Methods and Protocols M ETHODS in MOLECULAR BIOLOGY™

Total Page:16

File Type:pdf, Size:1020Kb

Methods and Protocols M ETHODS in MOLECULAR BIOLOGY™ Methods in Molecular Biology 1068 Kazushige Touhara Editor Pheromone Signaling Methods and Protocols M ETHODS IN MOLECULAR BIOLOGY™ Series Editor John M. Walker School of Life Sciences University of Hertfordshire Hat fi eld, Hertfordshire, AL10 9AB, UK For further volumes: http://www.springer.com/series/7651 Pheromone Signaling Methods and Protocols Edited by Kazushige Touhara Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan Editor Kazushige Touhara Department of Applied Biological Chemistry Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo , Japan ISSN 1064-3745 ISSN 1940-6029 (electronic) ISBN 978-1-62703-618-4 ISBN 978-1-62703-619-1 (eBook) DOI 10.1007/978-1-62703-619-1 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013947162 © Springer Science+Business Media, LLC 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Humana Press is a brand of Springer Springer is part of Springer Science+Business Media (www.springer.com) Pref ace Many animal species utilize chemosensory systems to detect a variety of chemical sub- stances in the external environment. When these substances convey information regard- ing food, predators, species, or sex, it is considered chemical communication between organisms. The notion of chemical communication was fi rst proposed by Charles Darwin in the late nineteenth century, in conjunction with the physical signal-mediated commu- nication described for the visual and auditory systems. At approximately the same time, Jean Henri Fabre described the attraction of male moths by conspecifi c females, and proposed that the cue was not a visual signal but some kind of smell. The concept of chemical interaction was scientifi cally recognized when Albrecht Beth proposed in 1932 the term “ectohormone” for substances that functioned like a hormone but were secreted into the external environment. The fi rst molecular evidence for a substance that was able to mediate chemical com- munication was obtained when Butenandt discovered bombykol, the sex pheromone of the silk moth Bombyx mori , in 1959, which is released by females and elicits the full sequence of sexual behavior in male moths [1]. The term “pheromone” was then defi ned by Karlson and Luscher as “substances which are secreted to the outside by an individual and received by a second individual of the same species, in which they release a specifi c reaction, for example, a defi nite behavior or developmental process” [2]. Pheromone is a combined term from the Greek words pherein for “to bear or transfer” and hormao for “to excite.” Specifi c reactions by pheromones are generally categorized into two types: one that releases a visible stereotyped behavior such as attraction or avoidance and a second that elicits endo- crinological changes such as puberty acceleration and estrous cycle regulation. A pheromone appears to be a type of smell recognized by some species; however, the defi nition specifi cally avoids any use of the terms “odor” or “odorant.” It does not even defi ne pheromones as being volatile. Karlson and Luscher were shown to be insightful in this regard, as future research was to fi nd that pheromones can be nonvolatile substances including relatively large organic compounds, peptides, and proteins. Recently, there has been some contention in the fi eld as to whether the defi nition of pheromones should be extended, as pheromones appear to play far more diverse functional roles than previously defi ned. Possible criteria for a more inclusive defi nition of a pheromone may be that (1) pheromones are released by one individual and received by conspecifi cs; (2) pheromones themselves may convey meaningful information including sex, strain, and species to the receiver; and (3) pheromonal effects are stereotyped or innate. It is of note that the same molecule may be utilized as a pheromone in different species. It is also important to note that pheromones are distinct from individual chemical information that may be learned [3]. The mechanisms underlying pheromone action are also of signifi cance. A receptor that senses insect sex pheromone was fi rst discovered in the silk moth. The bombykol receptor was identifi ed as a male-specifi c seven transmembrane protein that appeared to belong to the olfactory receptor superfamily, and that which showed a highly specifi c and sensitive v vi Preface response to bombykol [4]. It was later found that the mechanism of signal transduction was distinct from the one observed in vertebrates where the insect pheromone receptors formed a heteromeric ligand-gated cation channel complex [5, 6]. The electrical signal is