Neogen Culture Media

Total Page:16

File Type:pdf, Size:1020Kb

Neogen Culture Media Neogen Culture Media Product Guide Edition 1, Nov 2019 Neogen Culture Media Contents About Neogen .......................................................3 Mycobacterium .....................................................27 View Our Culture Media by: Neisseria ..............................................................27 Organism ................................................................6 Proteus ................................................................28 Pseudomonas.......................................................29 Anaerobes ..............................................................6 Salmonella ...........................................................30 Bacillus cereus .......................................................7 Shigella ................................................................33 Brucella ..................................................................8 Spoilage ...............................................................33 Campylobacter .......................................................9 Staphylococcus ....................................................34 Candida ...............................................................10 Sterility Testing .....................................................35 Clostridia ..............................................................11 Streptococcus ......................................................35 Coliforms .............................................................13 UTI (Urinary Tract Infection) ....................................36 Cronobacter .........................................................14 Vibrio ...................................................................36 E. coli ...................................................................15 Yeasts and Molds ..................................................37 Enteric Bacilli ........................................................19 Yersinia ................................................................39 Enterobacteriaceae ...............................................19 Enterococci ..........................................................20 Other .....................................................................40 Gram-Negative Producing ESBL.............................21 Confirmation Kits ...................................................40 Gram-Positive Cocci ..............................................21 General Purpose Media ...........................................41 Heterotrophs ........................................................21 Media Constituents ..................................................45 Lactic Acid Bacteria ..............................................21 Search Our Available Culture Media by: Lactobacillus ........................................................22 Product Name ......................................................48 Legionella.............................................................23 Product Code .......................................................56 Listeria .................................................................24 Product Format .....................................................63 Please see page 47 for available pack sizes N.B. All information contained within this document is accurate at the time of printing. For the most up-to-date information please contact your Neogen representative. Page 2 About Neogen Neogen Culture Media With over 35 years of industry experience, we are committed to investing in the development and expansion of our microbiology product offerings. Our R&D and Technical Services teams have worked closely to develop products of the highest quality that are unparallelled in the market. Why Choose Neogen Culture Media? 4 Quality at Every Step The quality and performance of our culture media is 4 Global Testing Methods monitored throughout every stage of the manufacturing Neogen Culture Media products support compliance with process. From sourcing the finest quality raw materials to global reference methods across multiple industries, with a investing in the best equipment and technical personnel, particular focus on food safety testing. we are committed to ensuring our media is produced to Many of our culture media products are formulation the highest standards. By using high quality materials we and performance compliant according to internationally increase the reliability of our finished products, thereby recognized standards including ISO, BAM and MLG. reducing the need for unnecessary, costly and time We recognize that depending on location, laboratories follow consuming re-tests for our customers. different reference methods where product formulations and Our media is manufactured at dual sites, located in the specifications can vary. By producing a range of formulations United Kingdom and USA, allowing us to be a secure and that are compliant to these recognized standards, we responsive supplier, wherever in the world you may be. Our endeavor to provide the media required to support your experienced R&D, Technical Services and Customer Services testing in both domestic and international locations. teams are on hand to help offer you guidance and support every step of the way. For pharmaceutical applications, we also have a complete range of 17 Harmonized Pharmacopoeia (HP) referenced 4 Accreditations media available compliant to the formulation and Our UK facilities are certified to ISO 9001:2015 and performance specifications of the European Pharmacopoeia ISO 13485:2016 for the design, manufacture and supply of 9th Edition, recently implemented in January 2017. Neogen Culture Media. Our QC labs test in accordance with ISO 11133:2014, going above and beyond the specified acceptance criteria to ensure product quality and