Orion® Intelliscope® Computerized Object Locator

Total Page:16

File Type:pdf, Size:1020Kb

Orion® Intelliscope® Computerized Object Locator INSTRUCTION MANUAL Orion® IntelliScope® Computerized Object Locator #7880 Providing Exceptional Consumer Optical Products Since 1975 Customer Support (800) 676-1343 E-mail: [email protected] Corporate Offices (831) 763-7000 89 Hangar Way, Watsonville, CA 95076 IN 229 Rev. G 01/09 Congratulations on your purchase of the Orion IntelliScope™ Com­ pu ter ized Object Locator. When used with any of the SkyQuest IntelliScope XT Dobsonians, the object locator (controller) will provide quick, easy access to thousands of celestial objects for viewing with your telescope. Coil cable jack The controller’s user-friendly keypad combined with its database of more than 14,000 RS-232 jack celestial objects put the night sky literally at your fingertips. You just select an object to view, press Enter, then move the telescope manually following the guide arrows on the liquid crystal display (LCD) screen. In seconds, the IntelliScope’s high-resolution, 9,216- step digital encoders pinpoint the object, placing it smack-dab in the telescope’s field of Backlit liquid-crystal display view! Easy! Compared to motor-dependent computerized telescopes systems, IntelliScope is faster, quieter, easier, and more power efficient. And IntelliScope Dobs eschew the complex initialization, data entry, or “drive training” procedures required by most other computer- ized telescopes. Instead, the IntelliScope setup involves simply pointing the scope to two bright stars and pressing the Enter key. That’s it — then you’re ready for action! These instructions will help you set up and properly operate your Intelli Scope Com pu ter- ized Object Locator. Please read them thoroughly. Table of Contents 1. Installation . 4 2. Alignment . 7 3. Overview of Controller . 10 4. Locating the Planets.................................... 11 5. Locating Deep-Sky Objects by Catalog . 13 6. Locating Deep-Sky Objects by Object Type .................. 15 7. Locating Stars......................................... 16 Illuminated 8. Tours of the Best Objects ................................ 19 pushbuttons 9. The Identity Function . 19 10. Adding User-Defined Objects............................ 20 11. The FCN Button . 21 User-friendly 12. The “Hidden” Functions . 22 keypad 13. Specifications ........................................ 24 Appendix A: Troubleshooting . 25-26 Appendix B: Alignment Star Finder Charts . 27-30 Appendix C: Constellation Abbreviations ...................... 31 Appendix D: ST Catalog................................. 32-47 Figure 1. The IntelliScope Computerized Object Locator. 2 3 bly. Therefore, the object locator comes Parts List with four nylon washers, but only two are Your IntelliScope™ Computerized Object Locator comes with the following parts: required for installation. Note that two of the washers have a thickness of 1/8th of Qty. Description an inch, while the other two have a thick- 1 Object locator computer (controller) ness of 1/16th of an inch. 1 Altitude encoder assembly If your SkyQuest IntelliScope XT Dobsonian optical tube has side bearings 1 Coil cable Figure 2.5a. If Figure 2.5b. If that appear as in Figure 2.5a, then use the 1 Altitude encoder cable (53" long) your optical tube has your optical tube has two thicker (1/8th of an inch) nylon wash- 1 Azimuth encoder cable (24" long) side bearings that side bearings that ers behind the altitude encoder assembly. look like this, then look like this, then If your SkyQuest IntelliScope XT Dobsonian 6 Wire retaining clips use the two thicker use the two thinner optical tube has side bearings that appear 2 Hook-and-loop strips (1 “hook” strip, 1 “loop” strip) washers. washers. Note the as in Figure 2.5b, then use the two thin- raised circular feature 1 Plastic bumper ner (1/16th of an inch) nylon washers in the center. 3 Wood screws behind the altitude encoder assembly. 2 Nylon washers (1/8" thick) Once installation is complete, you will have two nylon washers left over. Feel free to 2 Nylon washers (1/16" thick) discard these washers, as they will not Altitude encoder be needed for use of the object locator. 