Description of the Chemical Senses of the Florida Manatee, Trichechus Manatus Latirostris, in Relation to Reproduction

Total Page:16

File Type:pdf, Size:1020Kb

Description of the Chemical Senses of the Florida Manatee, Trichechus Manatus Latirostris, in Relation to Reproduction DESCRIPTION OF THE CHEMICAL SENSES OF THE FLORIDA MANATEE, TRICHECHUS MANATUS LATIROSTRIS, IN RELATION TO REPRODUCTION By MEGHAN LEE BILLS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2011 1 © 2011 Meghan Lee Bills 2 To my best friend and future husband, Diego Barboza: your support, patience and humor throughout this process have meant the world to me 3 ACKNOWLEDGMENTS First I would like to thank my advisors; Dr. Iskande Larkin and Dr. Don Samuelson. You showed great confidence in me with this project and allowed me to explore an area outside of your expertise and for that I thank you. I also owe thanks to my committee members all of whom have provided valuable feedback and advice; Dr. Roger Reep, Dr. David Powell and Dr. Bruce Schulte. Thank you to Patricia Lewis for her histological expertise. The Marine Mammal Pathobiology Laboratory staff especially Drs. Martine deWit and Chris Torno for sample collection. Thank you to Dr. Lisa Farina who observed the anal glands for the first time during a manatee necropsy. Thank you to Astrid Grosch for translating Dr. Vosseler‟s article from German to English. Also, thanks go to Mike Sapper, Julie Sheldon, Kelly Evans, Kelly Cuthbert, Allison Gopaul, and Delphine Merle for help with various parts of the research. I also wish to thank Noelle Elliot for the chemical analysis. Thank you to the Aquatic Animal Health Program and specifically: Patrick Thompson and Drs. Ruth Francis-Floyd, Nicole Stacy, Mike Walsh, Brian Stacy, and Jim Wellehan for their advice throughout this process. To Dr. Bob Bonde, Cathy Beck and everyone at USGS, thank you not only for your help with my project but those of sirenian researchers everywhere. I also owe much gratitude to Sally O‟Connell who kept me on track with the paperwork and requirements of a PhD student and Dr. Charles Courtney who has provided support and advice for the achievement of my career goals. Thank you very much to the facilities that allowed me to work with their captive manatees. Specifically: Marilyn Margold at the South Florida Museum‟s Parker 4 Aquarium, Joe Gaspard of Mote Marine Laboratory, Dr. Andy Stamper and Kim O‟Dell of Disney‟s Epcot, The Living Seas. Finally, I would like to thank my Mom, Dad and brother for their encouragement and support not only during my PhD but for my entire college career. I would also like to thank Heather Maness, Maggie Hunter, Gretchen Henry, Shannon Skevakis, Noel Takeuchi and Jen McGee for their feedback, critiques and friendship. I also could not have been successful without the love and support of my fiancé, Diego Barboza. Funding was provided through the Florida Fish and Wildlife Conservation Commission, Whitney Marine Laboratory for Marine Bioscience and the University of Florida Aquatic Animal Health Program, the University of Florida College of Veterinary Medicine Consolidated Faculty Research Development Grant and Sigma Xi-Grant in Aid of Research. Research completed under US Fish and Wildlife permit #: MA067116-1 and UF IACUC Study #: 200902684. 5 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 8 LIST OF FIGURES .......................................................................................................... 9 LIST OF ABBREVIATIONS ........................................................................................... 12 ABSTRACT ................................................................................................................... 15 CHAPTER 1 INTRODUCTION .................................................................................................... 17 Chemoreception ..................................................................................................... 17 Olfaction ........................................................................................................... 17 Vomeronasal Organ ......................................................................................... 20 Taste ................................................................................................................ 21 Chemical Communication ....................................................................................... 25 Pheromones ..................................................................................................... 26 Mammalian Reproductive Chemical Communication ....................................... 31 Paenungulata ................................................................................................... 33 Aquatic Mammals ................................................................................................... 37 Olfaction ........................................................................................................... 38 Vomeronasal Organ ......................................................................................... 42 Taste ................................................................................................................ 43 The Florida Manatee ............................................................................................... 47 2 ANAL GLANDS OF THE FLORIDA MANATEE, TRICHECHUS MANATUS LATIROSTRIS: A POTENTIAL SOURCE OF CHEMOSENSORY SIGNALS ......... 52 Background ............................................................................................................. 52 Materials and Methods............................................................................................ 