Chromosome Numbers of Carex
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Phytolacca Esculenta Van Houtte
168 CONTENTS BOSABALIDIS ARTEMIOS MICHAEL – Glandular hairs, non-glandular hairs, and essential oils in the winter and summer leaves of the seasonally dimorphic Thymus sibthorpii (Lamiaceae) .................................................................................................. 3 SHARAWY SHERIF MOHAMED – Floral anatomy of Alpinia speciosa and Hedychium coronarium (Zingiberaceae) with particular reference to the nature of labellum and epigynous glands ........................................................................................................... 13 PRAMOD SIVAN, KARUMANCHI SAMBASIVA RAO – Effect of 2,6- dichlorobenzonitrile (DCB) on secondary wall deposition and lignification in the stem of Hibiscus cannabinus L.................................................................................. 25 IFRIM CAMELIA – Contributions to the seeds’ study of some species of the Plantago L. genus ..................................................................................................................................... 35 VENUGOPAL NAGULAN, AHUJA PREETI, LALCHHANHIMI – A unique type of endosperm in Panax wangianus S. C. Sun .................................................................... 45 JAIME A. TEIXEIRA DA SILVA – In vitro rhizogenesis in Papaya (Carica papaya L.) ....... 51 KATHIRESAN KANDASAMY, RAVINDER SINGH CHINNAPPAN – Preliminary conservation effort on Rhizophora annamalayana Kathir., the only endemic mangrove to India, through in vitro method .................................................................................. -
Representation of Tundra Vegetation by Pollen in Lake Sediments of Northern Alaska W
Journal of Biogeography, 30, 521–535 Representation of tundra vegetation by pollen in lake sediments of northern Alaska W. Wyatt Oswald1,2*, Patricia M. Anderson2, Linda B. Brubaker1, Feng Sheng Hu3 and Daniel R. Engstrom41College of Forest Resources, 2Quaternary Research Center, Box 351360, University of Washington, Seattle, WA 98195, USA, 3Departments of Biology and Geology, University of Illinois, Urbana, IL, USA and 4St Croix Watershed Research Station, Science Museum of Minnesota, St Croix, MN, USA Abstract Aim To understand better the representation of arctic tundra vegetation by pollen data, we analysed pollen assemblages and pollen accumulation rates (PARs) in the surface sediments of lakes. Location Modern sediment samples were collected from seventy-eight lakes located in the Arctic Foothills and Arctic Coastal Plain regions of northern Alaska. Methods For seventy of the lakes, we analysed pollen and spores in the upper 2 cm of the sediment and calculated the relative abundance of each taxon (pollen percentages). For eleven of the lakes, we used 210Pb analysis to determine sediment accumulation rates, and analysed pollen in the upper 10–15 cm of the sediment to estimate modern PARs. Using a detailed land-cover map of northern Alaska, we assigned each study site to one of five tundra types: moist dwarf-shrub tussock-graminoid tundra (DST), moist graminoid prostrate-shrub tundra (PST) (coastal and inland types), low-shrub tundra (LST) and wet graminoid tundra (WGT). Results Mapped pollen percentages and multivariate comparison of the pollen data using discriminant analysis show that pollen assemblages vary along the main north– south vegetational and climatic gradients. -
Chapter 6 Technical Assistance to Sra on Environmental Issues
CHAPTER 6 TECHNICAL ASSISTANCE TO SRA ON ENVIRONMENTAL ISSUES Preparatory Survey on the Project for Construction of Mykolaiv Bridge in Ukraine Final Report 6. TECHNICAL ASSISTANCE TO SRA ON ENVIRONMENTAL ISSUES 6.1 Environmental and Social Considerations 6.1.1 Project Components (1) Name The Project for Construction of Mykolaiv Bridge in Ukraine (2) Project Proponent The State Road Administration of Mykolaiv in Ukraine (Ukravtodor Mykolaiv) (3) Project Object The aim of the planned activity is to construct a highway river crossing over the Southern Bug River of city Mykolaiv cit;y. A highway river crossing including the bridge and approaches to it on the road M-14 Odessa – Melitopol – Novoazovsk (to Taganrog): beginning on the right bank of the Southern Bug River near the village Vesniane from M-14; end – on the left bank to the M-14 at the crossing with auto road P-06 Ulianovka – Mykolaiv. Construction of approaches to the bridge structures requires allocation of land for permanent use within the projected band allocation of the road. At present these lands are owned by individuals and legal entities. (4) Location Ukraine is located in Eastern Europe and is surrounded by seven countries; Romania, Moldova, Slovakia, Hungary, and Poland in the west, Belarus in the north, and Russia in the east, as well as the Black Sea in the south. In order to exploit this geographical position, the Government of Ukraine established the “Comprehensive Program for Consolidation of Ukraine as a Transit Country for 2002-2010”, which was indicative of the importance attached to establishing international trunk roads providing new traffic systems for cross-border logistics. -
