Species Classification and Nomenclature by Norbert Leist and Andrea Jonitz Prof

Total Page:16

File Type:pdf, Size:1020Kb

Species Classification and Nomenclature by Norbert Leist and Andrea Jonitz Prof ISTA Purity Seminar 15. June 2009 Zürich TlTools for seed identifi cati on species classification and nomenclature by Norbert Leist and Andrea Jonitz Prof. Dr. Norbert Leist Dr. Andrea Jonitz Brahmsstr.25 LTZ Augustenberg 76669 Bad Schönborn Neßlerstr.23 Germany 76227 Karlsruhe [email protected] Germany [email protected] Aquilegia vulgaris, Variation Variation • Variation is everywhere in biological systems. Natural variation at the population level is usualy not continuous, but occurs in discrete units or taxa. Easily the most important taxonomic level is the species because it is often the smallest clearly recognizable and discrete set of populations. • Understanding how species form and how to recognize them have been major challenges to systematists. The variation in one population becomes interrupted, the way to a split into two species strong hairy nearly glabrous Variation on species • Sources of variation: MttiMutation Recombination Independent assortment of the chromosomes Random genetic drift Selection Conservation of species characteristics avoiding gene flow Isolating barriers: temporal (seasonal, diurnal) habitat (wet, dry; calceous, silicious) floral (structural, behavioral eg. adaptations for pollinators) reproductive mode (self fertilisation, agamospery) incompatibility (pollen, seeds) hybrid inviability hybrid floral isolation hybrid sterility hybrid break down Iris germanica Iris sibirica Isolation by habitat Definition of „species“ is not easy A species is the smallest aggregation of populations (sexual) or lineages (asexual) diagnostible by a unique combination of character states in comparable individuals (Nixon and Wheeler 1990) Phy logeny Systematics Taxonomy Classification Nomenclature What does this mean? Systematic, Taxonomy Two concepts: • Systematic is the science of the diversity of organism • Taxonomy is the science of the clifiilassification of the organism Nowadays many biologists do not make a differentiation between systematics and taxonomy and use the terms equally How to define species • Heritable characters are needed. A heritable character is any aspect of the pl`lant`s morphlhology that can be passed down genetically through evolutionary time and still be recognizable. Eg: Petal color, inflorescence structure and general growth pattern are all known to be under genetic control and therefore stably inherited from one generation to the next. Basis for systematics • Systematics need the precise observation of organism. The assessment of similarity is the basis of comparative biology, and of systematics in particular. Two structures may be considered to be similar if – they are found in a similar position in both organism – they are similar in their cellular and histological structure – they are linked by intermediate forms of the structure (Remane`s criteria of similarity) Such structures may be – morphological: flowers, fruits, seeds, pollen, stem woodyness, root habit, annual – perennial lifespan – anatomical features: eg. Trachees – physiological features: chemical components eg. Alkaloids, protiteins – DNA sequences Tools for systematists work • Morphology Anatomy Physiology • Biochmistry Orgggpyanography Phyygpytography • Phytochoreology Phylogenetics Paleontology • Karyology Histology Cytology • Genetics • Only all the tools together lead to reliable results for a natural system Lunaria rediviva Thalictrum aquilegifolium Papaver paucifoliatum Anemone sylvestris One of the „natural systems“ of plants Aquilegia vulgaris, Variation Classification • Order Ranunculales • Family Ranunculaceae • Genus Aquilegia • Species vulgaris • Population • Individual plants Variability Classification of the plant kingdom • Kingdom • Division, Phylum ‐ phyta Spermatophyta • Subdivision ‐ phytina Magnoliophytina • Class ‐ opsida Liliopsida • Subclass ‐ idae Liliidae • Order ‐ ales Asparagales • Suborder ‐ ineae • Family ‐ aceae Amaryllidaceae • Subfamily ‐ oideae • Tribe ‐ eae • Subtribe ‐ inae • Genus Narcissus • Species blbbulbocodium • Suspecies subsp. bulbocodium • Variety var. citrinum • Cultivar `Kenellis` Phylogeny • The knowledge about many characteristics of plants is rapidly increasing. Therefore also the understanding of the natural system, based on the relationships of the taxa is increasing. • That leads in some cases to new arrangements in the phylogenetic tree of species, genera or even families. A consequence is that nomenclature has to follow this knowledge. Further readings Poales Poaceae, Andropogon glomeratus Juncaceae, Juncus dichotomus Poaceae, Oryza sativa Typhaceae, Typha domingensis Cyperaceae, Rhynchospora colorata Poaceae, Uniola paniculata Restionaceae, Elegia capensis Cyperaceae, Carex verrucosa Bromeliaceae, Tillandsia hotteana Ex: Plant Systematics, Judd et al. 2008 Carl von Linnaeus 1753 • introduced the binear nomenclature and based his artificial system on the floral characteristics • the principle of his concept is still today valid and was a great bkbreak throug h • before that time the species were named descripitivly: • Fumaria bulbosa radice non cava major or • Trifoliastrum pratense corymbiferum majus repens, corymbis forum magis sparsis, pediculis longissimis insidentibus, siliquis tetraspermis Rules to check and to set up correct plant names Started 1753 New findings Need for a new scientific name • A new species has been discovered • The check of the herbarium in a museum showed under the description of one species more than one species • By comparing the specimens of a species it becomes eviden t, that the same species has been described two times (eg. Cactus specimen collected by a botanist from Argentine and from Canada) • New studies on a genus elucidated, that one of their species belongs to another genus Nomenclature Taxonomic groups require names to ensure efficient communication regarding their identity, phylogenetic relationships and other aspects of their biology. The naming of plants is called botanical nomenclature. The principles and rules of botanical nomenclature have been developed and adapted by a series of international botanical congresses and are lis te d in the In terna tiona l CdCode of BtBotan ica l Nomenclature, ICBN (2006). The major goal of the ICBN is to provide one correct name for each taxonomic group or taxon wiihithin a stable system of names (classification) ICBN Requirements for naming new species • The species must be named. The name must be in LiLatin or latinized, in a binomial format and it must not ducplicate any name already in existence • The rank of the name must be clearly indicated • A type specimen must be designated • The specices must be described in Latin, or described in another language and accompanied by a Latin diagnosis (a brief statement of the character of the species or a comparison with a similar species) or linked to a reference with a Latin description. • All of this information must be effectively published; that means it must be presented in a publication that is availale to other botanists, such as a botanical journal or book. Publishing in a seed catalogue, newspaper, e‐mail message or other ephemeral sources do not qualify as effective publication. Nomenclature, Scientific Names • Nomenclatural Principles Botanical nomenclature is independent of zoological nomenclature • The application of names to taxonomic groups is determined by means of nomenclatural types, documented as holotype in a hbiherbarium (= type specimen or name‐bibearing speci)imen). Duplicates of holotypes are isotypes • The nomenclature of taxonomic groups is based on priority of publication. Later published names of the same taxon are called syyy,nonyms, that are not the correct names. • Each taxon can bear only one correct name • Scientific names are in Latin or Greek regardless their derivation. The use of latinised names facilitates communication among systematists from diverse cultural and language groups • The rules of nomenclature are retroactive . The ICBN system of rules has to be followed, even if there is no biological basis Examples for Synonyms • The name behind the species is the