transmit- ted to specifi c glomeruli in the antennal lobe, the fi rst center of the olfactory sensory path- way, and integrated in the higher brain to elicit sexual behavior. In vertebrates, volatile pheromones are detected by the main olfactory system in addi- tion to the secondary olfactory system called the vomeronasal organ located at the bottom of the nasal cavity [7]. The vomeronasal system was identifi ed in amphibians, rodents, and some primate species and detects not only volatile cues but also nonvolatile pheromones. The old-world monkeys and humans do not possess a vomeronasal organ, but rather detect pheromones in the main olfactory system, if at all. The receptors belong to the G protein- coupled receptor superfamily including the olfactory receptor (OR), trace amine-associated receptor (TAAR), and vomeronasal receptor (VR). The signal is further transmitted to the main or accessory olfactory bulb and subsequently conveyed to the higher brain areas responsible for specifi c behavioral and neuroendocrinological output. The development of molecular biology and neuroscience techniques has permitted the precise method of pheromone action from the molecule to the receptor to be defi ned [7]. The next aim of pheromone research is to further our understanding of how pheromone information is integrated in the brain, and how specifi c behavioral output is regulated by the neural circuitry. The pheromone system is an ideal model for understanding the neural networks that lead to various adaptive behaviors. Another important area to investigate is whether humans also impart chemical communication via pheromones. Given humans have evolved visual and auditory senses as their major cue, it seems appropriate to suggest that meaningful chemical communication does not exist in humans today. However, it is also true that humans often feel appeased by the smell of infants. Menstrual synchrony in females living closely together is also another example of potential chemical communication within the human species [8]. In contrast, rodents appear to heavily rely on chemical communica- tion throughout life. A full list of required compounds and their receptors, however, is yet to be fully revealed. The mechanism underlying how a selective pressure occurred on sen- sory systems so that each animal developed a sophisticated and individually tailored chemi- cal communication strategy remains unknown. The strategy is thought to be optimal for the survival of each organism under their living environment. In this regard, the evolution- ary history of changes in pheromone molecules and genome related to pheromone recep- tion will tell us where we came from and in which direction we are headed. Over the last decade, a great deal of progress has been made into understanding the molecular mechanisms underlying pheromone action, largely due to the discovery of recep- tor genes and the advancement of imaging techniques. The major goal of Pheromone Signaling is to provide experimental methods and protocols that allow us to perform pher- omone research in a variety of organisms ranging from invertebrates to vertebrates.
Recommended publications
  • Japanese Persimmons
    RES. BULL PL. PROT. JAPAN No. 31 : 67 - 73 (1995) Methyl Bromide Fumigation for Quarantine Control of Persimmon Fruit Moth and Yellow Peach Moth on Japanese Persimmons Sigemitsu TOMOMATSU, Tadashi SAKAGUCHI*, Tadashi OGlNO and Tadashi HlRAMATSU Kobe Plant Protection Station Takashi Misumi** and Fusao KAWAKAMI Chemical & Physical Control Laboratory, Research Division, Yokohama Plant Protection Station Abstract : Susceptibility of mature larvae of persimmon fruit moth (PFM) , Stathmopoda masinissa MEYRICK, and egg and larval stages of yellow peach moth (YPM) , Conogethes punctiferalis (GUENEE) to methyl bromide (MB) fumigation for 2 hours at 15℃ showed that mature larvae of PFM were the most resistant (LD50: 15.4-16.4 g/m3, LD95: 23.9-26.1 g/m3) of other stages of YPM (2-day-oId egg; LD50:13.5 g/m3, LD95: 19.4 g/m3, 5-day-oId egg; LD50:4.1 g/m3, LD95: 8.4 g/m3 and Larvae; LD50: 5.0-7.7 g/m3 LD95: 8.8-12.3 g/m3) . A 100% mortality for mature larvae of PFM in Japanese persimmons "Fuyu", Diospyros kaki THUNB. in plastic field bins was attained with fumigation standard of 48 g/m3 MB for 2 hours at 15℃ with 49.1-51.9% Ioading in large-scale mortality tests. Key words : Insecta, Stathmopoda masinissa. Conogethes punctiferalis, quarantine treatment, methyl bromide, Japanese persimmons Introduction Japanese persimmons, Diospyros kaki THUNB. are produced mainly in the Central and West- ern regions in Japan which include such prefectures as Gifu, Aichi, Nara, Wakayama, Ehime and Fukuoka. The total weight of commercial crops for persimmons in 1989 was 265,700 tons.
