Springs As Models to Unveil Ecological Drivers and Responses: Perspectives for Ecosystem Theory from Neglected Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Springs As Models to Unveil Ecological Drivers and Responses: Perspectives for Ecosystem Theory from Neglected Ecosystems Springs as models to unveil ecological drivers and responses: Perspectives for ecosystem theory from neglected ecosystems Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) an der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth vorgelegt von Andreas Hubert Schweiger geboren am 11.08.1984 in Garmisch-Partenkirchen, Deutschland Bayreuth, im Februar 2016 Die vorliegende Arbeit wurde in der Zeit von Februar 2013 bis Februar 2016 in Bayreuth am Lehrstuhl für Biogeografie unter Betreuung von Herrn Professor Dr. Carl Beierkuhnlein angefertigt. Vollständiger Abdruck der von der Faklutät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. Nat.). Dissertation eingereicht am: 05.02.2016 Zulassung durch die Promotionskommission: 17.02.2016 Wissenschaftliches Kolloqium: 15.08.2016 Amtierender Dekan: Prof. Dr. Stefan Schuster Prüfungsausschuss: Prof. Dr. Carl Beierkuhnlein (Erstgutachter) Prof. Dr. Konrad Dettner (Zweitgutachter) Prof. Dr. Stefan Peiffer (Vorsitz) PD. Dr. Gregor Aas (Drittgutachter: Prof. Dr. Holger Kreft) - ii - “Es gibt nichts Praktischeres als eine gute Theorie.” (Nothing is as practical as a good theory) Immanuel Kant - iii - - iv - Contents 1 Introduction ............................................................................................. 1 1.1 My motivation and theoretical background for this thesis ............................... 1 1.2 Structure of this thesis ....................................................................................... 3 1.3 Springs as neglected model ecosystems ........................................................... 7 1.3.1 Current knowledge about springs .................................................................................... 7 1.3.2 Springs as model ecosystems ......................................................................................... 11 1.4 The role of theory in ecology (then and now) ................................................. 18 1.5 The different theoretical perspectives in ecology ........................................... 20 1.6 Complex adaptive systems theory as holistic perspective .............................. 22 1.7 The major principles of complex adaptive systems theory in ecology ........... 24 1.7.1 Diversity and organisation of biotic system elements ................................................... 26 1.7.2 Flow, distribution and interaction of information, energy and matter ........................... 28 1.7.3 Stability and non-linearity .............................................................................................. 31 1.7.4 Scale-dependence ........................................................................................................... 34 1.7.5 Path-dependence ............................................................................................................ 38 1.8 Methodological requirements for testing the complex adaptive systems theory in ecology: The role of long-term monitoring and sampling design .................... 39 2 Synthesis ............................................................................................... 43 2.1 The manuscripts of this thesis ......................................................................... 43 2.2 Outlook on emerging research challenges ...................................................... 48 3 References in introduction and synthesis ............................................. 52 4 Declaration of own contribution to each manuscript ........................... 67 5 Manuscripts ........................................................................................... 69 5.1 Manuscript 1 .................................................................................................... 69 5.2 Manuscript 2 .................................................................................................... 87 5.3 Manuscript 3 .................................................................................................. 103 - v - 5.4 Manuscript 4 .................................................................................................. 127 5.5 Manuscript 5 .................................................................................................. 141 5.6 Manuscript 6 .................................................................................................. 159 6 Summary ............................................................................................. 183 7 Zusammenfassung .............................................................................. 