54 Light Microscopy .............................................................................................. 55 Transmission Electron Microscopy ................................................................... 55 Results .................................................................................................................... 56 Light Microscopy .............................................................................................. 58 Electron Microscopy ......................................................................................... 61 Discussion .............................................................................................................. 61 3 TASTE BUDS IN THE ORAL CAVITY OF THE FLORIDA MANATEE, TRICHECHUS MANATUS LATIROSTRIS, WITH ESTROGEN RECEPTOR Β WITHIN THE LINGUAL ROOT TASTE BUDS ........................................................ 66 6 Background ............................................................................................................. 66 Materials and Methods............................................................................................ 70 Gross and Microanatomy ................................................................................. 71 Taste Bud Size and Quantification ................................................................... 72 Immunohistochemistry...................................................................................... 74 Transmission Electron Microscopy ................................................................... 76 Results .................................................................................................................... 76 Estrogen Receptor β ........................................................................................ 80 Ultrastructure .................................................................................................... 83 Discussion .............................................................................................................. 84 4 THE NASAL CAVITY AND OLFACTORY EPITHELIUM OF THE FLORIDA MANATEE, TRICHECHUS MANATUS LATIROSTRIS .......................................... 91 Background ............................................................................................................. 91 Materials and Methods............................................................................................ 94 Light Microscopy .............................................................................................. 96 Immunohistochemistry...................................................................................... 97 Results .................................................................................................................... 97 Light Microscopy ............................................................................................ 100 Immunohistochemistry.................................................................................... 103 Discussion ............................................................................................................ 104 5 MALE FLORIDA MANATEE, TRICHECHUS MANATUS LATRIROSTIS, BEHAVIORAL RESPONSE TO FEMALE MANATEE URINE FROM DIFFERENT REPRODUCTIVE TIMEPOINTS ..................................................... 109 Background ........................................................................................................... 109 Methods ................................................................................................................ 112 Results .................................................................................................................. 117 Discussion ...........................................................................................................
Recommended publications
  • Neural Mechanisms Underlying Sex-Specific Behaviors in Vertebrates Dulac and Kimchi 677
    Neural mechanisms underlying sex-specific behaviors in vertebrates Catherine Dulac and Tali Kimchi From invertebrates to humans, males and females of a given eggs are spawned will the male release its sperm and species display identifiable differences in behaviors, mostly but fertilize the eggs. In other species such as frogs, croco- not exclusively pertaining to sexual and social behaviors. Within diles, and songbirds, males produce an intense male- a species, individuals preferentially exhibit the set of behaviors specific courtship song that entices the female to enter that is typical of their sex. These behaviors include a wide range their territory and pick them as mate, while in rodents, of coordinated and genetically pre-programmed social and intense olfactory investigation leads to male- and female- sexual displays that ensure successful reproductive strategies specific sexual behaviors. Other social sex-specific beha- and the survival of the species. What are the mechanisms viors in rodents include male–male and lactating female underlying sex-specific brain function? Although sexually aggressive behaviors, and parental behavior in which dimorphic behaviors represent the most extreme examples of females of most species invest significantly more time behavioral variability within a species, the basic principles in taking care of the offspring. Thus, each species has underlying the sex specificity of brain activity are largely evolved discrete communication strategies and behavior unknown. Moreover, with few exceptions, the quest for responses enabling individuals of each sex to identify fundamental differences in male and female brain structures each other, to successfully breed and to care for their and circuits that would parallel that of sexual behaviors and progeny.