1 9-volt battery Modular jack assembly Now, with the screws pushed through the The only tool needed for installation is a Phillips-head screwdriver. Remove the optical encoder board, place a nylon washer on tube from the base to begin installation. the end of each screw (Figure 3). Then, Nylon washers Note: The IntelliScope Computerized Object Locator is only compatible with Orion Sky­ thread the screws into the starter holes Quest XT IntelliScope Dobsonians. If you have another Dobsonian, or any other tele­ in the side panel. The shaft on the alti- scope, the IntelliScope system will not function properly. tude encoder assembly should protrude through the 5/8" through-hole in the side panel. It will take a bit of dexterity to keep 1. Installation the washers on the ends of the screws 1) Install the altitude encoder assembly when installing, so don’t get frustrated if Altitude encoder it takes a couple tries. The screws should onto the base’s right side panel. This is pilot holes the side of the base opposite the side not be fully tightened; they should be tight, Wood screws with the IntelliScope Computerized but not tight enough to prevent the altitude Controller Port. Below the 5/8" through- Figure 3. Place a nylon washer on the end encoder from moving up and down within hole in the panel, there are two pre- of each screw after the screws are pushed the slots in the encoder board. drilled starter holes in the inward-fac- through the altitude encoder assembly. 2) There is a pilot hole above the 5/8 ing surface (Figure 2). Take two of the through hole in the right side panel’s interior supplied wood screws and push them surface; this is where the plastic bumper that through the two slotted holes in the protects the altitude encoder assembly will bottom of the altitude encoder’s com- be installed. Take the remaining wood screw, puter board. The screw heads should push it through the bumper, and thread it into be on the same side as the altitude the pilot hole until tight (Figure 4). encoder’s modular jack. 3) Connect one end of the azimuth encoder Because there are two versions of cable (the shorter of the two cables) to the the side bearings on the SkyQuest Figure 2. The two pilot holes used to mount encoder jack in the top baseplate of the IntelliScope XT Dobsonian optical the altitude encoder assembly are located on Dobsonian base. Connect the other end to tube, we have supplied two sets of two the interior surface of the right side panel of the encoder connector board that should nylon washers to assure best perfor- the-base. be already installed on the base’s left side mance of the altitude encoder assem- Figure 4. Install the bumper into the pilot hole above the altitude encoder assembly. 4 5 panel. The cable should plug into the jack hole in the center of the tube’s side provides a firm mounting for the con- on the left side of the encoder connector bearing. troller at a convenient position for easy Altitude board (see Figure 5). access. The controller can be removed encoder shaft 8) Reinstall the telescope’s retaining knob, 4) Connect one end of the altitude encoder without its black nylon bushing, through from the holster when needed or kept cable to the modular jack on the altitude the altitude encoder’s aluminum shaft in the holster during use. Altitude encoder assembly. Con nect the other end of (now protruding from the right side 11) Slide the battery cover off the back of cable the cable to the jack on the right side of the panel) and into the tube’s side bearing the hand control and insert the 9-volt jack encoder connector board (see Figure 5). (Figure 6). Make sure this knob is fully alkaline battery. Make sure the positive 5) Use the provided wire clips to secure the tightened. and negative terminals of the battery altitude and azimuth cables neatly to the 9) Insert one end of the coil cable into the are oriented as shown in the bottom of base. We recommend using two clips for the larger of the two jacks on the top of the the battery compartment. Replace the (shorter) azimuth cable, and four clips for the IntelliScope controller (Figure 1). Insert battery cover. (longer) altitude cable (Figure 5.5a-b). The the other end into the “IntelliScope Your IntelliScope Computerized Object clips have adhesive backing; simply peel the Computerized Controller Port” on the Locator is now installed and ready to be paper off the back of the clip and press the left side of the Dobsonian base. used. Azimuth adhesive back to the base where you want cable jack the clip to be located. 2. Alignment 6) Place the telescope optical tube into the base. Be very careful not to hit the altitude This section will familiarize you with the encoder with the side bearing on the tube alignment procedure for the IntelliScope when doing this or damage to the encoder system. Figure 5. The azimuth cable plugs into could result. The bumper helps to prevent the jack on the left of the encoder connector such contact. Powering the Controller board. The altitude cable plugs into the jack on To turn the controller on, firmly press the the-right. 7) Reinstall the telescope’s tensioning knob (the one with the Teflon and metal wash- Power button. The LED lights will acti- ers) through the base’s left side panel (the vate and the LCD screen will display its side that has the IntelliScope Computerized introduction message. The intensity of the Controller Port label) and into the threaded Figure 6. The retaining knob now goes illumination can be adjusted by repeat- through the shaft of the altitude encoder edly pressing the Power button.