185 8 Acknowledgements............................................................................. 187 9 Appendix ............................................................................................. 188 10 Declarations ...................................................................................... 191 - vi - Motivation 1 Introduction 1.1 My motivation and theoretical background for this thesis “It is important to define the central goal of ecological research before discussing how such work should be done” David Tilman (1989, p. 136). The improvement of understanding is the general goal of science (Kuhn 1962, Picket et al. 2007). The primary objective in ecology is to understand “the processes influencing the distribution and abundance of organisms, the interaction among organisms, and the interaction between organisms and the transformation and flux of energy and matter” (Likens 1992). This broad definition of ecology as a scientific discipline integrates two major perspectives, the organismal as well as the systemic perspective. Whereas the organismal perspective has a strong focus on processes acting among single organisms or species (thus system elements) (Morin 2011) the systemic perspective strongly focuses on the distribution and fluxes of material, energy and information regulated by ecosystems (Margalef 1975, Abel 1998, Beierkuhnlein 2007). Another general goal of science is consilience, meaning the synthesis of knowledge (Wilson 1998, Grace 2015). Ecology as scientific discipline has a rather broad focus which would in principle favour the integration of knowledge. However, ecological research often appears as a series of case studies in isolated sub-disciplines with loose relation to each other (Picket et al. 2007). Among all disciplines of science, biology (including ecology) is the fastest evolving science of the last two centuries (Collins 2011). Concomitant with this fast development of ecology, numerous sub-disciplines with differing perspectives, concepts and theories have emerged (McIntosh 1987, Kolasa 2011). This increasing divergence during the development of ecology led amongst others to community ecology, dealing with the interaction of organisms without considering system aspects (fluxes of information, energy and matter in systems) and systems ecology, focusing on the systems perspective but ignoring the idiosyncrasies at the organismic level (Picket et al. 2007). This divergence into sub-disciplines increases detailed understanding in the particular sub-disciplines of ecology but at the same time diminishes scientific progress towards general concepts (Marquet et al. 2014). Scientific progress leading to the overall understanding about the processes which maintains the functioning of complex ecological systems is a prerequisite when we want to pursue consilience in ecology. Although the divergence of ecology in different sub-disciplines might be a natural process related to the evolution of systems, a general, integrative understanding of ecosystem functioning is nowadays more topical than ever. Ongoing anthropogenic intervention changes ecosystem functioning and, thus, service provisioning. However, predictions about these changes, which are a prerequisite to counteract these developments, lack in generality and, thus, are characterized by high uncertainty. This high uncertainty of predictions, which impedes concrete proposals to counterbalance negative developments, can be reduced - 1 - Motivation by increasing generality in ecological understanding. When aiming for an integrative ecological understanding, combining organismal and systemic perspectives is assumed to open promising perspectives towards a truly integrative ecology (Picket et al. 2007). Already Brown (1995) suggested that community ecology and systems ecology need to be brought together. In this thesis I want to pursue this philosophy by integrating the two perspectives conceptualized in community and systems ecology. The technological progress during the last decades (e.g. next generation sequencing, high resolution remote sensing via satellites, increasing computational power) increased our ability to collect and analyse ecological data across large spatial, temporal and organismal scales. This vast amount of data, however, generates new challenges for ecology as a scientific discipline (Marquet et al. 2014). Proper theoretical frameworks are needed to prevent ecology from “drowning in [this] sea of data” (Brenner 2012, p. 461). An integrative theory is, thus, a prerequisite when aiming for a comprehensive understanding of ecological processes and patterns (Picket el al. 2007, Scheiner & Willig 2011). Searching for such kind of integrative theory, I decided to use the theory of complex adaptive systems as a theoretical framework for my thesis.