consistency. We are also ISO 17025:2017 accredited for the QC testing of our pre-poured plates. Compliance with global reference methods ISO BAM MLG HP Page 3 Neogen Culture Media Convenience Formats Streamline workflow efficiencies and reduce hands-on time with conveniently packaged media: Pre-Poured Media Plates Our expanding range of pre-poured plates can help streamline your laboratory’s workflow by reducing preparation time. Our plates are supplied fully ready-to-use, eliminating the need to weigh, autoclave or cool media, and with no need for additional Supplements. We know that products like Legionella GVPC can be difficult to produce in-house, so why not let us do the hard work for you by using our pre-poured plates? Our full range of Harlequin® Chromogenic Media pre-poured plates are also QC tested under our ISO 17025 Our talented team have extensive knowledge and expertise accreditation, meaning there is only minimal internal QC in the development of unique and innovative chromogenic required by the user. formulations. Our pre-poured plates are available in select European Chromogenic culture media provides rapid and accurate locations; contact us for more information. methods for the isolation and enumeration of target microorganisms based on the detection of enzyme activities. This makes it possible to design chromogenic media that allows the user to easily differentiate and identify highly specific groups of microorganisms. Chromogenic media can enable faster detection of specific microorganisms when compared to traditional culture media, and can reduce the need for subcultures or confirmatory tests. For this reason it is written into several ISO methods (such as ISO 11290) and we have also developed our own proprietary CASE Agar for the detection of Salmonella spp. Why not find out more about our chromogenic media today? Page 4 About Neogen µPREP® Ready-to-Reconstitute Media Bags µPREP bags can save valuable hands-on preparation time, increase your media kitchen capacity, and allow you to be flexible and responsive to changing sample volumes. Prepared with the exact amount of sterile Dehydrated Culture Media (DCM) and all necessary Supplements required, our bags create 20L of sterile media with no need to weigh, autoclave or cool media. Simply connect to a sterile water supply and the media is ready to use in as little as 20 minutes. As bags are pre-sealed, there is no risk of DCM dust contamination in your laboratory. Available for: • Buffered Peptone Water (BPW) • Half Fraser Broth • LESS Plus Medium – Proprietary broth for Listeria EZ Prep Pre-Weighed Media Pouches Neogen’s EZ Prep format features pre-weighed, sterile media in a foil packet. Using sterile water with specially formulated dust-free EZ Prep pouches allows you to prepare sample enrichments anywhere and without an autoclave. This gives a testing facility the freedom to prep the exact amount of media needed for sample testing everyday. EZ Prep saves time, space and gives the scheduling flexibility needed in a busy test lab. Captivate™ Immunomagnetic Separation (IMS) Beads We also offer a range of IMS beads for the isolation and detection of pathogenic E. coli. IMS is a proven technique for the isolation and concentration of STEC prior to testing. IMS beads form part of ISO 16654 and ISO/TS 13136 for the detection of E. coli O157 and STEC’s respectively. Page 5 Neogen Culture Media Organisms Anaerobes Supplement Reference L/ Product Name Description g/L Product Format Product Code Quantity in Method 500g Media Fastidious Anaerobe Agar Primary isolation agar capable of 46 11 Dehydrated Culture NCM0014 growing most clinically significant Media anaerobes Fastidious Anaerobe Primary isolation agar capable of 46 11 Dehydrated Culture NCM2020 Agar
Recommended publications
  • Tryptic Soy Agar (TSA) with Lecithin and Tween®
    Tryptic Soy Agar (TSA) with Lecithin and Tween® CSP ENVIRONMENTAL MONITORING CONT ACT PLATES INTENDED USE Hardy Diagnostics Contact Plate Media is recommended for use in monitoring the level of microbial contamination and the efficacy of sanitation of environmental surfaces. Each contact plate has a grid molded into the bottom of the plate which facilitates counting the number of organisms present. These plates may be used in monitoring of environmental surfaces in sterile compounding areas to comply with proposed revisions to USP Chapter <797>. SUMMARY On January 1, 2004 Chapter <797>, of the United States Pharmacopeia/National Formulary (USP27 /NF22) entitled "Pharmaceutical Compounding Sterile Preparations", became effective. USP Chapter <797> details the procedures and requirements for compounding sterile preparations and sets standards that are applicable to all practice settings in which sterile preparations are compounded. Since USP Chapter <797> is considered a requirement, pharmacies may be subject to inspection for compliance with these standards by state boards of pharmacy, the FDA, and accreditation organizations, such as the Joint Commission on Accreditation of Healthcare Organizations (JCAHO), Accreditation Commission for Health Care, Inc. (ACHA) and the Community Health Accreditation Program (CHAP). Compliance with these standards was required by January 1, 2006. USP Chapter <797> defines three levels of risk related to sterile preparation and includes quality assurance requirements for each risk level. These risk levels are based on the potential for introducing sources of contamination to the preparations from microbial, chemical or physical contamination during compounding activities, or in the case of high-risk compounding that the product would remain contaminated. USP Chapter <797> provides general guidance on risk level assignment based upon compounding manipulations, types of ingredients and equipment used, compounding environment, and storage and use of the resulting preparation.