Recommended publications
  • The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
    25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used.
    [Show full text]
  • Maps for GLOBE at Night at Latitude 40 , February 23, 21 H Local Time
    < 0.50 mag < 1.50 mag < 2.50 mag < 3.50 mag < 4.50 mag < 5.50 mag < 6.50 mag < 7.50 mag Maps for GLOBE at Night at latitude 40◦, February 23, 21 h local time (deep night), assuming rather transparent air. Orion’s belt is 34◦ to the right from the south, at 43◦ height. The brightest fixed star, Sirius, is at left. Jan Hollan, Ecological Institute Veronica and http://www.astro.cz/darksky < 0.50 mag < 1.50 mag < 2.50 mag < 3.50 mag < 4.50 mag < 5.50 mag < 6.50 mag < 7.50 mag Maps for GLOBE at Night at latitude 40◦, March 2, 21 h local time (deep night), assuming rather transparent air. Orion’s belt is 42◦ to the right from the south, at 40◦ height. The brightest fixed star, Sirius, is at left. Jan Hollan, Ecological Institute Veronica and http://www.astro.cz/darksky Betelgeuse Rigel Pollux Procyon Sirius Sirius Arcturus Saturn < 0.50 mag < 1.50 mag S S Betelgeuse Big Dipper Big Big Dipper Big Betelgeuse Rigel Rigel Pollux Pollux Procyon Procyon Sirius Sirius Arcturus Regulus Arcturus Regulus Denebola Denebola Saturn Saturn < 2.50 mag < 3.50 mag S S Procyon Procyon Regulus Regulus Denebola Denebola < 4.50 mag < 5.50 mag Procyon Procyon Regulus Regulus Denebola Denebola < 6.50 mag < 7.50 mag Maps for GLOBE at Night at latitude 40◦, March 23, 21 h local time (Sun at -31◦). Lines from N(E,S,W) to zenith shown (crosses each 10◦). Regulus (α Leonis) is 32◦ to the left from S, at 58◦ height.
    [Show full text]
  • IBAK Sewer and Manhole Inspection Systems
    IBAK Sewer and Manhole Inspection Systems Table of contents Hindsight – Insight – Foresight ..................................... 4 Cable drums and cable winches IBAK Sewer and Manhole Inspection Systems ............ 6 Extension Kit ............................................................... 44 IBAK KT 180 ............................................................... 46 Cameras IBAK KW 180 .............................................................. 48 IBAK HYDRUS .............................................................. 8 IBAK KW 305/310/505 ................................................ 50 IBAK NANO / NANO L ................................................. 10 IBAK KW LISY Synchron ............................................ 52 IBAK JUNO ................................................................. 12 IBAK POLARIS ............................................................ 14 Compact push system IBAK ORION .............................................................. 16 IBAK HSP .................................................................... 54 IBAK ORION L ............................................................ 18 IBAK MiniLite .............................................................. 56 IBAK ORPHEUS 2 ...................................................... 20 IBAK ORPHEUS 2 HD ................................................ 22 Control units/systems IBAK ARGUS 5 ........................................................... 24 IBAK BK 3.5 ...............................................................