Recommended publications
  • Descarcă La Suprafaţă Sub Forma Izvoarelor (Culver, 1995)
    https://biblioteca-digitala.ro MUZEUL ŢĂRII CRIŞURILOR NYMPHAEA FOLIA NATURAE BIHARIAE XL Editura Muzeului Ţării Crişurilor Oradea 2013 https://biblioteca-digitala.ro Orice corespondenţă se va adresa: Toute correspondence sera envoyée à l’adresse: Please send any mail to the Richten Sie bitte jedwelche following adress: Korrespondenz an die Addresse: MUZEUL ŢĂRII CRIŞURILOR RO-410464 Oradea, B-dul Dacia nr. 1-3 ROMÂNIA Redactor şef al publicațiilor M.T.C. Editor-in-chief of M.T.C. publications Prof. Univ. Dr. AUREL CHIRIAC Colegiu de redacţie Editorial board ADRIAN GAGIU ERIKA POSMOŞANU Dr. MÁRTON VENCZEL, redactor responsabil Comisia de referenţi Advisory board Prof. Dr. J. E. MCPERSON, Southern Illinois Univ. at Carbondale, USA Prof. Dr. VLAD CODREA, Universitatea Babeş-Bolyai, Cluj-Napoca Prof. Dr. MASSIMO OLMI, Universita degli Studi della Tuscia, Viterbo, Italy Dr. MIKLÓS SZEKERES Institute of Plant Biology, Szeged Lector Dr. IOAN SÎRBU Universitatea „Lucian Blaga”,Sibiu Prof. Dr. VASILE ŞOLDEA, Universitatea Oradea Prof. Univ. Dr. DAN COGÂLNICEANU, Universitatea Ovidius, Constanţa Lector Univ. Dr. IOAN GHIRA, Universitatea Babeş-Bolyai, Cluj-Napoca Prof. Univ. Dr. IOAN MĂHĂRA, Universitatea Oradea GABRIELA ANDREI, Muzeul Naţional de Ist. Naturală “Grigora Antipa”, Bucureşti Fondator Founded by Dr. SEVER DUMITRAŞCU, 1973 ISSN 0253-4649 https://biblioteca-digitala.ro CUPRINS CONTENT Paleontologie Paleontology ERIKA POSMOŞANU: Taphonomic analysis of the Middle Triassic marine vertebrate assemblages from Lugaşu de Sus and Peștiș (Bihor,
    [Show full text]
  • Coenonympha Oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Slovenia 7 Tatjana Celik & Rudi Verovnik
    Editorial: Oedippus in Oedippus 5 26 (2010) Matthias Dolek, Christian Stettmer, Markus Bräu & Josef Settele Distribution, habitat preferences and population ecology of the False Ringlet Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Slovenia 7 Tatjana Celik & Rudi Verovnik False Ringlet Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Croatia: current status, population dynamics and conservation management 16 Martina Šašić False Ringlet Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Poland: state of knowledge and conservation prospects 20 Marcin Sielezniew, Krzysztof Pałka, Wiaczesław Michalczuk, Cezary Bystrowski, Marek Hołowiński & Marek Czerwiński Ecology of Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Italy 25 Simona Bonelli, Sara Canterino & Emilio Balletto Structure and size of a threatened population of the False Ringlet Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Hungary 31 Noémi Örvössy, Ágnes Vozár, Ádám Kőrösi, Péter Batáry & László Peregovits Concerning the situation of the False Ringlet Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Switzerland 38 Goran Dušej, Emmanuel Wermeille, Gilles Carron & Heiner Ziegler Habitat requirements, larval development and food preferences of the German population of the False Ringlet Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) – Research on the ecological needs to develop management tools 41 Markus Bräu, Matthias Dolek & Christian Stettmer
    [Show full text]
  • Systematic Importance of Perigynium Morphology and Achene Epidermal Silica Body in Sixteen Species of Carex L