    [Show full text]
  • Microbiology Media - Ready to Use, Prepared Plates
    Microbiology Media - Ready to use, prepared plates Ready poured plates, general purpose media Ready poured plate, general anaerobe agar 65 65 Columbia blood agar with neomycin. Chromogenic UTI medium Catalogue No Plate diameter, mm Pack qty Price Catalogue No Pack qty Price PO794A 90 10 12.55 PO219A 10 7.54 CLED medium Catalogue No Plate diameter, mm Pack qty Price Ready poured plate, Lactobacilli PO120A 90 10 5.75 64 CLED square plate Catalogue No Plate dimensions, mm Pack qty Price MRS Agar. OXPO0299L 120 x 120 10 16.92 CLED medium with andrades Catalogue No Plate diameter, mm Pack qty Price Catalogue No Plate diameter, mm Pack qty Price PO231A 90 10 7.30 PO121A 90 10 5.75 Columbia agar base Ready poured plates, Legionnella media Catalogue No Plate diameter, mm Pack qty Price 65 OXPO0537A 90 10 5.45 MacConkey agar with salt Legionella growth medium, BCYE Catalogue No Plate diameter, mm Pack qty Price Catalogue No Plate diameter, mm Pack qty Price PO149A 90 10 5.95 PO5072A 90 10 14.72 MacConkey agar without salt Legionella selective medium, BMPA Catalogue No Plate diameter, mm Pack qty Price Catalogue No Plate diameter, mm Pack qty Price PO148A 90 10 5.58 PO0324A 90 10 20.31 MacConkey agar No. 3 Catalogue No Plate diameter, mm Pack qty Price PO495A 90 10 5.90 Malt extract agar Catalogue No Plate diameter, mm Pack qty Price PO182A 90 10 6.38 MRSA agar Catalogue No Plate diameter, mm Pack qty Price OXPO1162A 90 10 15.49 Nutrient agar Catalogue No Plate diameter, mm Pack qty Price PO155A 90 10 5.75 Plate count agar Catalogue No Plate diameter, mm Pack qty Price PO158A 90 10 6.36 R2A agar Catalogue No Plate diameter, mm Pack qty Price PO659A 90 10 6.50 Sabouraud dextrose agar Catalogue No Plate diameter, mm Pack qty Price OXPO0160A 90 10 5.54 Sorbitol MacConkey agar Catalogue No Plate diameter, mm Pack qty Price PO232A 90 10 5.84 Tryptone soya agar Catalogue No Plate diameter, mm Pack qty Price PO163A 90 10 5.49 OXPO0193-C 55 10 10.91 Yeast extract agar Catalogue No Plate diameter, mm Pack qty Price PO441A 90 10 5.08 55.
    [Show full text]
  • Bile Esculin Azide Agar
    Reference: 064-PA3134 Scharlau Microbiology - Technical Data Sheet Product: BILE ESCULIN AZIDE AGAR Specification Solid medium for the confirmation and enumeration of enterococci in water by the membrane filtration method according to ISO 7899-2. Presentation 20 Prepared plates Packaging Details 90 mm 1 box with 2 cellophane bags with 10 plates/bag with: 20 ± 2 g Composition Formula in g/l Tryptone..................................................... 17,00 Peptone......................................................3,00 Yeast extract.............................................. 5,00 Bile............................................................. 10,00 Sodium chloride..........................................5,00 Esculin........................................................1,00 Ammonium ferric citrate..............................0,50 Sodium azide..............................................0,15 Agar............................................................15,00 Final pH 7,20 ±0,2 at 25ºC Description Bile Esculin Azide Medium is a modification of the classical Bile Esculin proposed by Isenberg, Goldberg and Sampson in 1970, but with a reduction in the amount of bile and the addition of sodium azide. Brodsky and Schieman showed that this medium, also known as Pfizer Enterococci Selective Medium gave the best results using the membrane filtration technique. The actual formulation according to the ISO Standard 7899-2:2000 is used for the second step in the confirmation and enumeration of enterococci in water by the membrane filtration method. The colonies previously selected in the Slanetz Bartley Agar (Art. No. 01-579 + 06-023) must be confirmed by a short incubation on Bile Esculin Azide Medium for verification of esculin hydrolysis in a selective environment. Usage instructions In the "Basic Techniques" section found in "Handbook of Microbiological Culture Media" Scharlau Microbiology (Ed.N º .11), the basic principles for the inoculation of culture media is described as a guide for the technician carrying out this procedure for the first time .