describer, very often L. for ClCarl von Linnaeus • Chenopo dium vulilvaria L. • If the name is changed, the first describer is in brackets • Cerastium cerastioides (L.)Britt. (= C. trigynum Vill.) • Chenopodium strictum Roth (Ch. strictum (Kras.) Murr; = Ch. album L. ssp. strictum (Kras)J .M urr) • Silene latifolia Poir. (= Melandrium album (Mill.) Garcke, = S. alba (Mill. )E. H. L. Krause) Nomenclature, examples Amaryllidaceae: • Descriptor Traub: Rauhia peruviana Traub 1957 • Ravenna recognized it conspecific with Phaedranassa multiflora Kunth 1850 • New name: Rauhia multiflora (Kunth) Ravenna Cactaceae: • Opuntia caespitosa found 1828, described by Poeppig 1835 • This name is preoccupied by the north american OiOpuntia cespitosa Rafinesque 1830 • Therefore Pfeiffer named Poeppigs discovery Opuntia poeppigii Otto • The same species described as Opuntia maihuenia Gay 1847 • Systematic research lead to Peireskia poeppigii • Maihuenia poeppigii Philippi ex K. Schum. 1898 …………. B.E. Leuenberger, 2008, Pereskia, Maihuenia, and Blossfeldia – Taxonomic history, updates, and notes. Haseltonia No.14,54‐93 Subspecies • In the case of subspecies, sensu strictu, the subspecies with holotype gets the name without author and the second one the name of the author responsible for the new description: • Carex atrata L. Hoppe found that there were different subspecies they were named: • Carex atrata L. ssp. atrata • Carex atrata
Recommended publications
  • Haseltonia Articles and Authors.Xlsx
    ABCDEFG 1 CSSA "HASELTONIA" ARTICLE TITLES #1 1993–#26 2019 AUTHOR(S) R ISSUE(S) PAGES KEY WORD 1 KEY WORD 2 2 A Cactus Database for the State of Baja California, Mexico Resendiz Ruiz, María Elena 2000 7 97-99 BajaCalifornia Database A First Record of Yucca aloifolia L. (Agavaceae/Asparagaceae) Naturalized Smith, Gideon F, Figueiredo, 3 in South Africa with Notes on its uses and Reproductive Biology Estrela & Crouch, Neil R 2012 17 87-93 Yucca Fotinos, Tonya D, Clase, Teodoro, Veloz, Alberto, Jimenez, Francisco, Griffith, M A Minimally Invasive, Automated Procedure for DNA Extraction from Patrick & Wettberg, Eric JB 4 Epidermal Peels of Succulent Cacti (Cactaceae) von 2016 22 46-47 Cacti DNA 5 A Morphological Phylogeny of the Genus Conophytum N.E.Br. (Aizoaceae) Opel, Matthew R 2005 11 53-77 Conophytum 6 A New Account of Echidnopsis Hook. F. (Asclepiadaceae: Stapeliae) Plowes, Darrel CH 1993 1 65-85 Echidnopsis 7 A New Cholla (Cactaceae) from Baja California, Mexico Rebman, Jon P 1998 6 17-21 Cylindropuntia 8 A New Combination in the genus Agave Etter, Julia & Kristen, Martin 2006 12 70 Agave A New Series of the Genus Opuntia Mill. (Opuntieae, Opuntioideae, Oakley, Luis & Kiesling, 9 Cactaceae) from Austral South America Roberto 2016 22 22-30 Opuntia McCoy, Tom & Newton, 10 A New Shrubby Species of Aloe in the Imatong Mountains, Southern Sudan Leonard E 2014 19 64-65 Aloe 11 A New Species of Aloe on the Ethiopia-Sudan Border Newton, Leonard E 2002 9 14-16 Aloe A new species of Ceropegia sect.
    [Show full text]
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Boophone Disticha
    Micropropagation and pharmacological evaluation of Boophone disticha Lee Cheesman Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy Research Centre for Plant Growth and Development School of Life Sciences University of KwaZulu-Natal, Pietermaritzburg April 2013 COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCES DECLARATION 1 – PLAGIARISM I, LEE CHEESMAN Student Number: 203502173 declare that: 1. The research contained in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other University. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and the source being detailed in the thesis and in the reference section. Signed at………………………………....on the.....….. day of ……......……….2013 ______________________________ SIGNATURE i STUDENT DECLARATION Micropropagation and pharmacological evaluation of Boophone disticha I, LEE CHEESMAN Student Number: 203502173 declare that: 1. The research reported in this dissertation, except where otherwise indicated is the result of my own endeavours in the Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg.
