Journal Reprints-Astronomy/Download/8526

Total Page:16

File Type:pdf, Size:1020Kb

Journal Reprints-Astronomy/Download/8526 SPACE PATTERNS AND PAINTINGS (published in the "Engineer" magazine No. 8-9, 2012) Sagredo. - If the end of the pen, which was on the ship during my entire voyage from Venice to Alexandretta, were able to leave a visible trace of its entire path, then what kind of trace, what mark, what line would it leave? Simplicio. - I would leave a line stretching from Venice to the final place, not completely straight, or rather, extended in the form of an arc of a circle, but more or less wavy, depending on how much the ship swayed along the way ... Sagredo. - If, therefore, the artist, upon leaving the harbor, began to draw with this pen on a sheet of paper and continued drawing until Alexandretta, he could get from his movement a whole picture of figures ... at least a trace left ... by the end of the pen would be nothing more than a very long and simple line. G. Galileo "Dialogue on the two main systems of the world" Space has been giving astronomers surprise after surprise lately. A number of mysterious space objects were discovered that were not predicted by astrophysics and contradicted it. The more advanced observation methods become, the more such surprises. At one time, I. Shklovsky argued that the discovery of such "cosmic wonders" would confirm the reality of extraterrestrial intelligence, its enormous technical capabilities. But in reality, the "cosmic miracles" showed the backwardness of terrestrial science, which the opium of relativism smiled so much that now it cannot clearly explain ordinary cosmic phenomena caused by natural causes. Relativists see green men, black holes, white dwarfs, red giants and other crazy mystical visions everywhere. For the first time, science has encountered such mysteries in the case of pulsars - objects that emit frequent radio signals. At first, they were mistaken for signals from extraterrestrial civilizations, designating the pulsars as "LGM" (Little Green Men), because they did not know the mechanisms of generation of powerful pulses of radio emission by stars, coming with a period of fractions of seconds. Later they were invented, but they turned out to be no better than green men: pulsars were considered supernatural neutron stars with a density trillions of times higher than the density of water, with a huge magnetic field and an insane rotation frequency. But if Galileo's mechanics is correct, and light follows Galileo's principle of relativity, adopted by the Ritz Ballistic Theory (BTR), then the properties of pulsars can be explained without any mysticism [1]. For example, radio emission from pulsars is the light of stars converted by the Ritz effect [2]. A star, flying at an accelerated orbit, each moment imparts a different speed to the light, which is why the crests of light waves running in a row gradually 1 diverge, like runners at a distance (stretching intervals, light waves and converting light into radio waves, like radio pulsars), or converging (shortening the lengths of light waves and converting light into X-rays, as in X-ray pulsars). The increase in the speed of the pulsar to the speed of light c was also confirmed by the pulsar PSR B1937 + 21, whose radio beams reach the Earth at a speed greater than c. Also, the Ritz effect changes the apparent brightness, frequency and duration of the processes, which is why pulsar flares caused by the rotation of star B near star A with an orbital period P (hours or days) appear from a distance L thousands of times more often (Fig. 1). This is possible when a binary pulsar star flies around a third star C, which gives 2 the system a radial acceleration ar close to the critical a0=-c /L. Then the apparent 2 period of revolution and flares of the pulsar P'=P(1+arL/c ) will be compressed by the Ritz effect by a factor of thousands. This resembles the effect discovered by Roemer: the Galilean satellites, circling around Jupiter with a period of the order of a day, change the apparent period of revolution from their motion around the Sun [3]. But if here the Doppler effect reduces the apparent period P'=P(1+Vr/c) by minutes, then the Ritz effect compresses periods by a factor of thousands, millions of times - from a day to a fraction of a second. So, the visible periods of pulsars are not the true periods of their rotation, but imaginary ones, like the periods of the satellites of Jupiter. Fig. 1. Change in the visible period of circulation and the flares of stars and also blur them along orbits caused by the inequality of the speeds of light. 