    [Show full text]
  • Taste and Smell Disorders in Clinical Neurology
    TASTE AND SMELL DISORDERS IN CLINICAL NEUROLOGY OUTLINE A. Anatomy and Physiology of the Taste and Smell System B. Quantifying Chemosensory Disturbances C. Common Neurological and Medical Disorders causing Primary Smell Impairment with Secondary Loss of Food Flavors a. Post Traumatic Anosmia b. Medications (prescribed & over the counter) c. Alcohol Abuse d. Neurodegenerative Disorders e. Multiple Sclerosis f. Migraine g. Chronic Medical Disorders (liver and kidney disease, thyroid deficiency, Diabetes). D. Common Neurological and Medical Disorders Causing a Primary Taste disorder with usually Normal Olfactory Function. a. Medications (prescribed and over the counter), b. Toxins (smoking and Radiation Treatments) c. Chronic medical Disorders ( Liver and Kidney Disease, Hypothyroidism, GERD, Diabetes,) d. Neurological Disorders( Bell’s Palsy, Stroke, MS,) e. Intubation during an emergency or for general anesthesia. E. Abnormal Smells and Tastes (Dysosmia and Dysgeusia): Diagnosis and Treatment F. Morbidity of Smell and Taste Impairment. G. Treatment of Smell and Taste Impairment (Education, Counseling ,Changes in Food Preparation) H. Role of Smell Testing in the Diagnosis of Neurodegenerative Disorders 1 BACKGROUND Disorders of taste and smell play a very important role in many neurological conditions such as; head trauma, facial and trigeminal nerve impairment, and many neurodegenerative disorders such as Alzheimer’s, Parkinson Disorders, Lewy Body Disease and Frontal Temporal Dementia. Impaired smell and taste impairs quality of life such as loss of food enjoyment, weight loss or weight gain, decreased appetite and safety concerns such as inability to smell smoke, gas, spoiled food and one’s body odor. Dysosmia and Dysgeusia are very unpleasant disorders that often accompany smell and taste impairments.
    [Show full text]
  • The Study of Animal Behaviour and Its Applications
    Eth. Dom. Animals - Chap 01 22/4/02 9:48 am Page 3 The Study of Animal Behaviour 1 and its Applications Per Jensen Introduction Ethology is the science whereby we study animal behaviour, its causa- tion and its biological function. But what is behaviour? If we spend a few minutes thinking about this, a number of answers may pop up which together illustrate the complexity of the subject. In its simplest form, behaviour may be a series of muscle contractions, perhaps performed in clear response to a specific stimulus, such as in the case of a reflex. However, at the other extreme, we find enormously complex activities, such as birds migrating across the world, continuously assessing their direction and position with the help of various cues from stars, land- marks and geomagneticism. It may not be obvious which stimuli actually trigger the onset of this behaviour. Indeed, a bird kept in a cage in a win- dowless room with constant light will show strong attempts to escape and move towards the south at the appropriate time, without any apparent external cues at all. We would use the word behaviour for both these extremes, and for many other activities in between in complexity. It will include all types of activities that animals engage in, such as locomotion, grooming, repro- duction, caring for young, communication, etc. Behaviour may involve one individual reacting to a stimulus or a physiological change, but may also involve two individuals, each responding to the activities of the other. And why stop there? We would also call it behaviour when ani- mals in a herd or an aggregation coordinate their activities or compete for resources with one another.
    [Show full text]
  • Oral Cavity Histology Histology > Digestive System > Digestive System
    Oral Cavity Histology Histology > Digestive System > Digestive System Oral Cavity LINGUAL PAPILLAE OF THE TONGUE Lingual papillae cover 2/3rds of its anterior surface; lingual tonsils cover its posterior surface. There are three types of lingual papillae: - Filiform, fungiform, and circumvallate; a 4th type, called foliate papillae, are rudimentary in humans. - Surface comprises stratified squamous epithelia - Core comprises lamina propria (connective tissue and vasculature) - Skeletal muscle lies deep to submucosa; skeletal muscle fibers run in multiple directions, allowing the tongue to move freely. - Taste buds lie within furrows or clefts between papillae; each taste bud comprises precursor, immature, and mature taste receptor cells and opens to the furrow via a taste pore. Distinguishing Features: Filiform papillae • Most numerous papillae • Their role is to provide a rough surface that aids in chewing via their keratinized, stratified squamous epithelia, which forms characteristic spikes. • They do not have taste buds. Fungiform papillae • "Fungi" refers to its rounded, mushroom-like surface, which is covered by stratified squamous epithelium. Circumvallate papillae • Are also rounded, but much larger and more bulbous. • On either side of the circumvallate papillae are wide clefts, aka, furrows or trenches; though not visible in our sample, serous Ebner's glands open into these spaces. DENTITION Comprise layers of calcified tissues surrounding a cavity that houses neurovascular structures. Key Features Regions 1 / 3 • The crown, which lies above the gums • The neck, the constricted area • The root, which lies within the alveoli (aka, sockets) of the jaw bones. • Pulp cavity lies in the center of the tooth, and extends into the root as the root canal.
