JRASC-2007-04-Hr.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
8.5 X 13.5 Doublelines.P65
Cambridge University Press 978-0-521-74128-6 - Exploring the Solar System with Binoculars: A Beginner’s Guide to the Sun, Moon, and Planets Stephen James O’Meara’s Index More information Index Adams, John Couch, 96 Carrington, Richard C., 15 degree of condensation (DC) of, Agesinax, 24 Carroll, Lewis, 60 111–112 Aionwantha (Hiawatha), 45 Ceres, 70, 99–101 estimating the brightness of, Airy, George Biddell, 50, 51, 55 discovery and history as a planet, 111–112 Alcock, George, 116 99–100 In–Out method, 111 Allen, Richard Hinckley, 136 general description of, 99, Modified–Out method, 111–112 Alphonsus VI (King of Portugal), 104 100–101 experience helps in observing, 112 Andersen, Hans Christian, 92 how to find, 101 flaring in brightness, 111 Arago, Francois, 59 Chaikin, Andrew, 54 how to locate and identify, 110 Araki, Genichi, 116 Challis, James, 50 in history, relating to, 103–108 Arend, Silvio, 115 Chambers, George F., 8, 19 King David, 103 Aristotle, 65 Cheshire Cat, 60 Melville’s Moby-Dick, 107–108 Arlt, Rainer, 132 Children of God (cult), 108 Napoleon, 106 Arrehenius, Svente, 78, 79 Chinese Catalogue (Biot’s), 131–132 Shakespeare’s Julius Caesar, 103–104 Arter, T. R., 131 Cicero (Roman emperor), 77 the broadside of the comets of Asteroid Belt, 101 City of God, The, 90 1680 and 1682, 104 brightest objects in, 101–102 Collins, Peter, 116 the death of Julius Caesar, 104 asteroids Cometographia, 103 the Middle Ages, 104 2003 EH1, 131 comets, 103–117 the Old Testament?, 103 3200 Phaeton, 142 1P (Halley), 103, 109, 114–115, the whaling ship -
Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P. -
Mind, Media, and Techniques of Remediation in America, 1850-1910
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 6-2014 Mind, Media, and Techniques of Remediation in America, 1850-1910 Dominique Zino Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/309 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] MIND, MEDIA, AND TECHNIQUES OF REMEDIATION IN AMERICA, 1850-1910 by DOMINIQUE ZINO A dissertation submitted to the Graduate Faculty in English in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 © 2014 DOMINIQUE FRANCINE ZINO All rights reserved ii This manuscript has been read and accepted for the Graduate Faculty in English in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Dr. Joan Richardson Da t e Chair of Examining Committee Dr. Mario DiGangi Da t e Executive Officer Dr. Duncan Faherty Dr. Mary Ann Caws Supervisory Committee iii Abstract MIND, MEDIA, AND TECHNIQUES OF REMEDIATION IN AMERICA, 1850-1910 by Dominique Zino Adviser: Professor Joan Richardson This dissertation describes the way a renewed interest in picturesque aesthetics engaged the imaginations of writers, visual artists, philosophers, landscape designers, and collectors during the second half of the nineteenth century, reinvigorating a mode of inquiry that sanctioned the act of composing representations—mental, visual, and verbal—as a suitable response to social, political, and philosophical problems. -
Relative Ages
CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing -
Explore 12 Great Lunar Targets Sharpen Your Observing Skills on the Moon’S Craters, Lava Flows, and an Elusive Letter X
Small-scope wonders 11 7 Explore 12 great lunar targets Sharpen your observing skills on the Moon’s craters, lava flows, and an elusive letter X. 2 1 by Michael E. Bakich he Moon offers something for every observer. It has a face that’s always changing. Following it telescopically T through a lunar month can be fascinating. Ironically, when the Moon is brightest (Full Moon) is the worst time to view it. From our perspective, the Sun is shining on the Moon from a point directly behind us, minimizing shad- ows and thus revealing scant detail. 4 The best lunar viewing times are from when the thin cres- 5 cent becomes visible after New Moon until about 2 days after First Quarter (evening sky) and from about 2 days before Last Quarter to almost New Moon (morning sky). Shadows are lon- ger then, and features stand out in sharp relief. 8 This is especially true along the Moon’s shadow line — called the terminator — which divides the light and dark portions. Before Full Moon, the terminator shows where sunrise is occur- 12 ring; after Full Moon, it marks the sunset line. 6 10 Along the terminator, you’ll see mountaintops protruding high enough to catch sunlight while the dark lower terrain sur- rounds them. On large crater floors, you can follow “wall shad- ows” cast by sides of craters hundreds of feet high. All these 1 Archimedes Crater lies at 30° north latitude centered between the features seem to change in real time, and the differences you eastern and western limbs. -