2 The visible period of Jupiter's satellites varies smoothly throughout the year from a change in the radial velocity Vr of Jupiter. Pulsars also have a smooth change in period. For radio pulsars, the period increases, for X-ray pulsars, it decreases [4], which is apparently also caused by a change in the radial acceleration ar during orbital motion and a corresponding change in the compression ratio of the period according to the Ritz effect [1]. Dwarf Cepheids and RR Lyrae (lyrids) stars have a similar smooth change in blinking periods [5]. Considering that the periods of blinking of these stars are hours and days, it is quite possible that the real periods of their revolution, causing blinking, are much larger and in fact do not change, but seem to be variable according to the Ritz effect. However, variations in the periods of pulsars, Cepheids and lyrids can also be caused by real changes in orbital periods, which is common among binary stars [6]. Changing the speed of light and the apparent period creates other interesting effects. Since the light of a star flying in a circular orbit receives a different speed, then the rays emitted at different times can arrive at us simultaneously. Then a series of images of the star are visible at different points in its orbit. De Sitter and P. Bergman considered in the 1920s that the absence of such bifurcations of the stars proves the fallacy of Ritz's theory. However, V.I. Sekerin showed that the double vision effect could not be noticed before from the weakness of telescopes [3]. A binary image of a star flying in an orbit of diameter D with a speed of V and a period of P will appear if the light sent at a speed of c+V at the moment of the approach of the star catches up on the way L to Earth the light sent by a star at a speed of c–V half a period earlier (fig. 2). That is, if L/(c–V)–L/(c+V)≈2LV/c2>P/2. The stronger this excess, the higher the number of unnecessary images N≈[4LV/c2P]. Since P=πD/V, the doubling condition is 4V2/πc2>D/L. Usually V<200 km/s, and the maximum angle α at which a forked star can be observed will be D/L<4V2/πc2=5.7·10–7 rad=0.1'' - a fraction of an arc second, which is lower the resolution of the old telescopes is ~1''. That is, the double images simply could not be distinguished. But the technology went ahead: the resolving power of the Hubble orbiting telescope reached 0.1", and for radio telescopes and interferometer telescopes - even 0.001"- 0.0001". As soon as these devices appeared, Ritz's theory began to receive one confirmation after another [7]. First, they discovered unnecessary images of quasars, galaxies, then stars. It is easier for galaxies to see redundant images. After all, galaxies are brighter and farther, fly in clusters with high velocities V, up to 1000 km/s, and their light is not re-emitted by interstellar gas, which reduces the effective distance L, where the difference in ray paths accumulates [1]. 3 Fig. 2. The emergence of rings from Woven and multiplied along the orbits of images of stars in the SN 1987A system, on the right - its photographs reflecting the evolution of the ring. So, the prediction of multiple images by Ritz's theory has been brilliantly confirmed. And attempts to interpret the extra images through gravitational lenses in hindsight have failed, because the number, image structure and measurements of the masses of galaxies contradict the predictions of the theory of relativity. Indeed, according to the theory of relativity, a gravitational lens creates no more than two images, and they are observed by three or four or more. But according to Ritz, the number of unnecessary images N≈[4LV/c2P] is not limited. According to the theory of relativity, the images are mirror-symmetrical about the lens-source axis, but in fact they are located arbitrarily. And in Ritz's theory, images can be anywhere, at any point in the elliptical orbit along which the galaxy is flying. According to the theory of relativity, the mass of the lens galaxies is enormous, although the measured masses are small. And according to Ritz, the mass of galaxies is not important, since the images are not formed by the gravitational field. Astrophysicists tried to save the day by introducing ever new hypotheses about the distribution of masses in galaxies, about the invisible dark mass, etc., having managed to explain the quadruple images (Einstein's cross). But when they began to observe five or more images, the case stalled, and all these attempts began to look strained and unconvincing, especially against the background of a simple explanation according to Ritz's theory. 4 The most striking evidence of Ritz's theory was highlighted by new stars and supernovae.