    [Show full text]
  • Chemical Signals in Vertebrates 11 Jane L
    Chemical Signals in Vertebrates 11 Jane L. Hurst, Robert J. Beynon, S. Craig Roberts and Tristram D. Wyatt Editors Chemical Signals in Vertebrates 11 Jane L. Hurst S. Craig Roberts Department of Veterinary Preclinical Science School of Biological Sciences University of Liverpool, Leahurst University of Liverpool, Neston CH64 7TE, UK Crown Street, Liverpool, L69 7ZB, UK [email protected] [email protected] Robert J. Beynon Tristram D. Wyatt Department of Veterinary Preclinical Science Office of Distance and Online Learning University of Liverpool, University of Oxford Crown Street, Liverpool, L69 7ZJ, UK Oxford OX2 7DD, UK [email protected] tristram.wyatt@continuing- education.oxford.ac.uk ISBN: 978-0-387-73944-1 e-ISBN: 978-0-387-49835-5 Library of Congress Control Number: 2007934764 C 2008 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper.
    [Show full text]
  • The Effects of Housing Manipulations on Wheel Running, Feeding and Body Weight in Female Rats
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 2013 The Effects of Housing Manipulations on Wheel Running, Feeding and Body Weight in Female Rats Angela Mastroianni Wilfrid Laurier University, [email protected] Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Psychology Commons Recommended Citation Mastroianni, Angela, "The Effects of Housing Manipulations on Wheel Running, Feeding and Body Weight in Female Rats" (2013). Theses and Dissertations (Comprehensive). 1819. https://scholars.wlu.ca/etd/1819 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. WHEEL-INDUCED FEEDING SUPPRESSION 1 The Effects of Housing Manipulations on Wheel Running, Feeding and Body Weight in Female Rats By Angela Mastroianni Bachelor of Science (Honours), Psychology, University of Toronto, 2008 THESIS Submitted to the Department of Psychology in partial fulfillment of the requirements for Masters of Science, Behavioural Neuroscience Wilfrid Laurier University © Angela Mastroianni 2013 WHEEL-INDUCED FEEDING SUPPRESSION 2 Abstract Providing rats with running wheel access results in a short-term reduction in feeding and body weight relative to controls; known as the wheel-induced feeding suppression (WIFS). WIFS may parallel aspects of anorexia nervosa, an eating disorder that mostly affects females. Yet, most studies of WIFS and related models use male rats. The present study included female and male rats, where half were given wheel access to measure effects on feeding and body weight.
    [Show full text]
  • UC Davis Dermatology Online Journal
    UC Davis Dermatology Online Journal Title Goodness, gracious, great balls of fire: A case of transient lingual papillitis following consumption of an Atomic Fireball Permalink https://escholarship.org/uc/item/91j9n0kt Journal Dermatology Online Journal, 22(5) Authors Raji, Kehinde Ranario, Jennifer Ogunmakin, Kehinde Publication Date 2016 DOI 10.5070/D3225030941 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Volume 22 Number 5 May 2016 Case Report Goodness, gracious, great balls of fire: A case of transient lingual papillitis following consumption of an Atomic Fireball. Kehinde Raji MD MPH, 1 Jennifer Ranario MD,2 Kehinde Ogunmakin MD2 Dermatology Online Journal 22 (5): 3 1 Scripps Clinic/Scripps Green Hospital, Department of Medicine, San Diego, CA 2 Texas Tech University Health Sciences Center, Department of Dermatology, Lubbock TX Correspondence: Kehinde Raji, MD MPH. Scripps Green Hospital 10666 North Torrey Pines Rd San Diego, CA 92037. Tel. +1 (858)-554-3236. Fax. +1 (858)-554-3232 Email: [email protected] Abstract Transient lingual papillitis is a benign condition characterized by the inflammation of one or more fungiform papillae on the dorsolateral tongue. Although it is a common condition that affects more than half of the population, few cases have been reported in the dermatological literature. Therefore, it is a condition uncommonly recognized by dermatologists though it has a distinct clinical presentation that may be easily diagnosed by clinicians familiar with the entity. We report an interesting case of transient lingual papillitis in a 27 year-old healthy woman following the consumption of the hard candy, Atomic Fireball.