    Research Article ISSN 2250-0480 VOL 6 / ISSUE 1/JAN 2016 SYSTEMATIC IMPORTANCE OF PERIGYNIUM MORPHOLOGY AND ACHENE EPIDERMAL SILICA BODY IN SIXTEEN SPECIES OF CAREX L. (CYPERACEAE) FROM THE DARJEELING AND SIKKIM HIMALAYAS, INDIA. * ** ASOK GHOSH AND GAURGOPAL MAITI *Department of Botany, Krishnagar Government College, Nadia, West Bengal, PIN-741101. **University of Kalyani, Kalyani, West Bengal, India ABSTRACT The cosmopolitan genus Carex L. represented about 1,800-2,000 species mainly in temperate and cold regions of the world. 49 species of Carex found in North-eastern India and 33 species in the rest part of India. Systematics of different taxa (subgenera, sections species pairs etc.) of the genus is quite complicated. In Carex, utricle morphology and fruit epidermal silicabodies have been used to delimit species and sections. The present study was undertaken to evaluate the taxonomic utility of these characters within sixteen species of Carex from three subgenera and thirteen sections. The following sixteen species ( viz. Carex baccans Nees, C. myosurus Nees, C. myosurus subsp. spiculata Boott, C. composita Boott, C. cruciata Wahlenberg, C. setigera D. Don, C. breviculmis R. Brown, C. speciosa Kunth., C. insignis Boott, C. polycephala Boott, C. fusiformis Nees subsp. finitima (Boott) Noltie, C. alopecuroides D. Don ex Tilloch and Taylor, C. teres Boott, C. longipes D. Don ex Tilloch and Taylor, C. nubigena D. Don ex Tilloch and Taylor and C. remota L. subsp. rochebrunii (Franchet and Savatier) Kükenthal) are evaluated in the present study. Perigynia of all the studied species are more or less similar in their surface morphology. Surface appears smooth when examined with a dissecting microscope.
    [Show full text]
  • Seed Germination in Sedges: a Short Review
    Biodiv. Res. Conserv. 19: 15-22, 2010 BRC www.brc.amu.edu.pl 10.2478/v10119-010-0015-1 Seed germination in sedges: a short review Waldemar Øukowski, Agnieszka M. Bogdanowicz* & Marlena Lembicz Department of Plant Taxonomy, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 PoznaÒ, Poland, *e-mail: [email protected] Abstract: Five patterns of seed germination in the sedges of the genus Carex are presented, based on the literature data and the results of the authorsí own research. They include the pattern of C. acutiformis, C. arenaria, C. remota, C. flava and C. communis. These patterns were constructed on the basis of seed specific requirements for development, such as stratification, temperature, dormancy and time of germination. Majority of sedges follow the pattern of C. acutiformis or C. remota. In both cases, stratification and either high or low temperature are essential for seed germination. Seeds that start to germinate early (C. remota pattern) are characterized by the absence of the distinct peaks of germination, as opposed to the C. acutiformis pattern with the germination peak in March. Our long-term investigations, conducted on the group of individuals in controlled conditions, revealed significant differences in seed size and the ability of seeds to germinate depending on the age of mother plants. We postulate that mother plant age is a new factor that should be considered in the construction of seed germination patterns. Key words: Carex, light, temperature, utricle 1. Introduction ginaceae (÷zcan 2008) or Gentianaceae (Davitashvili & Karrer 2010). Studies of soil seed banks and germi- Studies on seed morphology and germination have nation conditions allow to predict the dynamics of plant long attracted scientific interest.