Recommended publications
  • LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
    LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian
    [Show full text]
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November :::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Observational Evidence for Tidal Interaction in Close Binary Systems, Including Short-Period Extrasolar Planets
    Tidal effects in stars, planets and disks M.-J. Goupil and J.-P. Zahn EAS Publications Series, Vol. ?, 2018 OBSERVATIONAL EVIDENCE FOR TIDAL INTERACTION IN CLOSE BINARY SYSTEMS Tsevi Mazeh1 Abstract. This paper reviews the rich corpus of observational evidence for tidal effects, mostly based on photometric and radial-velocity mea- surements. This is done in a period when the study of binaries is being revolutionized by large-scaled photometric surveys that are detecting many thousands of new binaries and tens of extrasolar planets. We begin by examining the short-term effects, such as ellipsoidal variability and apsidal motion. We next turn to the long-term effects, of which circularization was studied the most: a transition period be- tween circular and eccentric orbits has been derived for eight coeval samples of binaries. The study of synchronization and spin-orbit align- ment is less advanced. As binaries are supposed to reach synchroniza- tion before circularization, one can expect finding eccentric binaries in pseudo-synchronization state, the evidence for which is reviewed. We also discuss synchronization in PMS and young stars, and compare the emerging timescale with the circularization timescale. We next examine the tidal interaction in close binaries that are orbited by a third distant companion, and review the effect of pumping the binary eccentricity by the third star. We elaborate on the impact of the pumped eccentricity on the tidal evolution of close binaries residing in triple systems, which may shrink the binary separation. Finally we consider the extrasolar planets and the observational evidence for tidal interaction with their parent stars.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • IAU Symp 269, POST MEETING REPORTS
    IAU Symp 269, POST MEETING REPORTS C.Barbieri, University of Padua, Italy Content (i) a copy of the final scientific program, listing invited review speakers and session chairs; (ii) a list of participants, including their distribution on gender (iii) a list of recipients of IAU grants, stating amount, country, and gender; (iv) receipts signed by the recipients of IAU Grants (done); (v) a report to the IAU EC summarizing the scientific highlights of the meeting (1-2 pages). (vi) a form for "Women in Astronomy" statistics. (i) Final program Conference: Galileo's Medicean Moons: their Impact on 400 years of Discovery (IAU Symposium 269) Padova, Jan 6-9, 201 Program Wednesday 6, location: Centro San Gaetano, via Altinate 16.0 0 – 18.00 meeting of Scientific Committee (last details on the Symp 269; information on the IYA closing ceremony program) 18.00 – 20.00 welcome reception Thursday 7, morning: Aula Magna University 8:30 – late registrations 09.00 – 09.30 Welcome Addresses (Rector of University, President of COSPAR, Representative of ESA, President of IAU, Mayor of Padova, Barbieri) Session 1, The discovery of the Medicean Moons, the history, the influence on human sciences Chair: R. Williams Speaker Title 09.30 – 09.55 (1) G. Coyne Galileo's telescopic observations: the marvel and meaning of discovery 09.55 – 10.20 (2) D. Sobel Popular Perceptions of Galileo 10.20 – 10.45 (3) T. Owen The slow growth of human humility (read by Scott Bolton) 10.45 – 11.10 (4) G. Peruzzi A new Physics to support the Copernican system. Gleanings from Galileo's works 11.10 – 11.35 Coffee break Session 1b Chair: T.