    [Show full text]
  • Sex Pheromones and Their Role in Vertebrate Reproduction
    Intraspecific chemical communication in vertebrates with special attention to sex pheromones Robert van den Hurk Pheromone Information Centre, Brugakker 5895, 3704 MX Zeist, The Netherlands Pheromone Information Centre, Zeist, The Netherlands. Correspondence address: Dr. R. van den Hurk, Brugakker 5895, 3704 MX Zeist. E-mail address: [email protected] Intraspecific chemical communication in vertebrates with special attention to sex pheromones (191 pp). NUR-code: 922. ISBN: 978-90-77713-78-5. © 2011 by R. van den Hurk. Second edition This book is an updated edition from a previous book entitled: ‘Intraspecific chemical communication in vertebrates with special attention to its role in reproduction, © 2007 by R. van den Hurk. ISBN: 978-90-393-4500-9. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the author. Printed by EZbook.nl 2 Contents Abbreviations 5 Preface 6 Abstract 7 Introduction 8 Sex pheromones in fishes 14 Gobies 14 Zebrafish 15 African catfish 21 Goldfish 26 Other fish species 30 Reproduction and nonolfactory sensory cues 35 Sex pheromones in amphibians 37 Red-bellied newt 37 Sword-tailed newt 37 Plethodontid salamanders 38 Ocoee salamander 38 Korean salamander 39 Magnificent tree frog (Litoria splendida) and mountain chicken frog (Leptodactylus fallax) 39 Other amphibian species 39 Sex pheromones in reptiles 42 Lizards
    [Show full text]
  • Tongue Anatomy 25/03/13 11:05
    Tongue Anatomy 25/03/13 11:05 Medscape Reference Reference News Reference Education MEDLINE Tongue Anatomy Author: Eelam Aalia Adil, MD, MBA; Chief Editor: Arlen D Meyers, MD, MBA more... Updated: Jun 29, 2011 Overview The tongue is basically a mass of muscle that is almost completely covered by a mucous membrane. It occupies most of the oral cavity and oropharynx. It is known for its role in taste, but it also assists with mastication (chewing), deglutition (swallowing), articulation (speech), and oral cleaning. Five cranial nerves contribute to the complex innervation of this multifunctional organ. The embryologic origins of the tongue first appear at 4 weeks' gestation.[1] The body of the tongue forms from derivatives of the first branchial arch. This gives rise to 2 lateral lingual swellings and 1 median swelling (known as the tuberculum impar). The lateral lingual swellings slowly grow over the tuberculum impar and merge, forming the anterior two thirds of the tongue. Parts of the second, third, and fourth branchial arches give rise to the base of the tongue. Occipital somites give rise to myoblasts, which form the intrinsic tongue musculature. Gross Anatomy From anterior to posterior, the tongue has 3 surfaces: tip, body, and base. The tip is the highly mobile, pointed anterior portion of the tongue. Posterior to the tip lies the body of the tongue, which has dorsal (superior) and ventral (inferior) surfaces (see the image and the video below). Tongue, dorsal view. View of ventral (top) and dorsal (bottom) surfaces of tongue. On dorsal surface, taste buds (vallate papillae) are visible along junction of anterior two thirds and posterior one third of the tongue.