    [Show full text]
  • T.C. Kastamonu Üniversitesi Fen Bilimleri Enstitüsü Orman Mühendisliği Ana Bilim Dali
    T.C. KASTAMONU ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ORMAN MÜHENDİSLİĞİ ANA BİLİM DALI YENİCE YABAN HAYATI GELİŞTİRME SAHASI’NIN BİTKİ SOSYOLOJİSİ YÖNÜNDEN ARAŞTIRILMASI AYŞE ÖZTÜRK DOKTORA TEZİ DANIŞMAN Dr. Öğr. Üyesi KERİM GÜNEY KASTAMONU 2018 T.C. KASTAMONU ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YENİCE YABAN HAYATI GELİŞTİRME SAHASI’NIN BİTKİ SOSYOLOJİSİ YÖNÜNDEN ARAŞTIRILMASI Ayşe ÖZTÜRK Danışman Dr. Öğr. Üyesi Kerim GÜNEY Jüri Üyesi Prof. Dr. Fatmagül GEVEN Jüri Üyesi Prof. Dr. Sibel ATASAĞUN Jüri Üyesi Doç. Dr. Barış BANİ Jüri Üyesi Dr. Öğr. Üyesi Nurcan YİĞİT DOKTORA TEZİ ORMAN MÜHENDİSLİĞİ ANA BİLİM DALI KASTAMONU – 2018 ÖZET Doktora Tezi YENİCE YABAN HAYATI GELİŞTİRME SAHASI’NIN BİTKİ SOSYOLOJİSİ YÖNÜNDEN ARAŞTIRILMASI Ayşe ÖZTÜRK Kastamonu Üniversitesi Fen Bilimleri Enstitüsü Orman Mühendisliği Ana Bilim Dalı Danışman: Dr. Öğr. Üyesi Kerim GÜNEY Araştırma alanı, coğrafi açıdan Batı Karadeniz Bölgesi’nde, Karabük ili sınırları içerisinde Karabük’ün en batıdaki ilçesi konumunda olan Yenice’de bulunan Yenice Yaban Hayatı Geliştirme Sahası’dır. Yenice YHGS, biyocoğrafik açıdan Avrupa Sibirya Fitocoğrafik Bölgesi’nin Öksin (Euxine) provensinin batı sektörü içerisinde yer almaktadır. Çalışma alanının bulunduğu iklim Sub-Akdeniz’li olarak belirlenmiş olup Karadeniz öncesi bölge ile Asıl Karadeniz bölgesi arasında bir geçiş bölgesi olarak tanımlanabilir. Yenice YHGS’nda 445 takson tespit edilmiştir. Araştırma alanı biyocoğrafik konumu itibariyle orman, pseudomaki ve akarsu ekosistemi gibi çok sayıda ekosistemi içinde barındırmakla birlikte hakim vejetasyon tipi orman formasyonudur. Braun-Blanquet metoduna göre orman vejetasyonuna ait toplamda 4 bitki birliği tespit edilmiştir. Tespit edilen birliklerden Corno mas-Quercetum ibericae ass. nova bilim dünyası için yenidir. Sintaksonlar ve bağlı oldukları sosyolojik birimler şu şekildedir: Sınıf : Querco-Fagetea (Br.-Bl and Vlieger 1937) Fuk.
    [Show full text]
  • Phylogeny of Carex Subg. Vignea (Cyperaceae) Based on Non-Coding Nrdna Sequence Data
    Systematic Botany (2006), 31(1): pp. 70±82 q Copyright 2006 by the American Society of Plant Taxonomists Phylogeny of Carex subg. Vignea (Cyperaceae) Based on Non-coding nrDNA Sequence Data BRUCE A. FORD,1,4 MAHMOOD IRANPOUR,1 ROBERT F. C. NACZI,2 JULIAN R. STARR,3 and CHERYL A. JEROME1 1Department of Botany, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; 2Claude E. Phillips Herbarium, Department of Agriculture and Natural Resources, Delaware State University, Dover, Delaware 19901-2277; 3Department of Biology, University of Mississippi, University, Mississippi 38677 4Author for correspondence ([email protected]) Communicating Editor: Wendy B. Zomlefer ABSTRACT. Carex subg. Vignea is characterized by sessile bisexual spikes, distigmatic ¯owers, and the lack of cladopro- phylls. Phylogenies reconstructed using nrDNA internal and external transcribed spacer (ITS and ETS 1f) sequences for 100 vignean taxa support this subgenus as monophyletic. The atypical C. gibba is sister to all remaining taxa. Many clades in the remainder of the subgenus do not correspond to easily de®ned morphological groups, with species representative of several disparate sections frequently contained within a single clade. Many traditionally recognized sections are not sup- ported, although others such as sects. Ovales, Stellulatae,andGlareosae are monophyletic. Tree topologies indicate that gy- naecandry has evolved multiple times in subg. Vignea. Species of uncertain subgeneric af®nity are variously placed in our analysis. Carex fecunda, previously linked to subg. Vignea, is positioned within the outgroup composed of species traditionally placed in subg. Carex and Vigneastra. While species with highly compound in¯orescences are often regarded as ancestral in Carex, our results indicate that this in¯orescence type has evolved multiple times and is derived within subg.