    [Show full text]
  • Reverse Blot Hybridization Assay
    Detection of Waterborne Pathogens by Polymerase Chain Reaction- Reverse Blot Hybridization Assay Yeonim Choi The Graduate School Yonsei University Department of Biomedical Laboratory Science Detection of Waterborne Pathogens by Polymerase Chain Reaction- Reverse Blot Hybridization Assay A Dissertation Submitted to the Department of Biomedical Laboratory Science and the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Yeonim Choi July 2011 G This certifies that the dissertation of Yeonim Choi is approved. ๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤ Thesis Supervisor : Hyeyoung Lee ๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤ Ok Doo Awh : Thesis Committee Member ๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤ Tae Ue Kim : Thesis Committee Member ๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤ Jong Bae Kim : Thesis Committee Member ๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤๤ Yong Serk Park : Thesis Committee Member The Graduate School Yonsei University July 2011 G G Dedicated to my family and my friends, who have encouraged me. G G CONTENTS LIST OF FIGURES AND TABLES ------------------------------------------------ iv ABBREVIATIONS ------------------------------------------------------------------- ix ABSTRACT IN ENGLISH ----------------------------------------------------------- x I. INTRODUCTION ------------------------------------------------------------- 1 II. MATERIALS AND METHODS -------------------------------------------- 9 1. Development of PCR-REBA targeting waterborne pathogens -------- 9 Bacterial reference strains and cultivation ------------------------------- 9 Genomic DNA extraction
    [Show full text]
  • Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
    antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton,
    [Show full text]
  • Pocket Guide to Clinical Microbiology
    4TH EDITION Pocket Guide to Clinical Microbiology Christopher D. Doern 4TH EDITION POCKET GUIDE TO Clinical Microbiology 4TH EDITION POCKET GUIDE TO Clinical Microbiology Christopher D. Doern, PhD, D(ABMM) Assistant Professor, Pathology Director of Clinical Microbiology Virginia Commonwealth University Health System Medical College of Virginia Campus Washington, DC Copyright © 2018 Amer i can Society for Microbiology. All rights re served. No part of this publi ca tion may be re pro duced or trans mit ted in whole or in part or re used in any form or by any means, elec tronic or me chan i cal, in clud ing pho to copy ing and re cord ing, or by any in for ma tion stor age and re trieval sys tem, with out per mis sion in writ ing from the pub lish er. Disclaimer: To the best of the pub lish er’s knowl edge, this pub li ca tion pro­ vi des in for ma tion con cern ing the sub ject mat ter cov ered that is ac cu rate as of the date of pub li ca tion. The pub lisher is not pro vid ing le gal, med i cal, or other pro fes sional ser vices. Any ref er ence herein to any spe cific com mer cial prod ucts, pro ce dures, or ser vices by trade name, trade mark, man u fac turer, or oth er wise does not con sti tute or im ply en dorse ment, rec om men da tion, or fa vored sta tus by the Ameri can Society for Microbiology (ASM).