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • Journal Reprints-Astronomy/Download/8526
    SPACE PATTERNS AND PAINTINGS (published in the "Engineer" magazine No. 8-9, 2012) Sagredo. - If the end of the pen, which was on the ship during my entire voyage from Venice to Alexandretta, were able to leave a visible trace of its entire path, then what kind of trace, what mark, what line would it leave? Simplicio. - I would leave a line stretching from Venice to the final place, not completely straight, or rather, extended in the form of an arc of a circle, but more or less wavy, depending on how much the ship swayed along the way ... Sagredo. - If, therefore, the artist, upon leaving the harbor, began to draw with this pen on a sheet of paper and continued drawing until Alexandretta, he could get from his movement a whole picture of figures ... at least a trace left ... by the end of the pen would be nothing more than a very long and simple line. G. Galileo "Dialogue on the two main systems of the world" Space has been giving astronomers surprise after surprise lately. A number of mysterious space objects were discovered that were not predicted by astrophysics and contradicted it. The more advanced observation methods become, the more such surprises. At one time, I. Shklovsky argued that the discovery of such "cosmic wonders" would confirm the reality of extraterrestrial intelligence, its enormous technical capabilities. But in reality, the "cosmic miracles" showed the backwardness of terrestrial science, which the opium of relativism smiled so much that now it cannot clearly explain ordinary cosmic phenomena caused by natural causes.
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
    LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian
    [Show full text]
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November :::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Download This Article in PDF Format
    A&A 601, A58 (2017) Astronomy DOI: 10.1051/0004-6361/201730437 & c ESO 2017 Astrophysics Spectroscopic twin to the hypervelocity sdO star US 708 and three fast sdB stars from the Hyper-MUCHFUSS project E. Ziegerer1, U. Heber1, S. Geier1; 2; 3; 4, A. Irrgang1, T. Kupfer5, F. Fürst5; 6, and J. Schaffenroth1 1 Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany 3 Department of Physics, University of Warwick, Coventry CV4 AL, UK 4 Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, 72076 Tübingen, Germany 5 Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Passadena, CA 91125, USA 6 European Space Astronomy Centre (ESA/ESAC), Operations Department, 28692 Villanueva de la Cañada (Madrid), Spain Received 13 January 2017 / Accepted 26 March 2017 ABSTRACT Important tracers for the dark matter halo of the Galaxy are hypervelocity stars (HVSs), which are faster than the local escape velocity of the Galaxy and their slower counterparts, the high-velocity stars in the Galactic halo. Such HVSs are believed to be ejected from the Galactic centre (GC) through tidal disruption of a binary by the super-massive black hole (Hills mechanism). The Hyper-MUCHFUSS survey aims at finding high-velocity potentially unbound hot subdwarf stars. We present the spectroscopic and kinematical analyses of a He-sdO as well as three candidates among the sdB stars using optical Keck/ESI and VLT (X-shooter, FORS) spectroscopy.
    [Show full text]
  • Sky-Watcher Skyliner-300P Flextube Auto Sky-Watcher’S Latest Dobsonian Telescope Can Track the Stars So That the Views Through Its Huge Aperture Stay in the Eyepiece
    AUGUST 09 FIRST LIGHT: AN IN-DEPTH LOOK AT THIS MONTH'S HOTTEST NEW PRODUCT SKY-waTCHER Skyliner-300P FlexTube Auto Sky-Watcher’s latest Dobsonian telescope can track the stars so that the views through its huge aperture stay in the eyepiece. Paul Money takes a look VITAL STATS hen John Dobson MDF rocker base here, like the plug it into a power pack, neither created the telescope setup of some other Dobsonians. of which are supplied. > PRICE £1,099 design that bears his This is no doubt to ensure that the The Skyliner’s 1,500mm of > APERTURE 305mm (12 inches) name, he would scarcely have 300P’s axis motors stay accurately focal length collapses down to > FOCAL LENGTH 1,500mm; f/5 imagined how it would evolve installed. Instead, you just lift the just under a metre thanks to its > OpTICAL DESIGN Newtonian thanks to Sky-Watcher. First, tube assembly onto the rocker telescopically extending trusses, reflector > FINDER 9x50 straight-through the company came up with the base and the main job’s done. All making it extremely portable for > EYEPIECES 25mm, 10mm; FlexTube collapsible truss tube, that’s left is the 9x50 straight- such a large instrument. We were 1.25-inch fit which greatly improved through finderscope to assemble impressed to find no collimation > FOCUSER Crayford; 1.25- & 2-inch fit portability. Now it has added and the hand controller to install. issues, even after repeated setups. > MOUNT Motorised Dobsonian auto-tracking motors to the The 300P comes with two And with its tracking motors, we > WEIGHT 40kg FlexTube design, taking the eyepieces, a 25mm and 10mm could take decent images of the > SUPPLIER Optical Vision Dobsonian on its next great 1.25-inch fit that give 60x and Moon and planets, despite the > www.opticalvision.co.uk leap forward.