    [Show full text]
  • 264 Subpart—Sweetpotatoes
    § 318.30 7 CFR Ch. III (1–1–06 Edition) vegetables moved under this section shall be deemed to be a violation of must be 60 °F or lower from the time this section. the fruits and vegetables leave Hawaii (Approved by the Office of Management and until they exit the continental United Budget under control number 0579–0088) States. [58 FR 7959, Feb. 11, 1993; 58 FR 40190, July 27, (l) Prohibited materials. (1) The person 1993, as amended at 59 FR 67133, Dec. 29, 1994; in charge of or in possession of a sealed 59 FR 67609, Dec. 30, 1994] container used for movement into or through the continental United States Subpart—Sweetpotatoes under this section must ensure that the sealed container is carrying only those § 318.30 Notice of quarantine. fruits and vegetables authorized by the (a) The Administrator of the Animal transit permit required under para- and Plant Health Inspection Service graph (a) of this section; and has determined that it is necessary to (2) The person in charge of or in pos- quarantine Hawaii and Puerto Rico to session of any means of conveyance or prevent the spread to other parts of the container returned to the United United States of the sweetpotato States without being reloaded after scarabee (Euscepes postfasciatus being used to export fruits and vegeta- Fairm.), and the sweetpotato stem bles from the United States under this borer (Omphisa anastomosalis Guen.), section must ensure that the means of dangerous insect infestations new to conveyance or container is free of ma- and not widely prevalent or distributed terials prohibited importation into the within or throughout the United United States under this chapter.
    [Show full text]
  • Download Download
    Agr. Nat. Resour. 54 (2020) 499–506 AGRICULTURE AND NATURAL RESOURCES Journal homepage: http://anres.kasetsart.org Research article Checklist of the Tribe Spilomelini (Lepidoptera: Crambidae: Pyraustinae) in Thailand Sunadda Chaovalita,†, Nantasak Pinkaewb,†,* a Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand b Department of Entomology, Faculty of Agriculture at Kamphaengsaen, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand Article Info Abstract Article history: In total, 100 species in 40 genera of the tribe Spilomelini were confirmed to occur in Thailand Received 5 July 2019 based on the specimens preserved in Thailand and Japan. Of these, 47 species were new records Revised 25 July 2019 Accepted 15 August 2019 for Thailand. Conogethes tenuialata Chaovalit and Yoshiyasu, 2019 was the latest new recorded Available online 30 October 2020 species from Thailand. This information will contribute to an ongoing program to develop a pest database and subsequently to a facilitate pest management scheme in Thailand. Keywords: Crambidae, Pyraustinae, Spilomelini, Thailand, pest Introduction The tribe Spilomelini is one of the major pests in tropical and subtropical regions. Moths in this tribe have been considered as The tribe Spilomelini Guenée (1854) is one of the largest tribes and the major pests of economic crops such as rice, sugarcane, bean belongs to the subfamily Pyraustinae, family Crambidae; it consists of pods and corn (Khan et al., 1988; Hill, 2007), durian (Kuroko 55 genera and 5,929 species worldwide with approximately 86 genera and Lewvanich, 1993), citrus, peach and macadamia, (Common, and 220 species of Spilomelini being reported in North America 1990), mulberry (Sharifi et.