    [Show full text]
  • Between Species: Choreographing Human And
    BETWEEN SPECIES: CHOREOGRAPHING HUMAN AND NONHUMAN BODIES JONATHAN OSBORN A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN DANCE STUDIES YORK UNIVERSITY TORONTO, ONTARIO MAY, 2019 ã Jonathan Osborn, 2019 Abstract BETWEEN SPECIES: CHOREOGRAPHING HUMAN AND NONHUMAN BODIES is a dissertation project informed by practice-led and practice-based modes of engagement, which approaches the space of the zoo as a multispecies, choreographic, affective assemblage. Drawing from critical scholarship in dance literature, zoo studies, human-animal studies, posthuman philosophy, and experiential/somatic field studies, this work utilizes choreographic engagement, with the topography and inhabitants of the Toronto Zoo and the Berlin Zoologischer Garten, to investigate the potential for kinaesthetic exchanges between human and nonhuman subjects. In tracing these exchanges, BETWEEN SPECIES documents the creation of the zoomorphic choreographic works ARK and ARCHE and creatively mediates on: more-than-human choreography; the curatorial paradigms, embodied practices, and forms of zoological gardens; the staging of human and nonhuman bodies and bodies of knowledge; the resonances and dissonances between ethological research and dance ethnography; and, the anthropocentric constitution of the field of dance studies. ii Dedication Dedicated to the glowing memory of my nana, Patricia Maltby, who, through her relentless love and fervent belief in my potential, elegantly willed me into another phase of life, while she passed, with dignity and calm, into another realm of existence. iii Acknowledgements I would like to thank my phenomenal supervisor Dr. Barbara Sellers-Young and my amazing committee members Dr.
    [Show full text]
  • NEWSLETTER Animal Behavior Society
    NEWSLETTER Vol. 48, No. 1 February 2003 Animal Behavior Society A quarterly Molly R. Morris, Secretary publication Jason A. Moretz, Editorial Assistant Department of Biological Sciences, Ohio University, Athens, OH 45701 USA RESULTS Contribution of Animal Behavior Research 2002 ABS ELECTION OF OFFICERS to Conservation Biology A total of 292 valid ballots were cast in the 2002 election. Guillermo Paz-y-Miño C.* This is approximately 11% of the ABS membership and represents a decrease of 3% in voter response. Center for Avian Cognition, School of Biological Sciences University of Nebraska-Lincoln, USA. The following officers were elected: *Chair the Animal Behavior Society Conservation Committee. Second President Elect: Steve Nowicki Behavioral research encompasses the study of the Treasurer: Lee Drickamer physiological and sensory mechanisms that control behavior, the development or ontogeny of behavior, and Executive Editor: George Uetz the function and evolution of behavior. Conservation biologists have debated about these paradigms for Junior Program Officer: Jennifer Fewell decades, at times not realizing that their discussions have contributed directly or indirectly to the area of animal Member-at-Large: Lynette Hart behavior and conservation. To assess the contribution of behavioral paradigms in conservation studies, I identified Constitutional Changes: and evaluated 277 articles (N=1631) published in 1. Change EC quorum from six to seven – Approved Conservation Biology between 1987 and 2002 that were 2. Permanent addition of Latin Affairs and Diversity directly related to animal behavior and conservation. committees – Approved Four main areas of behavioral research were commonly addressed in these studies: dispersal and settlement, Congratulations to the new officers, and thanks to all reproductive behavior and social organization, species whom ran for office.
    [Show full text]
  • Mueller-Schwarze D. Chemical Ecology of Vertebrates (CUP, 2006
    This page intentionally left blank Chemical Ecology of Vertebrates Chemical Ecology of Vertebrates is the first book to focus exclusively on the chem- ically mediated interactions between vertebrates, including fish, amphibians, reptiles, birds, and mammals, and other animals, and plants. Reviewing the lat- est research in three core areas: pheromones (where the interactions are between members of the same species), interspecific interactions involving allomones (where the sender benefits) and kairomones (where the receiver benefits) This book draws information into a coherent whole from widely varying sources in many different disciplines. Chapters on the environment, properties of odour signals, and the production and release of chemosignals set the stage for dis- cussion of more complex behavioral topics. While the main focus is ecological, dealing with behavior and interactions in the field, it also covers chemorecep- tion, orientation and navigation, the development of behavior, and the practical applications of chemosignals. Dietland Muller-Schwarze¨ is Professor of Environmental Biology at the State University of New York. Chemical Ecology of Vertebrates DIETLAND MULLER-SCHWARZE¨ State University of New York cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521363778 © Cambridge University Press 2006 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.
    [Show full text]