    [Show full text]
  • Aktualizovaný Sylabus Přednášky Fylogeneze a Diverzita Vyšších Rostlin
    Aktualizovaný sylabus přednášky fylogeneze a diverzita vyšších rostlin I. roč. učitelská biologie, systematická biologie, (obecná biologie, molekulární biologie) jarní semestr 2017 přednáška 3 hod./týd. - Zk: Doc. RNDr. Petr Bureš, Ph.D. cvičení 2 hod/týd. - Z (1) Předmět studia a metody systematické botaniky Cíle systematické botaniky, rostlinné taxonomie, nomenklatury, biosystematiky a fylogenetiky. Způsoby klasifikace, klasifikační znaky, fylogenetická příbuznost a její odraz v klasifikaci, jednotky a taxony; druhy a populace, atributy druhu, reprodukční izolace, geografický areál a ekologická nika druhu, genetická stabilita znaků vers. fenotypová plasticita. (2) Specifické rysy evoluce vyšších rostlin Základní mechanismy evoluce rostlin a specifita rostlinné evoluce ve srovnání s evolucí živočichů; hermafroditismus vers. dioecie, selfing vers. outcrossing, inbrední deprese; mezidruhová hybridizace, retikularita fylogenetických linií, genetická koroze, meiotické disturbance, polyploidizace, fixovaná heterozygozita. (3) Historie a přehled metod systematické botaniky Botanika součástí medicíny, farmakologie a farmakognozie – antičtí botanikové, renesanční bylináře, vynález herbarizace rostlin a role herbářů v současné botanice, z čeho sestává herbářová scheda. Od lineární k hierarchické a přirozené klasifikaci – Caesalpino, Bauhin, Ray, Linné, Adanson, Jussieu; Objev a zobecnění rodozměny v životním cyklu vyšších rostlin – Hedwig, Lindsay, Hoffmeister, Amici, Nägeli, Strassburger, Navašin. Odraz evoluce ve vlastnostech současných organizmů
    [Show full text]
  • Chromosome Numbers of Carex
    Preslia 83: 25–58, 2011 25 Chromosome numbers of Carex Chromozomové počty druhů rodu Carex OlgaRotreklová1, Petr B u r e š1, Radomír Ř e p k a2, VítGrulich1, Petr Š m a r d a1,IvanaHralová1, František Z e d e k1 & Tomáš K o u t e c k ý2 1Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ-61137, Czech Republic, e-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]; 2Department of Forest Botany, Dendrology and Geobiocenology, Faculty of Forestry and Wood Technology, Mendel University Brno, Zemědělská 3, CZ-613 00 Brno, Czech Republic, e-mail: [email protected], [email protected]. Rotreklová O., Bureš P., Řepka R., Grulich V., Šmarda P., Hralová I., Zedek F. & Koutecký T. (2011): Chromosome numbers of Carex. – Preslia 83: 25–58. Chromosome numbers were determined for 97 samples of 95 sedge taxa (Carex) from the following countries: Austria (6 records), Bulgaria (1), the Canary Islands (Spain, 1), Cape Verde (1), the Czech Republic (51), Hungary (1), Italy (2), Norway (8), Russia (15), Slovakia (1), Sweden (1) and 9 North American plants cultivated in Czech botanical gardens. Chromosome numbers for Carex argunensis, C. callitrichos, C. campylorhina, C. flavocuspis subsp. krascheninnikovii, C. paniculata subsp. hansenii, C. pallida, C. quadriflora and C. xiphium are reported here for the first time. The first reports are presented for the European portion of the distribution area of Carex obtusata and for the Central European portion of the distributional areas of C.