Aerosols in Astrophysics Stars Complete Their Cycle of Existence, There R.E.Stencel, C.A
Aerosols in Astrophysics stars complete their cycle of existence, there R.E.Stencel, C.A. Jurgenson & is a wholesale return of modified material T.A. Ostrowski-Fukuda back to the interstellar medium, affecting the The Observatories, University of Denver, next generation of star and planet formation. Department of Physics & Astronomy, Denver, Colorado 80208, USA Submitted: Evolved stars are characterized by surface 2002December30, Email: [email protected] temperatures low enough to allow molecules and solid-phase particles to exist in their ABSTRACT: atmospheres. In contrast to the nearly 6000K surface temperature of the Sun, the Solid phase material exists in low density kinetic temperatures of evolved stars may astrophysical environments, from stellar range between 2000K near their “surfaces” atmospheres to interstellar clouds, from to a few hundred K in their circumstellar current times to early phases of the universe. envelopes [CSE] at a few stellar radii We consider the origin, composition and distance. Time-dependent phase transitions evolution of solid phase materials in the from ionized plasma to cold, solid state are particular case of stellar outer atmospheres, observed, spectroscopically, to exist. as representative of many conditions. Also considered are the dynamics and interactions Some terminology may be helpful for the in circumstellar and galactic environments. reader not already acquainted with stellar Finally, new observational prospects for evolution. Solar mass stars are predicted to spectroscopy, polarimetry and leave the hydrogen-fusing “main sequence” interferometry are discussed. after approximately ten billion years, and progress through a rapid series of internal changes during what is known as the red 1.0 INTRODUCTION giant and asymptotic giant branch [RGB, AGB] phases, lasting one percent of the Solid phase material can be found nearly main sequence lifetime. -
The Rise and Fall of Astrophotography Dr
Page2 GRIFFITH OBSERVER August The Rise and Fall of Astrophotography Dr. Joseph S.Tenn Department of Physics and Astronomy Sonoma State University Rohnert Park, California HONORABLE MENTION HUGHES GRIFFITH OBSERVER CONTEST 1987 Dr. Joe Tenn’s carefully crafted articles seem to be able to win a prize in the annual Hughes Aircraft Company Science Writing Contest any time he chooses to enter, and his students have occasionally won prizes, too. This heartens our outlook on higher education in America and provides interesting and unusual material for readers of this magazine. His last article, “Simon Newcomb, a Famous and Forgotten American Astronomer," appeared in the November, 1987, issue of the Griffith Observer, almost two years ago. It was saddled with several errors imposed by the editor, not the author, and we hope this time we have given Dr. Tenn’s most recent contribution more reliable preparation for print. His attention this time is fixed on the development of astrophotography. Onthe occasion of the January, 1987, American the first serious uses of chemical emulsions for Astronomical Society meeting in Pasadena, professional research. Less than fifty years earlier visiting astronomers were invited to tour the the first crude experiments suggested the Palomar Observatory. The five-meter telescope, possibility that astronomical information might be towering five stories above us, looked as imposing recorded photographically. as ever, although it had been in operation nearly four decades and was no longer the world's DaQUe"'9°iYPe$ largest. Astronomers were involved with photography The real surprise, to this visitor at least, was from its beginning. It was the French astronomer that the telescope is no longer used for photo- Francois Arago who made the first public graphy. -
Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals. -
Planetary Science Institute