    [Show full text]
  • A New Leaf-Mining Moth from New Zealand, Sabulopteryx Botanica Sp
    A peer-reviewed open-access journal ZooKeys 865: 39–65A new (2019) leaf-mining moth from New Zealand, Sabulopteryx botanica sp. nov. 39 doi: 10.3897/zookeys.865.34265 MONOGRAPH http://zookeys.pensoft.net Launched to accelerate biodiversity research A new leaf-mining moth from New Zealand, Sabulopteryx botanica sp. nov. (Lepidoptera, Gracillariidae, Gracillariinae), feeding on the rare endemic shrub Teucrium parvifolium (Lamiaceae), with a revised checklist of New Zealand Gracillariidae Robert J.B. Hoare1, Brian H. Patrick2, Thomas R. Buckley1,3 1 New Zealand Arthropod Collection (NZAC), Manaaki Whenua–Landcare Research, Private Bag 92170, Auc- kland, New Zealand 2 Wildlands Consultants Ltd, PO Box 9276, Tower Junction, Christchurch 8149, New Ze- aland 3 School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand Corresponding author: Robert J.B. Hoare ([email protected]) Academic editor: E. van Nieukerken | Received 4 March 2019 | Accepted 3 May 2019 | Published 22 Jul 2019 http://zoobank.org/C1E51F7F-B5DF-4808-9C80-73A10D5746CD Citation: Hoare RJB, Patrick BH, Buckley TR (2019) A new leaf-mining moth from New Zealand, Sabulopteryx botanica sp. nov. (Lepidoptera, Gracillariidae, Gracillariinae), feeding on the rare endemic shrub Teucrium parvifolium (Lamiaceae), with a revised checklist of New Zealand Gracillariidae. ZooKeys 965: 39–65. https://doi.org/10.3897/ zookeys.865.34265 Abstract Sabulopteryx botanica Hoare & Patrick, sp. nov. (Lepidoptera, Gracillariidae, Gracillariinae) is described as a new species from New Zealand. It is regarded as endemic, and represents the first record of its genus from the southern hemisphere. Though diverging in some morphological features from previously de- scribed species, it is placed in genus Sabulopteryx Triberti, based on wing venation, abdominal characters, male and female genitalia and hostplant choice; this placement is supported by phylogenetic analysis based on the COI mitochondrial gene.
    [Show full text]
  • The Study of Animal Behaviour and Its Applications
    Eth. Dom. Animals - Chap 01 22/4/02 9:48 am Page 3 The Study of Animal Behaviour 1 and its Applications Per Jensen Introduction Ethology is the science whereby we study animal behaviour, its causa- tion and its biological function. But what is behaviour? If we spend a few minutes thinking about this, a number of answers may pop up which together illustrate the complexity of the subject. In its simplest form, behaviour may be a series of muscle contractions, perhaps performed in clear response to a specific stimulus, such as in the case of a reflex. However, at the other extreme, we find enormously complex activities, such as birds migrating across the world, continuously assessing their direction and position with the help of various cues from stars, land- marks and geomagneticism. It may not be obvious which stimuli actually trigger the onset of this behaviour. Indeed, a bird kept in a cage in a win- dowless room with constant light will show strong attempts to escape and move towards the south at the appropriate time, without any apparent external cues at all. We would use the word behaviour for both these extremes, and for many other activities in between in complexity. It will include all types of activities that animals engage in, such as locomotion, grooming, repro- duction, caring for young, communication, etc. Behaviour may involve one individual reacting to a stimulus or a physiological change, but may also involve two individuals, each responding to the activities of the other. And why stop there? We would also call it behaviour when ani- mals in a herd or an aggregation coordinate their activities or compete for resources with one another.
