ABLV BAT STATS December 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bat Conservation 2021
Bat Conservation Global evidence for the effects of interventions 2021 Edition Anna Berthinussen, Olivia C. Richardson & John D. Altringham Conservation Evidence Series Synopses 2 © 2021 William J. Sutherland This document should be cited as: Berthinussen, A., Richardson O.C. and Altringham J.D. (2021) Bat Conservation: Global Evidence for the Effects of Interventions. Conservation Evidence Series Synopses. University of Cambridge, Cambridge, UK. Cover image: Leucistic lesser horseshoe bat Rhinolophus hipposideros hibernating in a former water mill, Wales, UK. Credit: Thomas Kitching Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/ 3 Contents Advisory Board.................................................................................... 11 About the authors ............................................................................... 12 Acknowledgements ............................................................................. 13 1. About this book ........................................................... 14 1.1 The Conservation Evidence project ................................................................................. 14 1.2 The purpose of Conservation Evidence synopses ............................................................ 14 1.3 Who this synopsis is for ................................................................................................... 15 1.4 Background ..................................................................................................................... -
A New Species of Eumops (Chiroptera: Molossidae) from Southwestern Peru
Zootaxa 3878 (1): 019–036 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3878.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:FDE7F7A4-7DCC-4155-8D96-A0539229DBFE A new species of Eumops (Chiroptera: Molossidae) from southwestern Peru CÉSAR E. MEDINA1, RENATO GREGORIN2, HORACIO ZEBALLOS1,3, HUGO T. ZAMORA1 & LIGIANE M. MORAS4 1Museo de Historia Natural de la Universidad Nacional San Agustín (MUSA). Av. Alcides Carrión s/n. Arequipa, Perú. E-mail: [email protected] 2Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, CEP 37200-000, Brazil. E-mail: [email protected] 3Instituto de Ciencias de la Naturaleza, Territorio y Energías Renovables, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, San Miguel, Lima 32, Perú. E-mail: [email protected] 4Departamento de Zoologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. E-mail: [email protected] Abstract The genus Eumops is the most diverse genera of molossid bats in the Neotropics. In Peru this genus is widely distributed and represented by nine species: E. auripendulus, E. delticus, E. hansae, E. maurus, E. nanus, E. patagonicus, E. perotis, E. trumbulli, and E. wilsoni. After several years of mammalian diversity surveys in the coastal desert and western slopes of southwestern Peru, a specimen of Eumops was collected whose unique set of traits allows us to assert that deserves to be described as a new species. Based on molecular and morphological evidence, the new species is related to medium- large sized species (i.e. -
Index of Handbook of the Mammals of the World. Vol. 9. Bats
Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A. -
Nest Boxes: Creating Homes for Urban Wildlife
Nest Boxes: Creating homes for urban wildlife Importance of Hollows Australia is home to over 350 species of land animals that depend on the hollows that form in old growth eucalyptus trees for shelter or reproduction. Hollows are formed through loss of limb, insect activity (like termites), decay and weathering. Suitable hollows taken a minimum of 80- 100 years and for larger animals it could be 150-250 years for a suitable hollow to form. Some of the many animals in Australia that rely on tree hollows include parrots, owls, kingfishers, ducks, possums, gliders, micro bats and even many reptiles, frogs and invertebrates. Within urban areas hollow bearing trees are found on public land (national parks, water ways, beach foreshore and streets) and on private land (front and back yards). Many hollow dependent species are in decline due to the widespread loss of hollow bearing trees. In urban areas hollows are removed for urban development (new houses, roads and factories) and for public safety reasons. Even if these trees are replanted, up to 100 years or more may pass before they begin to form hollows suitable for use by wildlife. If hollow dependent species are to continue to survive in urban and rural areas, urgent action is required to protect hollow bearing trees wherever possible. Nest boxes are needed in areas where hollows have already been lost. What are Nest Boxes? Nest boxes act as an artificial hollow that provide opportunities for hollow dependent fauna to survive in areas where their natural breeding habitat has been destroyed. Nest boxes are most useful in areas where hollows are lacking and other aspects of habitat are sufficient, such as food and water supply. -