C6 Noncarice Sedge
CYPERACEAE etal Got Sedge? Part Two revised 24 May 2015. Draft from Designs On Nature; Up Your C 25 SEDGES, FOINS COUPANTS, LAÎCHES, ROUCHES, ROUCHETTES, & some mostly wet things in the sedge family. Because Bill Gates has been shown to eat footnotes (burp!, & enjoy it), footnotes are (italicized in the body of the text) for their protection. Someone who can spell caespitose only won way has know imagination. Much of the following is taken verbatim from other works, & often not credited. There is often not a way to paraphrase or rewrite habitat or descriptive information without changing the meaning. I am responsible for any mistakes in quoting or otherwise. This is a learning tool, & a continuation of an idea of my friend & former employer, Jock Ingels, LaFayette Home Nursery, who hoped to present more available information about a plant in one easily accessible place, instead of scattered though numerous sources. This is a work in perpetual progress, a personal learning tool, full uv misstakes, & written as a personal means instead of a public end. Redundant, repetitive, superfluous, & contradictory information is present. It is being consolidated. CYPERACEAE Sauergrasgewächse SEDGES, aka BIESIES, SEGGEN Formally described in 1789 by De Jussieu. The family name is derived from the genus name Cyperus, from the Greek kupeiros, meaning sedge. Many species are grass-like, being tufted, with long, thin, narrow leaves, jointed stems, & branched inflorescence of small flowers, & are horticulturally lumped with grasses as graminoids. Archer (2005) suggests the term graminoid be used for true grasses, & cyperoid be used for sedges. (If physical anthropologists have hominoids & hominids, why don’t we have graminoids & graminids?) There are approximately 104 genera, 4 subfamilies, 14 tribes, & about 5000 species worldwide, with 27 genera & 843 species in North America (Ball et al 2002). -
Studies on the Genus Carex on the Idaho Panhandle National Forests
STUDIES IN THE GENUS CAREX ON THE IDAHO PANHANDLE NATIONAL FORESTS by Steven L. Caicco Natural Heritage Section Nongame Wildlife/Endangered Species Program Bureau of Wildlife December 1988 Idaho Department of Fish and Game 600 South Walnut Street, P.O. Box 25 Boise, Idaho 83707 Jerry M. Conley, Director Cooperative Challenge Grant Project Idaho Panhandle National Forests Idaho Department of Fish and Game Contract No. 53-0281-7-163 ABSTRACT Eleven of thirteen species of the genus Carex (sedges) which have been designated as Sensitive Species within Region 1 of the U.S. Forest Service are known to occur in Idaho. In this study, the status of these thirteen species, plus one other species of sedge, on the Idaho Panhandle National Forests was investigated through herbaria searches and field surveys. In individual reports, the taxonomy, description, range, habitat, collection record, and conservation status of nine of the fourteen species are discussed. Each species discussion ends with recommendations for land managers and field personnel. The other five species of sedge are more briefly discussed. TABLE OF CONTENTS ABSTRACT...................................................... i TABLE OF CONTENTS............................................. ii LIST OF APPENDICES............................................ ii INTRODUCTION.................................................. 1 INDIVIDUAL SPECIES REPORTS Carex aenea Fern. ............................................ 2 Carex buxbaumii Wahl. ........................................ 4 Carex californica -
Species Classification and Nomenclature by Norbert Leist and Andrea Jonitz Prof
ISTA Purity Seminar 15. June 2009 Zürich TlTools for seed identifi cati on species classification and nomenclature by Norbert Leist and Andrea Jonitz Prof. Dr. Norbert Leist Dr. Andrea Jonitz Brahmsstr.25 LTZ Augustenberg 76669 Bad Schönborn Neßlerstr.23 Germany 76227 Karlsruhe [email protected] Germany [email protected] Aquilegia vulgaris, Variation Variation • Variation is everywhere in biological systems. Natural variation at the population level is usualy not continuous, but occurs in discrete units or taxa. Easily the most important taxonomic level is the species because it is often the smallest clearly recognizable and discrete set of populations. • Understanding how species form and how to recognize them have been major challenges to systematists. The variation in one population becomes