    [Show full text]
  • Methyl Bromide Quarantine Treatment for Persimmon Fruit Moth in Japanese Persimmons
    RES. BULL PL. PR0T. JAPAN N0.37 : 63-68(2001) Short Communication Methyl Bromide Quarantine Treatment for Persimmon Fruit Moth in Japanese Persimmons Takuho MATSUOKA, Kazuo TANIGUCHI, Tadashi HIRAMATSU and Fumikazu DOTE Kobe Plant Protection Station Abstract : Complete mortality of larvae of persimmon fruit moth, Stathmopoda masinissa MEYRJCK was confirmed by methyl bromide fumigation schedule with 48g/m3 for 2 hours at 15℃ with 50% Ioading. The results showed that a total of 31,739 larvae in fresh persimmons obtained from pesticide unsprayed orchards were killed com- pletely in 16 replicated tests conducted in 1992-1999. The methyl bromide standard would provide for sufficient quarantine security for exporting Japanese persimmons. Key words : Insecta, Stathmopoda masinissa , quarantine treatmen,, methyl bromide, Japa- nese persimmons Introduction Fresh Japanese persimmon, Diospyros kahi THUNB. has not been exported from Japan to the United States because of quarantine restrictions against persimmon fruit moth, Stathmopoda masinissa MEYRICK and yellow peach moth, Conogethes punctiferalis (GUENEE) and disinfestation treatments must be developed against two species of the pest to meet both countries' quarantine regulations (YOSHIZAWA, 1990). A methyl bromide fumigation standard (48g/m3 for 2 hours at 15℃ wiith 50% Ioading) without chemical injury of fresh persimmons (KAWAKAMI et al., 1991 ; NAKAMURA et al ., 1995) and with complete mortality of the target pest (TOMOMATSU et al ., 1995) was establlshed in 1992 for controlling of lar- val stage of the persimmon fruit moth which may be present in fruit at harvest. Com- plete mortality was also confirmed with a total of 13,163 Iarvae in the large-scale test con- ducted in 1992-1994 (TOMOMATSU et al ., 1995) .
    [Show full text]
  • Movement of Plastic-Baled Garbage and Regulated (Domestic) Garbage from Hawaii to Landfills in Oregon, Idaho, and Washington
    Movement of Plastic-baled Garbage and Regulated (Domestic) Garbage from Hawaii to Landfills in Oregon, Idaho, and Washington. Final Biological Assessment, February 2008 Table of Contents I. Introduction and Background on Proposed Action 3 II. Listed Species and Program Assessments 28 Appendix A. Compliance Agreements 85 Appendix B. Marine Mammal Protection Act 150 Appendix C. Risk of Introduction of Pests to the Continental United States via Municipal Solid Waste from Hawaii. 159 Appendix D. Risk of Introduction of Pests to Washington State via Municipal Solid Waste from Hawaii 205 Appendix E. Risk of Introduction of Pests to Oregon via Municipal Solid Waste from Hawaii. 214 Appendix F. Risk of Introduction of Pests to Idaho via Municipal Solid Waste from Hawaii. 233 2 I. Introduction and Background on Proposed Action This biological assessment (BA) has been prepared by the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS) to evaluate the potential effects on federally-listed threatened and endangered species and designated critical habitat from the movement of baled garbage and regulated (domestic) garbage (GRG) from the State of Hawaii for disposal at landfills in Oregon, Idaho, and Washington. Specifically, garbage is defined as urban (commercial and residential) solid waste from municipalities in Hawaii, excluding incinerator ash and collections of agricultural waste and yard waste. Regulated (domestic) garbage refers to articles generated in Hawaii that are restricted from movement to the continental United States under various quarantine regulations established to prevent the spread of plant pests (including insects, disease, and weeds) into areas where the pests are not prevalent.
