’s grid is characterized by high penetration of Dis- tributed Energy Resources (DER) and two-way energy and information flow. DER includes Renewable Energy Sources Abbreviations (RES) like wind and solar generator, Electric Vehicles (EV), Battery Storage System (BSS) and customer loads that can take part in Demand Response (DR) programs. The bene- DER Distributed Energy Resources fits of RES include zero marginal cost of power production, RES Renewable Energy Sources practically nil carbon emission and minimization of trans- DR Demand Response mission power losses due to the generation of power near EV Electric Vehicle to the consumer centers. ESS Energy Storage System The widespread assimilation of DER has many draw- PMU Phasor Measurement Unit backs. The output of DER is seasonal. The output of so- Micro-PMU Micro-Phasor Measurement Units lar and wind generation is weather dependant and hence AMI Advanced Metering Infrastructure the dispatch of this generation to the load is more uncer- WAMS Wide Area Monitoring System tain. Meantime, the exact prediction and control of the customer load pattern are also not feasible. The charg- ing pattern of EV is also uncertain. The two-way flow of energy creates congestion and voltage stability problems *Corresponding Author: Thasnimol C M: Research Scholar, if not controlled properly. The electrical energy output of Dept.of EEE, Pondicherry Engineering College, Puducherry, India; DER should be known to the utility provider. Otherwise, Email: [email protected] R. Rajathy: Associate Professor, Dept.of EEE, Pondicherry Engineer- the utility produces more power than necessary, and this ing College, Puducherry, India; Email: [email protected] contributes to high electricity prices. Open Access. © 2020 Thasnimol and Rajathy, published by De Gruyter. This work is licensed under the Creative Commons Attri- bution 4.0 License 370 Ë Thasnimol and Rajathy The integration of DER and EVs causes a change in to prosumer trading, etc. can enhance the reliability and the supply-demand patterns at the distribution level of efficiency of the distribution system, can assist the net- the grid. Maintenance of supply-demand equilibrium is a work operator to maintain supply-demand equilibrium critical issue in a highly DER penetrated distribution grid. and helps to optimize the grid assets. To manage the effects of these distributed supply and de- Proper monitoring is needed to ensure the safe and re- mand patterns, distribution grid operators and regulators liable operation of the distribution system. Conventional are adopting modern technologies and methods. The tra- transmission grid monitoring through the SCADA and En- ditional approach of energy management is to utilize large ergy Management System (EMS) gives only local aware- power plants for maintaining supply-demand equilibrium ness, which is not sufficient to prevent blackouts. Wide by increasing or decreasing their power production. One Area Monitoring System (WAMS) gives a snapshot of the way to keep the supply-demand equilibrium in a grid with entire transmission system through Phasor Measurement significant penetration of RES is to use Energy Storage Sys- Units (PMU) located at important system buses. PMUs tem (ESS) for storing the surplus energy from RES. There gives a time-synchronized measurement of voltage and are several challenges to the widespread implementation current phasor of all nodes of the transmission system to- of ESS like high investment cost, lack of experience in im- gether with frequency and rate of change of frequency. plementation and further current utility regulations which Distribution phasor measurement units, otherwise known were worked out for the conventional electricity system as Micro-Phasor Measurement Unit (Micro-PMU) and Ad- [1]. All these circumstances necessitated advanced control vanced Metering Infrastructure (AMI), are the widely used techniques for effectively managing DER. monitoring system nowadays to monitor the DN. Micro- DERs like wind, solar, Combined Heat & Power (CHP) PMU monitors medium voltage distribution network and plants and EV can supply power to the grid and thereby AMI monitors low voltage distribution network. helps to meet the load demand. EV can function as a dis- One of the fundamental issues in the distribution net- tributed energy resource and further has a role in the ancil- work management is the effective treatment of massive lary service market by providing various services like grid chunks of information accessible to the network operator. frequency regulation, voltage, and reactive power support, This data includes measurement