PLANETARY SCIENCE INSTITUTE N7'6-3qo84 (NAS A'-CR:1'V7! 3 ) ASTEROIDAL AND PLANETARY ANALYSIS Final Report (Planetary Science Ariz.) 163 p HC $6.75 Inst., Tucson, CSCL 03A Unclas G3/89 15176 i-'' NSA tiFACIWj INP BRANC NASW 2718 ASTEROIDAL AND PLANETARY ANALYSIS Final Report 11 August 1975 Submitted by: Planetary Science Institute 252 W. Ina Road, Suite D Tucson, Arizona 85704 William K. Hartmann Manager TASK 1: ASTEROID SPECTROPHOTOMETRY AND INTERPRETATION (Principal Investigator: Clark R. Chapman) A.* INTRODUCTION The asteroid research program during 1974/5 has three major goals: (1) continued spectrophotometric reconnaissance of the asteroid belt to define compositional types; (2) detailed spectrophotometric observations of particular asteroids, especially to determine variations with rotational phase, if any; and (3) synthesis of these data with other physical studies of asteroids and interpretation of the implications of physical studies of the asteroids for meteoritics and solar system history. The program has been an especially fruitful one, yielding fundamental new insights to the nature of the asteroids and the implications for the early development of the terrestrial planets. In particular, it is believed that the level of understanding of the asteroids has been reached, and sufficiently fundamental questions raised about their nature, that serious consideration should be given to possible future spacecraft missions directed to study a sample of asteroids at close range. Anders (1971) has argued that serious consideration of asteroid missions should be postponed until ground-based techniques for studying asteroids had been sufficiently exploited so that we could intelligently select appropriate asteroids for spacecraft targeting. It is clear that that point has been reached, ,and now that relatively inexpensive fly-by missions have been discovered to be possible by utilizing Venus and Earth gravity assists (Bender and Friedlander, 1975), serious planning for such missions ought to begin. -
(AGB) Stars David Leon Gobrecht
Molecule and dust synthesis in the inner winds of oxygen-rich Asymptotic Giant Branch (A GB) stars Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von David Leon Gobrecht aus Gebenstorf Aargau Basel, 2016 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch David Leon Gobrecht Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. F.-K. Thielemann, PD Dr. Isabelle Cherchneff, PD Dr. Dahbia Talbi Basel, den 17. Februar 2015 Prof. Dr. Jörg Schibler Dekanin/Dekan IK Tau as seen by Two Micron All Sky Survey, 2MASS, (top) and Sloan Digital Sky Survey, SDSS, (bottom) from the Aladin Sky Atlas in the Simbad astronomical database (Wenger et al., 2000) 3 Abstract This thesis aims to explain the masses and compositions of prevalent molecules, dust clusters, and dust grains in the inner winds of oxygen-rich AGB stars. In this context, models have been developed, which account for various stellar conditions, reflecting all the evolutionary stages of AGB stars, as well as different metallicities. Moreover, we aim to gain insight on the nature of dust grains, synthesised by inorganic and metallic clusters with associated structures, energetics, reaction mechanisms, and finally possible formation routes. We model the circumstellar envelopes of AGB stars, covering several C/O ratios below unity and pulsation periods of 100 - 500 days, by employing a chemical-kinetic approach. Periodic shocks, induced by pulsation, with speeds of 10 - 32 km s−1 enable a non-equilibrium chemistry to take place between 1 and 10 R∗ above the photosphere. -
Navigating the Mid September Night Sky
Navigating the mid September Night Sky For observers in the middle The stars plotted represent those which northern latitudes, this chart North can be seen from areas suffering is suitable for early Sept. from moderate light pollution. In larger cities, less than at 10:00 p.m. and late Sept. Capella at 9:00 p.m. 100 stars are visible, while from dark, rural areas well over ten times Perseus that amount Double are found. Cluster Polaris, Pointer Stars1 to the North Star the North Star D Andromeda Cepheus Cassiopeia 2 Mars M31 Milky Way + E Moon C 3 Sep 5 M13 D Deneb Arcturus East Vega The The Zenith Northern Great 4 The Crown Square The+ Keystone West Summer Pegasus Cygnus Triangle 5b Coathanger Cluster Great Rift Moon Altair D Sep 20 Aquila 5a B D Numerous star clusters Saturn and nebulae Jupiter M22 Moon M8 Antares Relative sizes Sep 25 Moon Fomalhaut The and distances Sep 24 Teapot in the sky can be deceiving. For The Ecliptic represents Sagittarius instance, 360 "full the plane of the solar moons" can be placed system. The sun, the moon, side by side, extending from and the major planets all lie on or horizon to horizon. near this imaginary line in the sky. South Relative size of the full moon. Navigating the mid September night sky: Simply start with what you know or with what you can easily find. 1 Extend a line north from the two stars at the tip of the Big Dipper's bowl. It passes by Polaris, the North Star.