    [Show full text]
  • Description of the Chemical Senses of the Florida Manatee, Trichechus Manatus Latirostris, in Relation to Reproduction
    DESCRIPTION OF THE CHEMICAL SENSES OF THE FLORIDA MANATEE, TRICHECHUS MANATUS LATIROSTRIS, IN RELATION TO REPRODUCTION By MEGHAN LEE BILLS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2011 1 © 2011 Meghan Lee Bills 2 To my best friend and future husband, Diego Barboza: your support, patience and humor throughout this process have meant the world to me 3 ACKNOWLEDGMENTS First I would like to thank my advisors; Dr. Iskande Larkin and Dr. Don Samuelson. You showed great confidence in me with this project and allowed me to explore an area outside of your expertise and for that I thank you. I also owe thanks to my committee members all of whom have provided valuable feedback and advice; Dr. Roger Reep, Dr. David Powell and Dr. Bruce Schulte. Thank you to Patricia Lewis for her histological expertise. The Marine Mammal Pathobiology Laboratory staff especially Drs. Martine deWit and Chris Torno for sample collection. Thank you to Dr. Lisa Farina who observed the anal glands for the first time during a manatee necropsy. Thank you to Astrid Grosch for translating Dr. Vosseler‟s article from German to English. Also, thanks go to Mike Sapper, Julie Sheldon, Kelly Evans, Kelly Cuthbert, Allison Gopaul, and Delphine Merle for help with various parts of the research. I also wish to thank Noelle Elliot for the chemical analysis. Thank you to the Aquatic Animal Health Program and specifically: Patrick Thompson and Drs. Ruth Francis-Floyd, Nicole Stacy, Mike Walsh, Brian Stacy, and Jim Wellehan for their advice throughout this process.
    [Show full text]
  • Project Noah National Moth Week 2013 Data
    PROJECT NOAH NATIONAL MOTH WEEK 2013 DATA Following the immense success of Project Noah’s collaboration with National Moth Week during the event’s first year, Project Noah participated in the second annual National Moth Week, which occurred from July 20, 2013 to July 28, 2013. Project Noah surpassed its goal of one-thousand moths spotted during National Moth Week with 1347 moths spotted. Spottings were submitted to Project Noah’s Moths of the World mission. Data organization and presentation by Jacob Gorneau. Project Noah National Moth Week 2013 Data | Jacob Gorneau 1 Moths of the World Mission for National Moth Week July 20, 2013 to July 28, 2013 Number Of Spottings Total 1347 Total Unidentified 480 Total Identified 867 Africa 55 Mozambique 1 South Africa 54 Asia 129 Bhutan 47 China 1 India 33 Indonesia 7 Japan 2 Malaysia 3 Philippines 17 Sri Lanka 7 Thailand 10 Turkey 2 Australia 22 Australia 21 New Zealand 1 Europe 209 Belgium 1 Bosnia and Herzegovina 5 Croatia 13 Denmark 66 Project Noah National Moth Week 2013 Data | Jacob Gorneau 2 France 1 Georgia 1 Germany 23 Greece 5 Italy 1 Netherlands 21 Norway 2 Portugal 6 Slovakia 11 Spain 38 Switzerland 1 United Kingdom 14 North America 926 Canada 54 Costa Rica 15 Mexico 84 United States of America 773 South America 6 Brazil 2 Chile 4 Total 7/20/2013 164 Total 7/21/2013 149 Total 7/22/2013 100 Total 7/23/2013 144 Total 7/24/2013 134 Total 7/25/2013 130 Total 7/26/2013 105 Total 7/27/2013 240 Total 7/28/2013 181 Project Noah National Moth Week 2013 Data | Jacob Gorneau 3 Continent/Country/Species Spottings Africa 55 Mozambique 1 Egybolis vaillantina 1 South Africa 54 Agdistis sp.