data from AMI & Micro- etc. Grid-connected equipment like home energy man- PMU, forecasting data such as weather, load & genera- agement system, smart thermostat, and customer smart tion forecast, and historical data. Decisions of the dis- appliances can provide flexibility services to the grid by tribution network operator in emergency conditions de- scheduling or curtailing their demand in response to De- pend on quick and explicit recognition of abnormalities mand Response (DR) programs and thereby enhancing from the data available to them. Since distribution net- grid reliability. The use of DERs and DR programs for main- work data falls under the category of big data, advanced taining energy balance is more favorable than the conven- storage and analytic techniques are desired for efficiently tional scheme as the former can accomplish the balancing handling these data. operation more promptly than the latter [2]. The most important responsibility of a distribution Owing to the ever-rising demand for electrical en- system is to assure safe and reliable supply to all of its ergy and high penetration of DER the distribution lines consumers, which can only be attained through a fast are obliged to carry power more than their rated carry- self-healing process. The areas without supply can be fed ing capacity and cause congestion problems. The devel- by appropriate service reconfiguration or by creating is- opment of additional infrastructure is not a practical op- lands with Distributed Generator (DG). It is imperative that tion due to the high cost involved. Another solution is to throughout these operations, the system variables such enforce demand-side management and demand response as bus voltage and feeder current should be within the programs, which is much recommended owing to its low permissible limits, the radial topology of the distribution implementation cost and reasonable response time re- network should be maintained carefully and fast restora- quired. The demand response is the readjustment of con- tion of supply after the clearance of fault are the key is- sumer’s load through load curtailing, shifting to off-peak sues which draw more attention to be taken care of. The hours, etc. in return to utility signals like price, penal- complexity of the restoration process increases as the pen- ties, and incentives. Incentive-based Demand Response etration level of DER in the system increases. Currently, (IDR) [3, 4] forces customers to willingly cooperate in DR DGs are disconnected from the system as soon as a fault programs by offering some incentives in return to their is detected. However, this cannot be done for a system flexibility services. Market-based methods like Real-Time with high penetration of DGs because without DG supply- Pricing (RTP), incentive-based DR program and prosumer demand balance will not be met. DGs interconnection to a The paradigm revolution in the distribution grid Ë 371 feeder causes voltage increase because of the active power smart grid. Industrial wireless sensor network and Inter- injection and may contribute to voltage violation. There- net of Things based routing protocol for SDN communi- fore, it should also consider the voltage profile and capac- cation is discussed
Recommended publications
  • Fall 2017 Commencement Program
    TE TA UN S E ST TH AT I F E V A O O E L F A DITAT DEUS N A E R R S I O Z T S O A N Z E I A R I T G R Y A 1912 1885 ARIZONA STATE UNIVERSITY COMMENCEMENT AND CONVOCATION PROGRAM Fall 2017 December 11-13, 2017 THE NATIONAL ANTHEM THE STAR-SPANGLED BANNER O say can you see, by the dawn’s early light, What so proudly we hailed at the twilight’s last gleaming? Whose broad stripes and bright stars through the perilous fight O’er the ramparts we watched, were so gallantly streaming? And the rockets’ red glare, the bombs bursting in air Gave proof through the night that our flag was still there. O say does that Star-Spangled Banner yet wave O’er the land of the free and the home of the brave? ALMA MATER ARIZONA STATE UNIVERSITY Where the bold saguaros Raise their arms on high, Praying strength for brave tomorrows From the western sky; Where eternal mountains Kneel at sunset’s gate, Here we hail thee, Alma Mater, Arizona State. —Hopkins-Dresskell MAROON AND GOLD Fight, Devils down the field Fight with your might and don’t ever yield Long may our colors outshine all others Echo from the buttes, Give em’ hell Devils! Cheer, cheer for A-S-U! Fight for the old Maroon For it’s Hail! Hail! The gang’s all here And it’s onward to victory! Students whose names appear in this program have completed degree requirements.