interrupted, the way to a split into two species strong hairy nearly glabrous Variation on species • Sources of variation: MttiMutation Recombination Independent assortment of the chromosomes Random genetic drift Selection Conservation of species characteristics avoiding gene flow Isolating barriers: temporal (seasonal, diurnal) habitat (wet, dry; calceous, silicious) floral (structural, behavioral eg. adaptations for pollinators) reproductive mode (self fertilisation, agamospery) incompatibility (pollen, seeds) hybrid inviability hybrid floral isolation hybrid sterility hybrid break down Iris germanica Iris sibirica Isolation by habitat Definition of „species“ is not easy A species is the smallest aggregation of populations -
The Ecological Scales for the Species of Ukrainian Flora and Their Use in Synphytoindication
M.G. KHOLODNY INSTITUTE OF BOTANY NAS OF UKRAINE Ya.P. Didukh THE ECOLOGICAL SCALES FOR THE SPECIES OF UKRAINIAN FLORA AND THEIR USE IN SYNPHYTOINDICATION Kyiv - 2011 Didukh, Ya.P. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. – Kyiv: Phytosociocentre, 2011. - 176 p. The amplitude scales of 3300 flora species of Ukraine are presented, reflecting species relation to 12 main climate and edaphic factors. The Tsyganov, Ramensky, Tsatsenkin, Ellenberg, Landolt, Zolyomi, Zarzycki, Frank et Klotz and other ecological scales’ comparisons are illustrated. The methods of synphytoindication are presented as an approach of ecological indices assessment based on phytosociological surveys taking into account indicator species presence and their occurrence in the community. The examples of practical applications of data using ordination and gradient analysis, the principal component method, ecological mapping, assessment of ecological factors changes in space (landscapes) and time (successions) are given. It is recommended for botanists and ecologists. Tabl. 7. Fig. 17. © Didukh Ya.P. Introduction Due to the immensity of the current anthropogenic impact, serious environmen- tal changes are occurring worldwide. Plants respond to these changes accordingly; first of all they disappear in some types of habitats and appear in other. That is why ecological research of flora is a very relevant and topical task. Studies of spe- cies ecology, estimation of species’ tolerance amplitude to the effects of different ecological factors, ways of adaptation, behavior and population renewal strategy, as well as the abilities to resist changes of ecological factors are closely related with problems of biodiversity conservation. Species organization and structure ensure functioning of the whole ecosystem pyramid, energy accumulation and transformation, circulation of substances, soil formation processes, existence of heterotrophic component, and evolution of ecosystems and their components. -
Flora of the Stansbury Mountains, Utah
Great Basin Naturalist Volume 43 Number 4 Article 11 10-31-1983 Flora of the Stansbury Mountains, Utah Alan C. Taye U.S. Army Intelligence Center and School, Fort Huachuca, Arizona Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Taye, Alan C. (1983) "Flora of the Stansbury Mountains, Utah," Great Basin Naturalist: Vol. 43 : No. 4 , Article 11. Available at: https://scholarsarchive.byu.edu/gbn/vol43/iss4/11 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. FLORA OF THE STANSBURY MOUNTAINS, UTAH Alan C. Taye' Abstract.— The Stansbury Mountains of north central Utah rise over 2000 m above surrounding desert valleys to a maximum elevation of 3362 m on Deseret Peak. Because of the great variety of environmental conditions that can be found in the Stansburys, a wide range of plant species and vegetation types (from shadscale desert to alpine mead- ow) exist there. This paper presents an annotated list of 594 vascular plant species in 315 genera and 78 families. The largest families are Asteraceae (98 species), Poaceae (71), Brassicaceae (33), Fabaceae (27), and Rosaceae (26). Elymiis flcwescens was previously unreported from Utah. Statistical comparison of the Stansbury flora with neighboring mountain floras indicates that the Wasatch Mountains lying 65 km to the east have probably been the primary source area for development of the Stansbury flora. -
Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date
Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date EQUISETACEAE HORSETAIL FAMILY Equisetum arvense L. Field Horsetail FF Equisetum fluviatile L. Water Horsetail LRB Equisetum hyemale L. ssp. affine (Engelm.) Stone Common Scouring-rush BS Equisetum laevigatum A. Braun Smooth Scouring-rush WM Equisetum variegatum Scheich. ex Fried. ssp. Small Horsetail LRB Variegatum DENNSTAEDIACEAE BRACKEN FAMILY Pteridium aquilinum (L.) Kuhn Bracken-Fern COF DRYOPTERIDACEAE TRUE FERN FAMILILY Athyrium filix-femina (L.) Roth ssp. angustum (Willd.) Northeastern Lady Fern FF Clausen Cystopteris bulbifera (L.) Bernh. Bulblet Fern FF Dryopteris carthusiana (Villars) H.P. Fuchs Spinulose Woodfern FF Matteuccia struthiopteris (L.) Tod. Ostrich Fern FF Onoclea sensibilis L. Sensitive Fern FF Polystichum acrostichoides (Michaux) Schott Christmas Fern FF ADDER’S-TONGUE- OPHIOGLOSSACEAE FERN FAMILY Botrychium virginianum (L.) Sw. Rattlesnake Fern FF FLOWERING FERN OSMUNDACEAE FAMILY Osmunda regalis L. Royal Fern WM POLYPODIACEAE POLYPODY FAMILY Polypodium virginianum L. Rock Polypody FF MAIDENHAIR FERN PTERIDACEAE FAMILY Adiantum pedatum L. ssp. pedatum Northern Maidenhair Fern FF THELYPTERIDACEAE MARSH FERN FAMILY Thelypteris palustris (Salisb.) Schott Marsh Fern WM LYCOPODIACEAE CLUB MOSS FAMILY Lycopodium lucidulum Michaux Shining Clubmoss OF Lycopodium tristachyum Pursh Ground-cedar COF SELAGINELLACEAE SPIKEMOSS FAMILY Selaginella apoda (L.) Fern. Spikemoss LRB CUPRESSACEAE CYPRESS FAMILY Juniperus communis L. Common Juniper Jun-E DS Juniperus virginiana L. Red Cedar Jun-E SD Thuja occidentalis L. White Cedar LRB PINACEAE PINE FAMILY Larix laricina (Duroi) K. Koch Tamarack Jun LRB Pinus banksiana Lambert Jack Pine COF Pinus resinosa Sol. ex Aiton Red Pine Jun-M CF Pinery Provincial Park Vascular Plant List 1 Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date Pinus strobus L. -
Scale Insects (Hemiptera: Coccomorpha) in the Entomological Collection of the Zoology Research Group, University of Silesia in Katowice (DZUS), Poland
Bonn zoological Bulletin 70 (2): 281–315 ISSN 2190–7307 2021 · Bugaj-Nawrocka A. et al. http://www.zoologicalbulletin.de https://doi.org/10.20363/BZB-2021.70.2.281 Research article urn:lsid:zoobank.org:pub:DAB40723-C66E-4826-A8F7-A678AFABA1BC Scale insects (Hemiptera: Coccomorpha) in the entomological collection of the Zoology Research Group, University of Silesia in Katowice (DZUS), Poland Agnieszka Bugaj-Nawrocka1, *, Łukasz Junkiert2, Małgorzata Kalandyk-Kołodziejczyk3 & Karina Wieczorek4 1, 2, 3, 4 Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL-40-007 Katowice, Poland * Corresponding author: Email: [email protected] 1 urn:lsid:zoobank.org:author:B5A9DF15-3677-4F5C-AD0A-46B25CA350F6 2 urn:lsid:zoobank.org:author:AF78807C-2115-4A33-AD65-9190DA612FB9 3 urn:lsid:zoobank.org:author:600C5C5B-38C0-4F26-99C4-40A4DC8BB016 4 urn:lsid:zoobank.org:author:95A5CB92-EB7B-4132-A04E-6163503ED8C2 Abstract. Information about the scientific collections is made available more and more often. The digitisation of such resources allows us to verify their value and share these records with other scientists – and they are usually rich in taxa and unique in the world. Moreover, such information significantly enriches local and global knowledge about biodiversi- ty. The digitisation of the resources of the Zoology Research Group, University of Silesia in Katowice (Poland) allowed presenting a substantial collection of scale insects (Hemiptera: Coccomorpha). The collection counts 9369 slide-mounted specimens, about 200 alcohol-preserved samples, close to 2500 dry specimens stored in glass vials and 1319 amber inclu- sions representing 343 taxa (289 identified to species level), 158 genera and 36 families (29 extant and seven extinct). -
Carex of New England
Field Guide to Carex of New England Lisa A. Standley A Special Publication of the New England Botanical Club About the Author: Lisa A. Standley is an environmental consultant. She obtained a B.S, and M.S. from Cornell University and Ph.D. from the University of Washington. She has published several articles on the systematics of Carex, particularly Section Phacocystis, and was the author of several section treatments in the Flora of North America. Cover Illustrations: Pictured are Carex pensylvanica and Carex intumescens. Field Guide to Carex of New England Lisa A. Standley Special Publication of the New England Botanical Club Copyright © 2011 Lisa A. Standley Acknowledgements This book is dedicated to Robert Reed, who first urged me to write a user-friendly guide to Carex; to the memory of Melinda F. Denton, my mentor and inspiration; and to Tony Reznicek, for always sharing his expertise. I would like to thank all of the people who helped with this book in so many ways, particularly Karen Searcy and Robert Bertin for their careful editing; Paul Somers, Bruce Sorrie, Alice Schori, Pam Weatherbee, and others who helped search for sedges; Arthur Gilman, Melissa Dow Cullina, and Patricia Swain, who carefully read early drafts of the book; and to Emily Wood, Karen Searcy, and Ray Angelo, who provided access to the herbaria at Harvard University, the University of Massachusetts, and the New England Botanical Club. CONTENTS Introduction .......................................................................................................................1