    [Show full text]
  • Orion® Intelliscope® Computerized Object Locator
    INSTRUCTION MANUAL Orion® IntelliScope® Computerized Object Locator #7880 Providing Exceptional Consumer Optical Products Since 1975 Customer Support (800) 676-1343 E-mail: [email protected] Corporate Offices (831) 763-7000 89 Hangar Way, Watsonville, CA 95076 IN 229 Rev. G 01/09 Congratulations on your purchase of the Orion IntelliScope™ Com­ pu ter ized Object Locator. When used with any of the SkyQuest IntelliScope XT Dobsonians, the object locator (controller) will provide quick, easy access to thousands of celestial objects for viewing with your telescope. Coil cable jack The controller’s user-friendly keypad combined with its database of more than 14,000 RS-232 jack celestial objects put the night sky literally at your fingertips. You just select an object to view, press Enter, then move the telescope manually following the guide arrows on the liquid crystal display (LCD) screen. In seconds, the IntelliScope’s high-resolution, 9,216- step digital encoders pinpoint the object, placing it smack-dab in the telescope’s field of Backlit liquid-crystal display view! Easy! Compared to motor-dependent computerized telescopes systems, IntelliScope is faster, quieter, easier, and more power efficient. And IntelliScope Dobs eschew the complex initialization, data entry, or “drive training” procedures required by most other computer- ized telescopes. Instead, the IntelliScope setup involves simply pointing the scope to two bright stars and pressing the Enter key. That’s it — then you’re ready for action! These instructions will help you set up and properly operate your Intelli Scope Com pu ter- ized Object Locator. Please read them thoroughly. Table of Contents 1.
    [Show full text]
  • 2005 Astronomy Magazine Index
    2005 Astronomy Magazine Index Subject index flyby of Titan, 2:72–77 Einstein, Albert, 2:30–53 Cassiopeia (constellation), 11:20 See also relativity, theory of Numbers Cassiopeia A (supernova), stellar handwritten manuscript found, 3C 58 (star remnant), pulsar in, 3:24 remains inside, 9:22 12:26 3-inch telescopes, 12:84–89 Cat's Eye Nebula, dying star in, 1:24 Einstein rings, 11:27 87 Sylvia (asteroid), two moons of, Celestron's ExploraScope telescope, Elysium Planitia (on Mars), 5:30 12:33 2:92–94 Enceladus (Saturn's moon), 11:32 2003 UB313, 10:27, 11:68–69 Cepheid luminosities, 1:72 atmosphere of water vapor, 6:22 2004, review of, 1:31–40 Chasma Boreale (on Mars), 7:28 Cassini flyby, 7:62–65, 10:32 25143 (asteroid), 11:27 chonrites, and gamma-ray bursts, 5:30 Eros (asteroid), 11:28 coins, celestial images on, 3:72–73 Eso Chasma (on Mars), 7:28 color filters, 6:67 Espenak, Fred, 2:86–89 A Comet Hale-Bopp, 7:76–79 extrasolar comets, 9:30 Aeolis (on Mars), 3:28 comets extrasolar planets Alba Patera (Martian volcano), 2:28 from beyond solar system, 12:82 first image of, 4:20, 8:26 Aldrin, Buzz, 5:40–45 dust trails of, 12:72–73 first light from, who captured, 7:30 Altair (star), 9:20 evolution of, 9:46–51 newly discovered low-mass planets, Amalthea (Jupiter's moon), 9:28 extrasolar, 9:30 1:68–71 amateur telescopes. See telescopes, Conselice, Christopher, 1:20 smallest, 9:26 amateur constellations whether have diamond layers, 5:26 Andromeda Galaxy (M31), 10:84–89 See also names of specific extraterrestrial life, 4:28–34 disk of stars surrounding, 7:28 constellations eyepieces, telescope.