    [Show full text]
  • Coordination of Wind and Hydro Power Plant by Using Optimization Technique
    ISSN (Online) : 2319 - 8753 ISSN (Print) : 2347 - 6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization Volume 6, Special Issue 14, August 2017 Two Days National Conference on Modernization in Engineering Science (NCMES 2K17) 23rd-24th March 2017 Organized by Dept. of EEE, Sri Krishna College of Engineering & Technology, Coimbatore 641 008, Tamil Nadu, India Coordination of Wind and Hydro Power Plant by Using Optimization Technique P.Ranjithkumar1, Saravana Prabaakar1 , M.Suganya2, Niranjana B2 UG Scholar, Department of EEE, SKCET, Coimbatore-641008, Tamil Nadu, India1 Assistant Professor, Department of EEE, SKCET, Coimbatore-641008, Tamil Nadu, India2 ABSTRACT: Wind power production experiences new challenges in operation of a power system due to its variability and uncertainty of the wind. The challenges can be met when we introduce a new storage facility which was already available in the existing power system. Existing hydro power plants with larger reservoirs or pumped storage hydro power plants can be used for compensation of this drawback. It is known that wind power is an uncertain energy source compared to hydroelectric generation which is easily scheduled. In this abstract, the method for coordinating wind power plant and hydroelectric power plant is carried out by using Fourier transform technique to measure and control the state of wind and hydro power plants. Hydroelectric generation is employed as a method of energy reserve and compensation for wind power fluctuation in order to provide efficient power supply to benefit wind providers. The Fourier technique, which is generally used for relation of periodic functions like sine and cosine waves, is used here for the purpose of co-ordination.
    [Show full text]
  • 5 Application of Phasor Measurement Unit in Smart Grid.Pdf
    PRATIBHA: INTERNATIONAL JOURNAL OF SCIENCE, SPIRITUALITY, BUSINESS AND TECHNOLOGY (IJSSBT), Vol. 1, No.2, FEBRUARY 2013 ISSN (Print) 2277—7261 APPLICATION OF PHASOR MEASUREMENT UNIT IN SMART GRID 1Chandarani Sutar, 2Dr. K. S. Verma 1RRSIMT Amethi (U.P.), 2KNIT Sultapur (U.P.) Email: [email protected], 2 [email protected] , Abstract-A smart Grid uses two way digital for intelligent linkages between the elements of the communication with advanced sensors to collect grid while participating in the decision making that and analyze data for transforming the existing delivers value to the utility and supply and demand electric grid into intelligent, dynamic self- entities connected to it. healing, self optimizing transmission and distribution grid . As critical grid events often II. ADVANTAGES OF SMART GRID require real-time recognition and real time i) Enables active participation by of consumers by response .A smart grid uses IP-based ,open providing choices and incentives to modify standard, intelligent communication to electricity purchasing patterns and behavior. measure real-time events such as congestion ii) Autonomous control actions to enhance ,system stability ,equipment performance, reliability by increasing resiliency against outages and demand response events . component failures and natural disasters actions. Synchrophasor measurement technology is iii) Efficiency enhancement by maximizing asset accurate and real-time monitoring with high utilization. resolution of actual system conditions in wide iv) Resiliency against malicious attacks by virtue area . of better physical and IT security protocols. The proposed methods has been verified, v) Integration of renewable resources including compared and studied using PSAT Software solar, wind, and various types of energy storage.