    [Show full text]
  • Chemical Signals in Vertebrates 11 Jane L
    Chemical Signals in Vertebrates 11 Jane L. Hurst, Robert J. Beynon, S. Craig Roberts and Tristram D. Wyatt Editors Chemical Signals in Vertebrates 11 Jane L. Hurst S. Craig Roberts Department of Veterinary Preclinical Science School of Biological Sciences University of Liverpool, Leahurst University of Liverpool, Neston CH64 7TE, UK Crown Street, Liverpool, L69 7ZB, UK [email protected] [email protected] Robert J. Beynon Tristram D. Wyatt Department of Veterinary Preclinical Science Office of Distance and Online Learning University of Liverpool, University of Oxford Crown Street, Liverpool, L69 7ZJ, UK Oxford OX2 7DD, UK [email protected] tristram.wyatt@continuing- education.oxford.ac.uk ISBN: 978-0-387-73944-1 e-ISBN: 978-0-387-49835-5 Library of Congress Control Number: 2007934764 C 2008 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper.
    [Show full text]
  • Desktop Biodiversity Report
    Desktop Biodiversity Report Land at Balcombe Parish ESD/14/747 Prepared for Katherine Daniel (Balcombe Parish Council) 13th February 2014 This report is not to be passed on to third parties without prior permission of the Sussex Biodiversity Record Centre. Please be aware that printing maps from this report requires an appropriate OS licence. Sussex Biodiversity Record Centre report regarding land at Balcombe Parish 13/02/2014 Prepared for Katherine Daniel Balcombe Parish Council ESD/14/74 The following information is included in this report: Maps Sussex Protected Species Register Sussex Bat Inventory Sussex Bird Inventory UK BAP Species Inventory Sussex Rare Species Inventory Sussex Invasive Alien Species Full Species List Environmental Survey Directory SNCI M12 - Sedgy & Scott's Gills; M22 - Balcombe Lake & associated woodlands; M35 - Balcombe Marsh; M39 - Balcombe Estate Rocks; M40 - Ardingly Reservior & Loder Valley Nature Reserve; M42 - Rowhill & Station Pastures. SSSI Worth Forest. Other Designations/Ownership Area of Outstanding Natural Beauty; Environmental Stewardship Agreement; Local Nature Reserve; National Trust Property. Habitats Ancient tree; Ancient woodland; Ghyll woodland; Lowland calcareous grassland; Lowland fen; Lowland heathland; Traditional orchard. Important information regarding this report It must not be assumed that this report contains the definitive species information for the site concerned. The species data held by the Sussex Biodiversity Record Centre (SxBRC) is collated from the biological recording community in Sussex. However, there are many areas of Sussex where the records held are limited, either spatially or taxonomically. A desktop biodiversity report from SxBRC will give the user a clear indication of what biological recording has taken place within the area of their enquiry.
    [Show full text]
  • The Effects of Housing Manipulations on Wheel Running, Feeding and Body Weight in Female Rats
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 2013 The Effects of Housing Manipulations on Wheel Running, Feeding and Body Weight in Female Rats Angela Mastroianni Wilfrid Laurier University, [email protected] Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Psychology Commons Recommended Citation Mastroianni, Angela, "The Effects of Housing Manipulations on Wheel Running, Feeding and Body Weight in Female Rats" (2013). Theses and Dissertations (Comprehensive). 1819. https://scholars.wlu.ca/etd/1819 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. WHEEL-INDUCED FEEDING SUPPRESSION 1 The Effects of Housing Manipulations on Wheel Running, Feeding and Body Weight in Female Rats By Angela Mastroianni Bachelor of Science (Honours), Psychology, University of Toronto, 2008 THESIS Submitted to the Department of Psychology in partial fulfillment of the requirements for Masters of Science, Behavioural Neuroscience Wilfrid Laurier University © Angela Mastroianni 2013 WHEEL-INDUCED FEEDING SUPPRESSION 2 Abstract Providing rats with running wheel access results in a short-term reduction in feeding and body weight relative to controls; known as the wheel-induced feeding suppression (WIFS). WIFS may parallel aspects of anorexia nervosa, an eating disorder that mostly affects females. Yet, most studies of WIFS and related models use male rats. The present study included female and male rats, where half were given wheel access to measure effects on feeding and body weight.
    [Show full text]