    [Show full text]
  • U.S. Department of Health & Human Services
    Records processed under FOIA Request 2014-5115; Released 10/15/14 U.S. Department of Health & Human Services Food and Drug Administration SAVE REQUEST USER: (ldt) FOLDER: K933121 - 50 pages COMPANY: BIOCLINICAL SYSTEMS, INC. (BIOCSYST) PRODUCT: CULTURE MEDIA, FOR ISOLATION OF PATHOGENIC NEISSERIA (JTY) SUMMARY: Product: MICROBIOLOGICAL CULTURE MEDIA,CHOCOLATE AGAR DATE REQUESTED: Oct 8, 2014 DATE PRINTED: Oct 8, 2014 Note: Printed 5600 Fishers Lane, HFI-35, Room 6-30, Rockville, MD 20857 Questions? Contact FDA/CDRH/OCE/DID at [email protected] or 301-796-8118 Records processed under FOIA Request 2014-5115; Released 10/15/14 510(x) ROUTE SLIP 510(k) NUMBER K933121 PANEL MI DIVISION DCLD BRANCH TRADE NAME MICROBIOLOGICAL CULTURE MEDIA,CHOCOLATE AGAR COMMON NAME PRODUCT CODE APPLICANT BIOCLINICAL SYSTEMS, INC. SHORT NAME BIOCSYST CONTACT KATHRYN POWERS DIVISION ADDRESS 9040 JUNCTION DR. SUITE ONE ANNAPOLIS JUNCTION, MD 20701 PHONE N0. (301) 498-9550 FAX NO. (301) 470-4129 MANUFACTURER BIOCLINICAL SYSTEMS, INC. REGISTRATION NO. 1120183 DATE ON SUBMISSION 25-JUN-93 DATE DUE TO 510(x) STAFF DATE RECEIVED IN ODE 2 - 3 DATE DECISION DUE 23-SEP-93 DECISION DECISION DATE d 1 ý. U PPLEMENTS SUBMITTED RECEIVED DUE POS DUE OUT SUPP001 24-AUG-93 25-AUG-93 08-NOV-93 23-NOV-93 OUT GOING CORRESPONDENCE SUPP001 18-AUG-93 17-SEP-93 ') C n r rr n I 1115---ý r-P ;. FEB- 7 1994 Questions? Contact FDA/CDRH/OCE/DID at [email protected] or 301-796-8118 Records processed under FOIA Request 2014-5115; Released 10/15/14 SEAp(, OtA'H (1 DEPARTMENT OF HEALTH & HUMAN SERVICES Public Health Service ýK oNbYdla Food and Drug Administration 9200 Corporate Boulevard Rockville MD 20850 Phil Buckner HealthLink 3611 St.
    [Show full text]
  • Antimicrobial Resistance EMERGING INFECTIOUS DISEASES Pages 681-814 Peer-Reviewed Journal Tracking and Analyzing Disease Trends Pages 681–814
    Vol 13, No 5, May 2007 Vol ® May 2007 Antimicrobial Resistance EMERGING INFECTIOUS DISEASES Pages 681-814 Pages Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 681–814 EDITOR-IN-CHIEF D. Peter Drotman EDITORIAL STAFF EDITORIAL BOARD Managing Senior Editor Dennis Alexander, Addlestone Surrey, United Kingdom Polyxeni Potter, Atlanta, Georgia, USA Barry J. Beaty, Ft. Collins, Colorado, USA Associate Editors Martin J. Blaser, New York, New York, USA Paul Arguin, Atlanta, Georgia, USA David Brandling-Bennet, Washington, D.C., USA Charles Ben Beard, Ft. Collins, Colorado, USA Donald S. Burke, Baltimore, Maryland, USA David Bell, Atlanta, Georgia, USA Arturo Casadevall, New York, New York, USA Jay C. Butler, Anchorage, Alaska, USA Kenneth C. Castro, Atlanta, Georgia, USA Charles H. Calisher, Ft. Collins, Colorado, USA Thomas Cleary, Houston, Texas, USA Stephanie James, Bethesda, Maryland, USA Anne DeGroot, Providence, Rhode Island, USA Brian W.J. Mahy, Atlanta, Georgia, USA Vincent Deubel, Shanghai, China Paul V. Effler, Honolulu, Hawaii, USA Nina Marano, Atlanta, Georgia, USA Ed Eitzen, Washington, D.C., USA Martin I. Meltzer, Atlanta, Georgia, USA Duane J. Gubler, Honolulu, Hawaii, USA David Morens, Bethesda, Maryland, USA Richard L. Guerrant, Charlottesville, Virginia, USA J. Glenn Morris, Baltimore, Maryland, USA Scott Halstead, Arlington, Virginia, USA Marguerite Pappaioanou, St. Paul, Minnesota, USA David L. Heymann, Geneva, Switzerland Tanja Popovic, Atlanta, Georgia, USA Daniel B. Jernigan, Atlanta, Georgia, USA Patricia M. Quinlisk, Des Moines, Iowa, USA Charles King, Cleveland, Ohio, USA Jocelyn A. Rankin, Atlanta, Georgia, USA Keith Klugman, Atlanta, Georgia, USA Didier Raoult, Marseilles, France Takeshi Kurata, Tokyo, Japan Pierre Rollin, Atlanta, Georgia, USA S.K.