    [Show full text]
  • PMU)-Like Metering for Behind-The-Meter (BTM) Solar Systems Using Blockchain- Assisted Smart Inverters Preprint Abdullah A
    Secure and Cost-Effective Micro Phasor Measurement Unit (PMU)-Like Metering for Behind-the-Meter (BTM) Solar Systems Using Blockchain- Assisted Smart Inverters Preprint Abdullah A. Hadi,1 Gomanth Bere,1 Taesic Kim,1 Justin J. Ochoa,1 Jianwu Zeng,2 and Gab-Su Seo3 1 Texas A&M University-Kingsville 2 Minnesota State University 3 National Renewable Energy Laboratory Presented at the 2020 IEEE Applied Power Electronics Conference and Exposition (IEEE APEC) New Orleans, Louisiana March 15–19, 2020 NREL is a national laboratory of the U.S. Department of Energy Conference Paper Office of Energy Efficiency & Renewable Energy NREL/CP-5D00-75447 Operated by the Alliance for Sustainable Energy, LLC March 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Secure and Cost-Effective Micro Phasor Measurement Unit (PMU)-Like Metering for Behind-the-Meter (BTM) Solar Systems Using Blockchain- Assisted Smart Inverters Preprint Abdullah A. Hadi,1 Gomanth Bere,1 Taesic Kim,1 Justin J. Ochoa,1 Jianwu Zeng,2 and Gab-Su Seo3 1 Texas A&M University-Kingsville 2 Minnesota State University 3 National Renewable Energy Laboratory Suggested Citation Hadi, Abdullah A., Gomanth Bere, Taesic Kim, Justin J. Ochoa, Jianwu Zeng, and Gab-Su Seo. 2020. Secure and Cost-Effective Micro Phasor Measurement Unit (PMU)-Like Metering for Behind-the-Meter (BTM) Solar Systems Using Blockchain-Assisted Smart Inverters: Preprint. Golden, CO: National Renewable Energy Laboratory. NREL/CP-5D00- 75447. https://www.nrel.gov/docs/fy20osti/75447.pdf. © 2020 IEEE.
    [Show full text]
  • Synchrophasor Based Islanding & Open Phase Fault Protection In
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 2-24-2020 11:00 AM Synchrophasor Based Islanding & Open phase fault Protection in Distribution Systems Mansour Jalali The University of Western Ontario Supervisor Tarlochan Sidhu The University of Western Ontario Graduate Program in Electrical and Computer Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Mansour Jalali 2020 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Power and Energy Commons, and the Systems and Communications Commons Recommended Citation Jalali, Mansour, "Synchrophasor Based Islanding & Open phase fault Protection in Distribution Systems" (2020). Electronic Thesis and Dissertation Repository. 6947. https://ir.lib.uwo.ca/etd/6947 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract With the rapid growth of renewable energy resources, energy efficiency initiatives, electric vehicles, energy storage, etc., distribution systems are becoming more complex such that conventional protection, control, and measurement infrastructure – typically concentrated at the main substation, with little to no access to information along the feeder – cannot maintain the reliability of the system without some sort of additional protection, control and measurement functionalities. As an example, a dedicated communication channel for carrying the transfer trip signal from the substation to the Point of Common Coupling (PCC) to prevent islanding operation of alternative resources, has been a requirement for many utilities.
    [Show full text]
  • Improved Power Quality Monitoring Through Phasor Measurement Unit Data Interpretation
    Downloaded from orbit.dtu.dk on: Sep 23, 2021 Improved Power Quality Monitoring through Phasor Measurement Unit Data Interpretation Pertl, Michael; Marinelli, Mattia; Bindner, Henrik W. Published in: Proceedings of Power Engineering Conference (UPEC) 2015 Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Pertl, M., Marinelli, M., & Bindner, H. W. (2015). Improved Power Quality Monitoring through Phasor Measurement Unit Data Interpretation. In Proceedings of Power Engineering Conference (UPEC) 2015 IEEE. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Improved Power Quality Monitoring through Phasor Measurement Unit Data Interpretation Michael Pertl, Mattia Marinelli, Henrik Bindner Department of Electrical Engineering (Center for Electric Power and Energy) DTU – Technical University of Denmark Contact: [email protected] Abstract- The observability needs in future power systems will renewable generation units such as photovoltaics (PV) are change radically due to the continuing implementation of connected through power electronic devices which can lead renewable energy sources at all voltage levels.