    [Show full text]
  • Species List 09/01/2017
    1 of 145 Glasgow Species List 09/01/2017 Group Type Group Taxon Common name Records First year Last year Designated Local BAP Aquatic Invertebrates acarine Hydracarina 11 2003 2010 Aquatic Invertebrates acarine Hydrachna 1 2007 2007 Aquatic Invertebrates amoeba Amoeba lescherae 1 1961 1961 Aquatic Invertebrates amoeba Polychaos dubium 2 1899 1899 Aquatic Invertebrates annelid Alboglossiphonia heteroclita 33 1959 2004 Aquatic Invertebrates annelid Dina lineata 4 1972 1973 Aquatic Invertebrates annelid Enchytraeidae Whiteworm 1 1999 1999 Aquatic Invertebrates annelid Erpobdella octoculata leeches 31 1913 2013 Aquatic Invertebrates annelid Erpobdella testacea 5 1995 2003 Aquatic Invertebrates annelid Glossiphonia complanata 16 1913 2013 Aquatic Invertebrates annelid Glossiphonia paludosa 1 1973 Aquatic Invertebrates annelid Haemopis sanguisuga horse leech 7 1913 2013 Aquatic Invertebrates annelid Helobdella stagnalis 33 1913 2014 Aquatic Invertebrates annelid Hirudinea Leech 10 1992 2016 Aquatic Invertebrates annelid Lumbriculidae 13 1997 2004 Aquatic Invertebrates annelid Naididae 16 1997 2004 Aquatic Invertebrates annelid Oligochaeta 36 1982 2015 Aquatic Invertebrates annelid Piscicolidae 1 2003 2003 Aquatic Invertebrates annelid Stylaria lacustris 1 1995 1995 Aquatic Invertebrates annelid Theromyzon tessulatum duck leech 10 1959 1998 Aquatic Invertebrates annelid Trochaeta subviridis 3 1973 Aquatic Invertebrates annelid Trocheta bykowskii 1 1981 1981 Aquatic Invertebrates annelid Trocheta subviridis 4 1966 1973 Aquatic Invertebrates annelid
    [Show full text]
  • After-Ripening, Stratification, and Perigynia Removal Enhance
    Physiological dormancy is com- After-ripening, Stratification, and Perigynia mon in the Cyperaceae and may be Removal Enhance Pennsylvania overcome or reduced by one or more of the following treatments: 1) after- Sedge Germination ripening (dry storage of seeds under ambient temperatures before sowing), 1 2) GA3, and 3) cold stratification Esther E. McGinnis and Mary H. Meyer (Baskin and Baskin, 1998, 2004). Broom sedge (Carex scoparia) germi- ADDITIONAL INDEX WORDS. Carex pensylvanica, dormancy, propagation, nation was enhanced by up to 2 years Cyperaceae, achene of after-ripening (Larson and Stearns, 1990). Elongated sedge (Carex elongata) SUMMARY.Pennsylvaniasedge(Carex pensylvanica) has horticultural and restoration and remote sedge (Carex remota)in- potential, but the achenes are difficult to germinate due to complex dormancy creased germination following after- requirements. This study identified treatments to overcome physiological dormancy and determined light and temperature requirements for optimum germination. ripening in comparison with fresh We first tested the effects of perigynia removal and light on achene germination. In the achenes (Schutz, 1997b). However, second experiment, achenes were subjected to varying durations of dry-cold or some wetland Carex species had dry-warm storage conditions and a presowing soak in gibberellic acid (GA3). In higher germination percentages when a third experiment, we studied whether storage conditions, cold stratification, and stored cold and moist (Budelsky and sowing temperatures affected germination. Pennsylvania sedge germination was Galatowitsch, 1999). improved by dry-warm storage, perigynia removal, cold stratification, and Although GA3 failed to stimulate germination in light. germination in black and white sedge (Carex albonigra), ebony sedge [Carex ebenea (Amen and Bonde, ennsylvania sedge is commonly published, and native plant nurseries 1964)], and hood’s sedge [Carex used for forest restoration (Mottl propagate plants by division.