Appendix a Fauna Survey Effort and Results
APPENDIX A FAUNA SURVEY EFFORT AND RESULTS October 2016 Prepared by Anderson Environment and Planning The Fauna Survey Effort (FSE) for the Biobanking Assessment Report has been guided by the following: The predict threatened species from within the Biobanking Credit Calculator; The Threatened Species Survey and Assessment Guidelines for developments and activities (working draft), NSW Department of Environment and Conservation (2004); The NSW Threatened Species Profile Database; and Previous fauna survey results from the site. The following Ecosystem Credit species have been recorded on the site during past or current survey work: Eastern Bentwing-bat (Miniopterus schreibersii oceanensis); Eastern False Pipistrelle (Falsistrellus tasmaniensis); Eastern Freetail-bat (Mormopterus norfolkensis); Greater Broad-nosed Bat (Scoteanax rueppellii); Grey-headed Flying-fox (Pteropus poliocephalus); Little Bentwing-bat (Miniopterus australis); Little Lorikeet (Glossopsitta pusilla); Long-nosed Potoroo (Potorous tridactylus); Powerful Owl (Ninox strenua); Squirrel Glider (Petaurus norfolcensis); Varied Sittella (Daphoenositta chrysoptera); Yellow-bellied Glider (Petaurus australis); Yellow-bellied Sheathtail-bat (Saccolaimus flaviventris). The following Species Credit species have been recorded on the site or surrounds during past survey work: Koala (Phascolarctos cinereus); Wallum Froglet (Crinia tinnula). Prepared by Anderson Environment and Planning Contents 1.0 Introduction .............................................................................................................................................. -
DOC Best Practice Manual of Conservation Techniques for Bats Version 1.0
DOC best practice manual of conservation techniques for bats Version 1.0 This manual was prepared by Jane Sedgeley, Colin O’Donnell, John Lyall, Hannah Edmonds, Warren Simpson, Jo Carpenter, Jo Hoare and Kate McInnes (2012). Contents Introduction ................................................................................................................................................... 2 Introduction to New Zealand bats/pekapeka ............................................................................................... 5 Conservation management of New Zealand bats ..................................................................................... 21 Finding bats with bat detectors .................................................................................................................. 37 Species identification in the hand .............................................................................................................. 49 Inventory and monitoring methods for counting bats ................................................................................ 56 Catching bats ............................................................................................................................................. 58 Handling, examining, measuring and releasing bats ................................................................................ 85 Banding and marking ............................................................................................................................... 112 Attaching radio -
The Role and Impact of Zootaxa in Mammalogy in Its First 20 Years
Zootaxa 4979 (1): 070–094 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Review ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.10 http://zoobank.org/urn:lsid:zoobank.org:pub:15620BC4-B989-4A98-84D0-019707FF0197 The role and impact of Zootaxa in mammalogy in its first 20 years PEDRO CORDEIRO-ESTRELA¹, ANDERSON FEIJÓ², PHILIPPE GAUBERT³, MARCELO WEKSLER4, LIONEL HAUTIER5,6, PAÚL M. VELAZCO7,8, PABLO TETA9, PIERRE-HENRI FABRE5,6, GERALDINE 10 11 VERON & JANET K. BRAUN 1Laboratório de Mamíferos, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, PB, Brazil. [email protected]; https://orcid.org/0000-0003-3383-571X 2Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China. [email protected]; http://orcid.org/0000-0002-4643-2293 3Laboratoire Évolution & Diversité Biologique, Université Toulouse III Paul Sabatier, 118 route de Narbonne – Bât. 4R1, 31062 Toulouse cedex 9, France. [email protected]; https://orcid.org/0000-0002-1375-9935 4Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, 20940-040 Rio de Janeiro, RJ, Brazil. [email protected]; https://orcid.org/0000-0001-8111-4779 5Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France. [email protected]; https://orcid.org/0000-0001-8701-5421 [email protected]; https://orcid.org/0000-0002-3414-5625 6Mammal Section, Department of Life Sciences, The Natural History Museum, SW7 5DB London, United Kingdom 7Department of Mammalogy, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA. -