    [Show full text]
  • Design and Application of a Distribution Network Phasor Data Concentrator
    applied sciences Article Design and Application of a Distribution Network Phasor Data Concentrator Weiqing Tao 1 , Mengyu Ma 1,*, Chen Fang 2, Wei Xie 2, Ming Ding 1, Dachao Xu 3 and Yangqing Shi 3 1 School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China; [email protected] (W.T.); [email protected] (M.D.) 2 Electric Power Research Institute, State Grid Shanghai Municipal Electric Power Company, Shanghai 200437, China; [email protected] (C.F.); [email protected] (W.X.) 3 CSG Smart Grid Electrical Technology Co., Ltd., Hefei 230080, China; [email protected] (D.X.); [email protected] (Y.S.) * Correspondence: [email protected] Received: 8 January 2020; Accepted: 20 April 2020; Published: 24 April 2020 Abstract: The wide area measurement system (WAMS) based on synchronous phasor measurement technology has been widely used in power transmission grids to achieve dynamic monitoring and control of the power grid. At present, to better realize real-time situational awareness and control of the distribution network, synchronous phasor measurement technology has been gradually applied to the distribution network, such as the application of micro multifunctional phasor measurement units (µMPMUs). The distribution network phasor data concentrator (DPDC), as a connection node between the µMPMUs and the main station, is also gaining more attraction. This paper first analyzes the communication network structure of DPDCs and µMPMUs and compares and analyzes the differences in the installation locations, functions, communication access methods and communication protocols of the phasor technology devices of the distribution network and the transmission network. It is pointed out that DPDCs not only need the functions of data collection, storage, and forwarding like transmission network PDCs, but also should be able to access more µMPMUs, and can aggregate the phasor data of the same time scale from µMPMUs by different communication methods.
    [Show full text]
  • A Comprehensive Survey on Phasor Measurement Unit Applications in Distribution Systems
    energies Review A Comprehensive Survey on Phasor Measurement Unit Applications in Distribution Systems Mojgan Hojabri 1,*, Ulrich Dersch 2, Antonios Papaemmanouil 1 and Peter Bosshart 1 1 Competence Center of Electronics, Institute of Electrical Engineering, Lucerne University of Applied Sciences and Arts, Horw 6048, Switzerland; [email protected] (A.P.); [email protected] (P.B.) 2 Competence Center of Intelligent Sensors and Networks, Institute of Electrical Engineering, Lucerne University of Applied Sciences and Arts, Horw 6048, Switzerland; [email protected] * Correspondence: [email protected] Received: 26 October 2019; Accepted: 28 November 2019; Published: 29 November 2019 Abstract: Synchrophasor technology opens a new window for power system observability. Phasor measurement units (PMUs) are able to provide synchronized and accurate data such as frequency, voltage and current phasors, vibration, and temperature for power systems. Thus, the utilization of PMUs has become quite important in the fast monitoring, protection, and even the control of new and complicated distribution systems. However, data quality and communication are the main concerns for synchrophasor applications. This study presents a comprehensive survey on wide-area monitoring systems (WAMSs), PMUs, data quality, and communication requirements for the main applications of PMUs in a modern and smart distribution system with a variety of energy resources and loads. In addition, the main challenges for PMU applications as well as opportunities for the future use of this intelligent device in distribution systems will be presented in this paper. Keywords: synchrophasor technology; phasor measurement unit (PMU); communication technologies; intelligent electronic device (IED); data quality; PMU applications; wide area monitoring system (WAMS); smart grids; distribution system 1.
    [Show full text]
  • EEI's 'Transmission Projects
    Transmission Projects: At A Glance Prepared by: Edison Electric Institute MARCH 2012 © 2012 by the Edison Electric Institute (EEI). All rights reserved. Published 2012. Printed in the United States of America. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system or method, now known or hereinafter invented or adopted, without the express prior written permission of the Edison Electric Institute. Attribution Notice and Disclaimer This work was prepared by the Edison Electric Institute (EEI). When used as a reference, attribution to EEI is requested. EEI, any member of EEI, and any person acting on their behalf (a) does not make any warranty, express or implied, with respect to the accuracy, completeness or usefulness of the information, advice or recommendations contained in this work, and (b) does not assume and expressly disclaims any liability with respect to the use of, or for damages resulting from the use of any information, advice or recommendations contained in this work. The views and opinions expressed in this work do not necessarily reflect those of EEI or any member of EEI. This material and its production, reproduction and distribution by EEI does not imply endorsement of the material. Note: The status of the projects listed in this report was current when submitted to EEI but may have since changed between the time information was initially submitted and date this report was published. Published by: Edison Electric Institute 701 Pennsylvania Avenue, N.W. Washington, D.C.