    [Show full text]
  • Desktop Biodiversity Report
    Desktop Biodiversity Report Land south of Wivelsfield Green + 2km radius ESD/12/349 Prepared for John Feltwell 13th July 2012 This report is not to be passed on to third parties without prior permission of the Sussex Biodiversity Record Centre. Please be aware that printing maps from this report requires an appropriate OS licence. Sussex Biodiversity Record Centre report regarding land south of Wivelsfield Green + 2km radius 13/07/2012 Prepared for John Feltwell ESD/12/349 The following information is enclosed within this report: Maps Sussex Protected Species Register Sussex Bat Inventory Sussex Bird Inventory UK BAP Species Inventory Sussex Rare Species Inventory Sussex Invasive Alien Species Full Species List Environmental Survey Directory SNCI L07 - Blackbrook Wood & The Plantation; L19 - Ditchling Common Meadow; L24 - Great Home Wood, Hattons Wood; L36 - Longridge Wood & Sedgebrook Marsh; L48 - Plumpton Wood (North); L50 - Purchase Wood; L57 - St George's Retreat. SSSI Chailey Common; Ditchling Common. Other Designations/Ownership Country Park; Environmental Stewardship Agreement; Local Nature Reserve. Habitats Ancient woodland; Traditional orchard. Important information regarding this report It must not be assumed that this report contains the definitive species information for the site concerned. The species data held by the Sussex Biodiversity Record Centre (SxBRC) is collated from the biological recording community in Sussex. However, there are many areas of Sussex where the records held are limited, either spatially or taxonomically. A desktop biodiversity report from the SxBRC will give the user a clear indication of what biological recording has taken place within the area of their enquiry. The information provided is a useful tool for making an assessment of the site, but should be used in conjunction with site visits and appropriate surveys before further judgements on the presence or absence of key species or habitats can be made.
    [Show full text]
  • 39 Micromorphological Study on Carex (L.H. Bailey) Cyperaceae In
    Micromorphological study on Carex (L.H. Bailey) Cyperaceae in Punjab Asma Akram1, Naveed Abbas2, Hira Aslam3, Sahar Jameel4, Mehwish Ramzan1, Tahira Bano5* 1Department of Botany, University of Agriculture Faisalabad, Pakistan. 2Department of Biological Sciences, University of Sargodha, Sub-campus Bhakkar, Pakistan. 3Department of Physiology, GC University Faisalabad, Pakistan. 4Department of Plant Pathology, University of Agriculture Faisalabad, Pakistan. 5Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan. *Corresponding author’s email: [email protected] Abstract: The genus Carex is the largest in family Cyperaceae, containing over 2000 species. Members is found in different habitat types, ranging from aridity, high altitude, intense salinity, wet places, swamps, marshes and vertical slopes. Variation within the genus is extremely high, which is based on qualitative and quantitative morphological features and genetic makeup. A comprehensive study was conducted to collect plants of genera Carex of family Cyperaceae, throughout mountainous region (Murree, Bansra Galli, Jhinka Galli and Nathia Galli districts) in the Punjab. Macro- and micro-morphological study was conducted to record inflorescence characteristics of the genus. Macro- and micro-morphological characteristics like size and type of inflorescence, number, shape and size of bract, size, shape and color of glumes and seed characteristics were recorded. Floral morphological characteristics are of high taxonomic significance, which was an effective tool to classify different species. Habitat ecology and distributional pattern like geographical parameters have important contribute in taxonomy of this genus. [Asma Akram, Naveed Abbas, Hira Aslam, Sahar Jameel, Mehwish Ramzan, Tahira Bano. Micromorphological study on Carex (L.H. Bailey) Cyperaceae in Punjab. Rep Opinion 2021;13(2):39-50].
    [Show full text]