    [Show full text]
  • Phytolacca Esculenta Van Houtte
    168 CONTENTS BOSABALIDIS ARTEMIOS MICHAEL – Glandular hairs, non-glandular hairs, and essential oils in the winter and summer leaves of the seasonally dimorphic Thymus sibthorpii (Lamiaceae) .................................................................................................. 3 SHARAWY SHERIF MOHAMED – Floral anatomy of Alpinia speciosa and Hedychium coronarium (Zingiberaceae) with particular reference to the nature of labellum and epigynous glands ........................................................................................................... 13 PRAMOD SIVAN, KARUMANCHI SAMBASIVA RAO – Effect of 2,6- dichlorobenzonitrile (DCB) on secondary wall deposition and lignification in the stem of Hibiscus cannabinus L.................................................................................. 25 IFRIM CAMELIA – Contributions to the seeds’ study of some species of the Plantago L. genus ..................................................................................................................................... 35 VENUGOPAL NAGULAN, AHUJA PREETI, LALCHHANHIMI – A unique type of endosperm in Panax wangianus S. C. Sun .................................................................... 45 JAIME A. TEIXEIRA DA SILVA – In vitro rhizogenesis in Papaya (Carica papaya L.) ....... 51 KATHIRESAN KANDASAMY, RAVINDER SINGH CHINNAPPAN – Preliminary conservation effort on Rhizophora annamalayana Kathir., the only endemic mangrove to India, through in vitro method ..................................................................................
    [Show full text]
  • Bulletin / New York State Museum
    Juncaceae (Rush Family) of New York State Steven E. Clemants New York Natural Heritage Program LIBRARY JUL 2 3 1990 NEW YORK BOTANICAL GARDEN Contributions to a Flora of New York State VII Richard S. Mitchell, Editor Bulletin No. 475 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 NEW YORK THE STATE OF LEARNING Digitized by the Internet Archive in 2017 with funding from IMLS LG-70-15-0138-15 https://archive.org/details/bulletinnewyorks4751 newy Juncaceae (Rush Family) of New York State Steven E. Clemants New York Natural Heritage Program Contributions to a Flora of New York State VII Richard S. Mitchell, Editor 1990 Bulletin No. 475 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University Martin C. Barell, Chancellor, B.A., I. A., LL.B Muttontown R. Carlos Carballada, Vice Chancellor , B.S Rochester Willard A. Genrich, LL.B Buffalo Emlyn 1. Griffith, A. B., J.D Rome Jorge L. Batista, B. A., J.D Bronx Laura Bradley Chodos, B.A., M.A Vischer Ferry Louise P. Matteoni, B.A., M.A., Ph.D Bayside J. Edward Meyer, B.A., LL.B Chappaqua Floyd S. Linton, A.B., M.A., M.P.A Miller Place Mimi Levin Lieber, B.A., M.A Manhattan Shirley C. Brown, B.A., M.A., Ph.D Albany Norma Gluck, B.A., M.S.W Manhattan James W.