Bats of the SA Murray Region
Community Bat Monitoring Program with the Mid Murray LAP The Mid Murray Local Action Planning Committee (Mid Murray LAP) BATS has been coordinating a Community Bat Monitoring Program since 2003. This program has been part of the 'Bats for Biodiversity' project initiated by the Mt Pleasant Natural Resource Centre and the Upper of South Australia's Murray Region Torrens Landcare Group. Over the years, many landholders have borrowed an Anabat detector to record the species they have on Bats are one of the largest groups of mammals: with approximately 1000 their properties. species, they make up nearly a quarter of the world's mammal species. There are around 90 species in Australia. Bats are unlike other small mammals in that they can live for a long time, at least 10 years, and are the only mammal that have the ability of sustainable flight. W S N Bats belong to the Order Chiroptera, which means Morgan hand-wing. Microchiroptera (microbats) and Harp nets Megachiroptera (megabats) are the two main groups (suborders). There are 16 species of microbats found Renmark in South Australia's Murray Region. Waikerie An Anabat detector is electronic equipment that Berri The South Australia's Murray Region is defined as the allows the passive monitoring of bats by detecting Blanchetown Catchment area of the Murray River from the South and recording their ultrasonic echolocation calls. Australian border to the Murray Mouth. The echolocation calls of bats are unique to each Loxton species and can be used to identify the bats. All of the bat species in South Australia's Murray Valley are insectivorous, with the exception of the The Mid Murray LAP's Community Bat Monitoring endangered Myotis macropus that also catches fish program includes the Anabat detectors being used with its large hind feet. -
Gundabooka National Park Report Compr
Ecological Study of the Endangered Bristle-nosed bat (Mormopterus ‘species 6’) and Survey of Microchiropteran Bats in Gundabooka National Park Report for NSW National Parks & Wildlife Service Upper Darling Region Michael Pennay NSW Department of Environment & Conservation PO Box 733, Queanbeyan NSW 2620 2 Summary The primary aim of this study was to ascertain basic ecological information about the Endangered Bristle-nosed Bat (Mormopterus ‘species 6’) The Bristle-nosed bat is one of Australia’s least known microbats, known from only 22 specimens captured at scattered locations in the arid and semi arid regions of central Australia, Queensland and north-western New South Wales. Nothing is known of its ecology. It is listed as Endangered in NSW on the basis of its rarity (only 6 individuals known prior to this study) and Data deficient by the IUCN. Recent genetic investigations into the taxonomy of Australian molossids suggests that the Bristle-nosed bat is currently misplaced and in fact belongs in a monotypic genus separate from other Australian Mormopterus, further elevating the conservation significance of the species on the basis of genetic uniqueness (Reardon 2006). During a 10 day study in November 2005 10 Bristle-nosed bats were trapped at Gundabooka National Park in north-western NSW. Using radio transmitters the bats were tracked to locate roosts and monitor the foraging behaviour of the species. General behavioural and morphological observations including diet, flight patterns, airframe design and echolocation call were also recorded. Key Results · Three diurnal roosts were located including one maternity roost · The bats were found to roost communally, sometimes with other species · Roosts were all located in Bimbil Box and Inland Red Box tree hollows with tiny entrances amongst the fringing vegetation of a large dry creek channel (Yanda Creek) · Both foraging activity and roost locations were significantly biased in favour of riparian habitat along Yanda creek channel and avoiding the surrounding mulga shrublands. -
African Bat Conservation News