    [Show full text]
  • Construction of a Phasor Measurement Unit (PMU) for Power System Applications
    Construction of a Phasor Measurement Unit (PMU) for Power System Applications By Onisokonikumen Valiant Sampson A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements for the degree of Master of Science Department of Electrical and Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Copyright © 2015 by Onisokonikumen Valiant Sampson Abstract The role played by phasor measurement units (PMU) in power grid monitoring systems today showcases the importance and usefulness of this device. There is a significant challenge regarding the design and implementation of PMUs today. This challenge stems from the closed source philosophy employed by commercial PMU vendors who strongly protect their hardware and software designs keeping it away from researchers. This philosophy has motivated a number of researchers to develop their own PMU devices. This thesis presents the design and implementation of a PMU device utilizing off-the- shelf components to estimate power system parameters such as voltage magnitude, phase angle and frequency with key design information extracted from the OpenPMU group and the IEEE C37.118-2011 standard. The functionality of the PMU was tested by performing important power system experiments which compared measured result of voltage magnitude, phase angle and frequency of a balanced three phase signal from a rapid prototyping system with estimated results from PMU. The conducted experiments confirmed that the PMU could estimate voltage magnitude, phase angle and frequency approximately equivalent to the measured quantities of the input signal. i Acknowledgements I would like to express my heart felt gratitude to Prof. Aniruddha Gole, for his immense contribution and guidance throughout this research.
    [Show full text]
  • Phasor Measurement Unit (Pmu) Datasheet
    PHASOR MEASUREMENT UNIT (PMU) DATASHEET (Panel mount configuration shown here) PMU010000 2017-09-18 ©2017 VIZIMAX Inc. All rights reserved TABLE OF CONTENT DATASHEET 2017-09-18 TABLE OF CONTENT TABLE OF CONTENT .................................................................................................................................. 2 PRODUCT OVERVIEW ............................................................................................................................... 3 VIZIMAX PMU - MAJOR FEATURES .........................................................................................................................................4 HARDWARE HIGHLIGHTS ..........................................................................................................................................................4 OPERATING ENVIRONMENT ......................................................................................................................................................5 TIME SYNCHRONIZATION .........................................................................................................................................................6 TIME SYNCHRONIZATION SERVER MODE ......................................................................................................................................6 COMMUNICATION LINKS ..........................................................................................................................................................7 DATA: ACQUISITION AND REPORTING
    [Show full text]
  • Phasor Measurement Unit
    www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962 Volume-6, Issue-2, March-April 2016 International Journal of Engineering and Management Research Page Number: 221-224 Phasor Measurement Unit Abhishek Gupta1, Smriti Jain2, Vishal Kumar Agrawal3, Sohail Ahamed4, Saksham Aggrawal5, Rishabh Kumar6 1Assistant Professor, Department of Electrical Engineering, Swami Keshvanand Institute of Technology Management & Gramothan, Jaipur, INDIA 2Reader, Department of Electrical Engineering, Swami Keshvanand Institute of Technology Management & Gramothan, Jaipur, INDIA 3,4,5,6Student (B.Tech. 4th year), Department of Electrical Engineering, Swami Keshvanand Institute of Technology Management & Gramothan, Jaipur, INDIA ABSTRACT PMU function can be incorporated into a protective relay Phasor is an electrical complex value containing of or other device. PMU measurements are often taken at 30 magnitude root mean square value and phase angle in polar observations per second (compared to one every 4 seconds form represents instantaneous electrical sinusoidal waveform. using conventional technology). Time stamping Phasor Measurement Unit (PMU) is a device that is used to each measurement to a common time reference (provided collect and provide instantaneous phasors from desire places by very high precision clocks) allows synchrophasors from of applications, attached with an instantaneous time and date of measuring called time-stamped data. Estimated phasors different locations and utilities to be synchronized. When sometimes are called synchrophasor, defined as a phasor that data from multiple PMUs are combined together, the is estimated from samples using a standard time as the information provides a precise and comprehensive view of reference for a measurement, and has common phase the entire interconnection. Synchrophasors enable a relationship as remote sites, is a synchrophasor.
    [Show full text]