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Flora of the Stansbury Mountains, Utah
    Great Basin Naturalist Volume 43 Number 4 Article 11 10-31-1983 Flora of the Stansbury Mountains, Utah Alan C. Taye U.S. Army Intelligence Center and School, Fort Huachuca, Arizona Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Taye, Alan C. (1983) "Flora of the Stansbury Mountains, Utah," Great Basin Naturalist: Vol. 43 : No. 4 , Article 11. Available at: https://scholarsarchive.byu.edu/gbn/vol43/iss4/11 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. FLORA OF THE STANSBURY MOUNTAINS, UTAH Alan C. Taye' Abstract.— The Stansbury Mountains of north central Utah rise over 2000 m above surrounding desert valleys to a maximum elevation of 3362 m on Deseret Peak. Because of the great variety of environmental conditions that can be found in the Stansburys, a wide range of plant species and vegetation types (from shadscale desert to alpine mead- ow) exist there. This paper presents an annotated list of 594 vascular plant species in 315 genera and 78 families. The largest families are Asteraceae (98 species), Poaceae (71), Brassicaceae (33), Fabaceae (27), and Rosaceae (26). Elymiis flcwescens was previously unreported from Utah. Statistical comparison of the Stansbury flora with neighboring mountain floras indicates that the Wasatch Mountains lying 65 km to the east have probably been the primary source area for development of the Stansbury flora.
    [Show full text]
  • Bushy Beardgrass Is Used Andropogon Glomeratus As an Ornamental Grass in Landscapes Because of Its (Walt.) B.S.P
    Plant Guide summer, fall, and winter months; however, it is more BUSHY palatable during the early spring. The palatability is increased after a late winter burning. BEARDGRASS Ornamental Landscaping: Bushy beardgrass is used Andropogon glomeratus as an ornamental grass in landscapes because of its (Walt.) B.S.P. showy plumes that turn a rust color during late fall Plant Symbol = ANGL2 and early winter. It is recommended for golf courses, around pond edges, stream banks and other wet sites. Contributed by: USDA NRCS Louisiana State Office, National Plant Data Center, & the Grazing Land Wildlife: Bushy beardgrass benefits wildlife. The Conservation Initiative-South Central Region finch, junco, and tree sparrow eat the seeds. The white-tailed deer and rabbits browse the plant. Bushy beardgrass also provides cover for mottled ducks and fawns (white-tailed deer). Conservation Practices: Bushy beardgrass, because of its growth habit, potentially has application when established with the following conservation practices; however, conservation practice standards vary by state. For localized information, consult your local NRCS Field Office. NRCS practices include the following: 327-Conservation Cover; 386-Field Border; 390-Riparian Herbaceous Cover; 393-Filter Strip; 512-Pasture and Hay Planting; 550-Range Planting; 560-Access Road; 562-Recreation Area Improvement; 643-Restoration and Management of Declining Habitats; 644-Wetland Wildlife Habitat Management; 647-Early Successional Habitat Development/Management; 656-Constructed Wetland; 657-Wetland Restoration; 658-Wetland Creation; 659-Wetland Enhancement. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status, such as, state noxious status and wetland indicator values.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae)
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae) Lendel, Anita Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-93287 Dissertation Published Version Originally published at: Lendel, Anita. South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae). 2013, University of Zurich, Faculty of Science. South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae) _________________________________________________________________________________ Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr.sc.nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anita Lendel aus Kroatien Promotionskomitee: Prof. Dr. H. Peter Linder (Vorsitz) PD. Dr. Reto Nyffeler Prof. Dr. Elena Conti Zürich, 2013 Table of Contents Acknowledgments 1 Introduction 3 Chapter 1. Phylogenetics and taxonomy of the tribe Cereeae s.l., with particular focus 15 on the subtribe Trichocereinae (Cactaceae – Cactoideae) Chapter 2. Floral evolution in the South American tribe Cereeae s.l. (Cactaceae: 53 Cactoideae): Pollination syndromes in a comparative phylogenetic context Chapter 3. Contemporaneous and recent radiations of the world’s major succulent 86 plant lineages Chapter 4. Tackling the molecular dating paradox: underestimated pitfalls and best 121 strategies when fossils are scarce Outlook and Future Research 207 Curriculum Vitae 209 Summary 211 Zusammenfassung 213 Acknowledgments I really believe that no one can go through the process of doing a PhD and come out without being changed at a very profound level.
    [Show full text]