Volume 36 African Bat Conservation News November 2014 ISSN 1812-1268 © ECJ Seamark, 2014 (AfricanBats) Above: A female Geoffroy’s Horseshoe Bat (Rhinolophus clivosus) caught in the Telperion Nature Reserve, Mpumalanga, South Africa on the 21 February 2014, with collectors number ECJS-42/2014. Inside this issue: Scientific contributions The first record of the African Sheath-tailed Bat Coleura afra (Peters, 1852) (Mammalia, Chiroptera) in 2 Cameroon with information on its ecology Recent Literature Papers 4 Notice Board Conferences 15 Call for contributions 15 Download and subscribe to African Bat Conservation News published by AfricanBats at: www.africanbats.org The views and opinions expressed in articles are no necessarily those of the editor or publisher. Articles and news items appearing in African Bat Conservation News may be reprinted, provided the author’s and newsletter refer- ence are given. African Bat Conservation News November 2014 vol. 36 2 ISSN 1812-1268 Scientific contributions THE FIRST RECORD OF THE AFRICAN SHEatH-taILED Bat Coleura afra (PETERS, 1852) (MAMMALIA, CHIROPTERA) IN CAMEROON WITH INFORmatION ON ITS ECOLOGY MATTHEW LEBRETON1,2, ERIC MOISE BAKWO FILS3*, JEAN MICHEL TAKUO2 and JOSEPH LE DOUX DIFFO JOSEPH DIFFO LEDOUX2 1 Mosaic, BP 35322, Yaoundé, CAMEROON. 2 Global Viral Cameroon, BP 7039, Yaoundé, CAMEROON. 3 Department of Biological Sciences; Faculty of Sciences; University of Maroua; CAMEROON *Corresponding author. E-mail address: [email protected] Coleura afra (Peters, 1852) is known from different localities across portions of sub-Saharan Africa. A colony of about 5,000 individuals of this species was recently identified in a cave, south east of Edea in the Littoral Region of Cameroon). -
Os Nomes Galegos Dos Morcegos 2018 2ª Ed
Os nomes galegos dos morcegos 2018 2ª ed. Citación recomendada / Recommended citation: A Chave (20182): Os nomes galegos dos morcegos. Xinzo de Limia (Ourense): A Chave. http://www.achave.ga"/wp#content/up"oads/achave_osnomes!a"egosdos$morcegos$2018.pd% Para a elaboración deste recurso léxico contouse coa colaboración de Lois de la Calle Carballal. Fotografía: orelludo cincento (Plecotus austriacus ). Autor: Jordi as. &sta o'ra est( su)eita a unha licenza Creative Commons de uso a'erto* con reco+ecemento da autor,a e sen o'ra derivada nin usos comerciais. -esumo da licenza: https://creativecommons.or!/"icences/'.#n #nd//.0/deed.!". Licenza comp"eta: https://creativecommons.or!/"icences/'.#n #nd//.0/"e!a"code0"an!ua!es. 1 !otas introdutorias " que contén este documento Na primeira edición deste documento (2016) fornecéronse denominacións galegas para as especies de morcegos : todas as que están presentes na Galiza (cando menos 2!) e máis de 500 especies do resto do mundo# Nesta segunda edición (2018) incorpórase o logo da %&a'e ao deseño do documento engádese algún nome galego máis e reescr*+ense as notas introdutorias# ,áis completa que a anterior nesta no'a edición ac&éganse nomes galegos para un total de 552 especies# A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as superfamilias e familias de morcegos onde se apunta de maneira xeral os nomes dos morcegos que &ai en cada familia# / seguir 'én o corpo do documento unha listaxe onde se indica especie por especie, alén do nome cient*fico os nomes -
Checklist of the Mammals of Western Australia
Records ofthe Western Australian Museum Supplement No. 63: 91-98 (2001). Checklist of the mammals of Western Australia R.A. How, N.K. Cooper and J.L. Bannister Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia INTRODUCTION continued collection of species across their range. The Checklist ofthe Mammals ofWestern Australia is Where the level of taxonomic uncertainty is being a collation of the most recent systematic information formally resolved, footnotes to the individual taxon on Western Australian mammal taxa, incorporating appear at the end of the family listings. the list of taxa compiled from the Western Numerous taxa have become extinct on a national Australian Museum's mammal database and the or state level since European settlement and there literature. The Checklist presents the nomenclature have been several recent attempts to reintroduce accepted by the Western Australian Museum in regionally extinct taxa to former areas. The present maintaining the state's mammal collection and status of these taxa is indicated by symbols in the database. Listed are those species probably extant Checklist. at the time of arrival of Europeans to Western Australia. Symbols used Nomenclature, in general, follows the Zoological t Denotes extinct taxon. Catalogue ofAustralia, Volume 5, Mammalia (1988). * Denotes taxon extinct in Western Australia but Consideration has been given to the nomenclatural extant in other parts of Australia. decisions in The 1996 Action Plan of Australian $ Denotes taxon extinct on Western Australian Marsupials and Monotremes (Maxwell, Burbidge and mainland and recently reintroduced from other Morris, 1996) and The Action Plan for Australian Bats parts of Australia or translocated from islands (Reardon, 1999a).