    [Show full text]
  • Accretion-Ejection Morphology of the Microquasar SS 433 Resolved at Sub-Au Scale with VLTI/GRAVITY
    Accretion-ejection morphology of the microquasar SS 433 resolved at sub-au scale with VLTI/GRAVITY P.-O. Petrucci1, I. Waisberg2, J.-B Lebouquin1, J. Dexter2, G. Dubus1, K. Perraut1, F. Eisenhauer2 and the GRAVITY collaboration 1 Institute of Planetology and Astrophysics of Grenoble, France 2 Max Planck Institute fur Extraterrestrische Physik, Garching, Germany 1 What is SS 433? •SS 433 discovered in the 70’s. In the galactic plane. K=8.1! •At a distance of 5.5 kpc, embedded in the radio nebula W50 •Eclipsing binary with Period of ~13.1 days, the secondary a A-type supergiant star and the primary may be a ~10 Msun BH. 70 arcmin SS 433 130 arcmin W50 supernova remnant in radio (green) against the infrared background of stars and dust (red). 2 Moving Lines: Jet Signatures Medvedev et al. (2010) • Optical/IR spectrum: Hβ ‣ Broad emission lines (stationary lines) Hδ+ H!+ Hβ- Hβ+ ‣ Doppler (blue and red) shifted lines (moving lines) HeII CIII/NIII HeI 3 Moving Lines: Jet Signatures Medvedev et al. (2010) • Optical/IR spectrum: Hβ ‣ Broad emission lines (stationary lines) Hδ+ H!+ Hβ- Hβ+ ‣ Doppler (blue and red) shifted lines (moving lines) HeII CIII/NIII HeI •Variable, periodic, Doppler shifts reaching ~50000 km/s in redshift and ~30000 km/s in blueshift •Rapidly interpreted as signature of collimated, oppositely ejected jet periodicity of ~162 days (v~0.26c) precessing (162 days) and nutating (6.5 days) Figure 3: Precessional curves of the radial velocities of theshiftedlinesfromtheapproaching3 (lower curve) and receding (upper curve) jets, derived from spectroscopic data obtained during the first two years in which SS433 was studied (Ciatti et al.
    [Show full text]
  • International Astronomical Union Commission 42 BIBLIOGRAPHY of CLOSE BINARIES No. 92
    International Astronomical Union Commission 42 BIBLIOGRAPHY OF CLOSE BINARIES No. 92 Editor-in-Chief: C.D. Scarfe Editors: H. Drechsel D.R. Faulkner L.V. Glazunova E. Lapasset C. Maceroni Y. Nakamura P.G. Niarchos R.G. Samec W. Van Hamme M. Wolf Material published by March 15, 2011 BCB issues are available via URL: http://www.konkoly.hu/IAUC42/bcb.html, http://www.sternwarte.uni-erlangen.de/pub/bcb or http://www.astro.uvic.ca/∼robb/bcb/comm42bcb.html The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j. Mass loss and mass exchange k. Rotational velocities 6. Catalogues, discoveries, charts a.
    [Show full text]
  • Arxiv:0709.4613V2 [Astro-Ph] 16 Apr 2008 .Quirrenbach A
    Astronomy and Astrophysics Review manuscript No. (will be inserted by the editor) M. S. Cunha · C. Aerts · J. Christensen-Dalsgaard · A. Baglin · L. Bigot · T. M. Brown · C. Catala · O. L. Creevey · A. Domiciano de Souza · P. Eggenberger · P. J. V. Garcia · F. Grundahl · P. Kervella · D. W. Kurtz · P. Mathias · A. Miglio · M. J. P. F. G. Monteiro · G. Perrin · F. P. Pijpers · D. Pourbaix · A. Quirrenbach · K. Rousselet-Perraut · T. C. Teixeira · F. Th´evenin · M. J. Thompson Asteroseismology and interferometry Received: date M. S. Cunha and T. C. Teixeira Centro de Astrof´ısica da Universidade do Porto, Rua das Estrelas, 4150-762, Porto, Portugal. E-mail: [email protected] C. Aerts Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium; Afdeling Sterrenkunde, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands. J. Christensen-Dalsgaard and F. Grundahl Institut for Fysik og Astronomi, Aarhus Universitet, Aarhus, Denmark. A. Baglin and C. Catala and P. Kervella and G. Perrin LESIA, UMR CNRS 8109, Observatoire de Paris, France. L. Bigot and F. Th´evenin Observatoire de la Cˆote d’Azur, UMR 6202, BP 4229, F-06304, Nice Cedex 4, France. T. M. Brown Las Cumbres Observatory Inc., Goleta, CA 93117, USA. arXiv:0709.4613v2 [astro-ph] 16 Apr 2008 O. L. Creevey High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80301, USA; Instituto de Astrofsica de Canarias, Tenerife, E-38200, Spain. A. Domiciano de Souza Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Ger- many. P. Eggenberger Observatoire de Gen`eve, 51 chemin des Maillettes, 1290 Sauverny, Switzerland; In- stitut d’Astrophysique et de G´eophysique de l’Universit´e de Li`ege All´ee du 6 Aoˆut, 17 B-4000 Li`ege, Belgium.