    [Show full text]
  • A Guide to Smartphone Astrophotography National Aeronautics and Space Administration
    National Aeronautics and Space Administration A Guide to Smartphone Astrophotography National Aeronautics and Space Administration A Guide to Smartphone Astrophotography A Guide to Smartphone Astrophotography Dr. Sten Odenwald NASA Space Science Education Consortium Goddard Space Flight Center Greenbelt, Maryland Cover designs and editing by Abbey Interrante Cover illustrations Front: Aurora (Elizabeth Macdonald), moon (Spencer Collins), star trails (Donald Noor), Orion nebula (Christian Harris), solar eclipse (Christopher Jones), Milky Way (Shun-Chia Yang), satellite streaks (Stanislav Kaniansky),sunspot (Michael Seeboerger-Weichselbaum),sun dogs (Billy Heather). Back: Milky Way (Gabriel Clark) Two front cover designs are provided with this book. To conserve toner, begin document printing with the second cover. This product is supported by NASA under cooperative agreement number NNH15ZDA004C. [1] Table of Contents Introduction.................................................................................................................................................... 5 How to use this book ..................................................................................................................................... 9 1.0 Light Pollution ....................................................................................................................................... 12 2.0 Cameras ................................................................................................................................................
    [Show full text]
  • The Blue Planet Report from Stellafane Perspective on Apollo How to Gain and Retain New Members
    Published by the Astronomical League Vol. 71, No. 4 September 2019 THE BLUE PLANET REPORT FROM STELLAFANE 7.20.69 5 PERSPECTIVE ON APOLLO YEARS APOLLO 11 HOW TO GAIN AND RETAIN NEW MEMBERS mic Hunter h Cos h 4 er’s 5 t h Win 6 7h +30° AURIG A +30° Fast Facts TAURUS Orion +20° χ1 χ2 +20° GE MIN I ated winter nights are domin ο1 Mid ξ ν 2 ORIO N ο tion Orion. This +10° by the constella 1 a π Meiss λ 2 μ π +10° 2 φ1 attended by his φ 3 unter, α γ π cosmic h Bellatrix 4 Betelgeuse π d ω Canis Major an ψ ρ π5 hunting dogs, π6 0° intaka aurus the M78 δ M , follows T 0° ε and Minor Alnitak Alnilam What’s Your Pleasure? ζ h σ η vens eac EROS ross the hea MONOC M43 M42 Bull ac θ τ ι υ ess pursuit. β –10° night in endl Saiph Rigel –10° κ The showpiece of the ANI S C LEPU S ERIDANU S ion MAJOR constellation is the Or ORION (Constellation) –20° wn here), –20° Nebula (M42,sho ion 5 hr; Location: Right Ascens a region of nebulosity ° north 4h Declination 5 5h 6h 7h 2 square degrees th just 1,300 a: 594 and starbir Are 3 4 5 6 0 1 2 0 -2 -1 he Hunter 2 Symbol: T 0 t-years away that is M42 (Orion Nebula); C ligh Notable Objects: a la); NG C 2024 laked eye as a tary nebu e M78 (plane visible to the n n la) d.
    [Show full text]