    [Show full text]
  • SS 433 Is Finally Detected in Gev Gamma-Rays
    Gamma-ray heartbeat powered by the microquasar SS 433 Jian Li University of Science and Technology of China In collaboration with D. Torres, R.-Y. Liu, Y. Su et al. Illustration credit: DESY/Science Communication Lab SS 433: A very powerful Galactic microquasar • SS 433 is a unique galactic accreting microquasar with mildly relativistic (v =0.26c), precessing jets located at a distance of 4.6 kpc • It is composed by a compact object (10-20 Msun black • The system exhibits photometric hole) and a 30 Msun and spectral periodicities related A7Ib supergiant to precession (~162.5 days) and star. orbital (13.082 days) period 2 SS 433: X-ray and TeV emission from jet termination lobe . Dubner et al. 1998. HAWC ~20 TeV ROSAT 0.9-2 keV Abeysekara et al. 2018, Nature 3 SS 433 in multi-TeV photons (detected by HAWC) Fermi/LAT Abeysekara et al. 2018, nature 4 Summary of previous studies Previously, there have been studies of SS 433 region using Fermi/LAT data. However, these studies arrived at inconsistent conclusions and, lacked a proper treatment for the contamination produced from nearby bright gamma- ray pulsar PSR J1907+0602, are thus at risk of systematic biases 5 SS 433 in GeV: our analysis Counts map in 100 MeV-300 GeV • ~10.5 years Pass 8 data: 2008-08-04 2019-01-28 4FGL catalog • The map is dominated by a very bright pulsar nearby SS 433, 1.4 degree away from PSR J1907+0602 • PSR J1907+0602 has TS=22142 6 Need of gating: one can discover the pulsation at the SS433 position Timing of all photons centered on SS 433, above 100 MeV, with a radius of 0.6 degree, and folded with pulsar period provides a good signal (> 8σ).
    [Show full text]
  • Disclaimer of Quality
    Room 14-0561 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.5668 Fax: 617.253.1690 MITLibraries Email: [email protected] Document Services http://libraries. mit. edu/docs DISCLAIMER OF QUALITY Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible. Thank-you. Some pages in the original document contain pictures or graphics that will not scan or reproduce well. Modeling the High Resolution X-ray Spectra from the Relativistic Jets of the X-ray Binary SS 433 by Laura Ann Lopez Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2004 ( Massachusetts Institute of Technology 2004. All rights reserved. Author ... ;._t ,.. Department of Physics May 7, 2004 Certified by ... C9-- Herman L. Marshall /- A - Research Physicist Thesis Supervisor Certified by.. ... ............. Claude R. Canizares Professor Thesis Supervisor Accepted by ......... c David E. Pritchard MASSACHUSETTNSTrJE 1 Physics Undergraduate Thesis Coordinator OF TECHNOLOGY JUL 0 72004 LIBRAF.' R3 2 Modeling the High Resolution X-ray Spectra from the Relativistic Jets of the X-ray Binary SS 433 by Laura Ann Lopez Submitted to the Department of Physics on May 7, 2004, in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics Abstract We test the physical model of the relativistic jets in the galactic X-ray binary SS 433 that was proposed by Marshall et al.
    [Show full text]