    [Show full text]
  • Patterns of Chronic Prostatic Inflammation and Infection
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 22: 966, 2021 One, No One and One Hundred Thousand: Patterns of chronic prostatic inflammation and infection KONSTANTINOS STAMATIOU1, EVANGELIA SAMARA1, RICHARD NICOLAS LACROIX2, HIPPOCRATES MOSCHOURIS1, GIANPAOLO PERLETTI3,4 and VITTORIO MAGRI5 1 Department of Urology, Tzaneion Hospital, 18536 Piraeus; 2Department of Public and Community Health, University of West Attica, Egaleo, 12241 Athens, Greece; 3Department of Biotechnology and Life Sciences, University of Insubria, I‑21100 Varese, Italy; 4Faculty of Medicine and Medical Sciences, Ghent University, 3K3 9000 Ghent, Belgium; 5Urology Secondary Care Clinic, ASST‑Nord, I‑20092 Milan, Italy Received January 24, 2020; Accepted February 18, 2021 DOI: 10.3892/etm.2021.10398 Abstract. Chronic prostatic inflammation may be classified clinical manifestations and by transitions between different into three types that share similar symptoms and are distin- CP classes during its course. guished on the basis of microbiological findings. In the present study, consecutive cases of chronic prostatic inflammation and Introduction infection were retrospectively reviewed in order to explore the clinical course and long‑term outcomes. The cohort consisted In Luigi Pirandello's novel ‘One, No One and One Hundred of patients with symptoms of prostatitis who visited the Urology Thousand’, the protagonist comes to the realization that Clinic of the Tzaneion Hospital (Piraeus, Greece) between everyone he knows and everyone he has ever met has March 2009 and March 2019. The patients were subjected to constructed his persona in their own imagination and that the Meares and Stamey ‘4‑glass’ test and patients with febrile none of these personas corresponds to the image that he prostatitis were evaluated with a single mid‑stream ‘clean’ believes himself to be.
    [Show full text]
  • Microbiological and Metagenomic Characterization of a Retail Delicatessen Galotyri-Like Fresh Acid-Curd Cheese Product
    fermentation Article Microbiological and Metagenomic Characterization of a Retail Delicatessen Galotyri-Like Fresh Acid-Curd Cheese Product John Samelis 1,* , Agapi I. Doulgeraki 2,* , Vasiliki Bikouli 2, Dimitrios Pappas 3 and Athanasia Kakouri 1 1 Dairy Research Department, Hellenic Agricultural Organization ‘DIMITRA’, Katsikas, 45221 Ioannina, Greece; [email protected] 2 Hellenic Agricultural Organization ‘DIMITRA’, Institute of Technology of Agricultural Products, 14123 Lycovrissi, Greece; [email protected] 3 Skarfi EPE—Pappas Bros Traditional Dairy, 48200 Filippiada, Greece; [email protected] * Correspondence: [email protected] (J.S.); [email protected] (A.I.D.); Tel.: +30-2651094789 (J.S.); +30-2102845940 (A.I.D.) Abstract: This study evaluated the microbial quality, safety, and ecology of a retail delicatessen Galotyri-like fresh acid-curd cheese traditionally produced by mixing fresh natural Greek yogurt with ‘Myzithrenio’, a naturally fermented and ripened whey cheese variety. Five retail cheese batches (mean pH 4.1) were analyzed for total and selective microbial counts, and 150 presumptive isolates of lactic acid bacteria (LAB) were characterized biochemically. Additionally, the most and the least diversified batches were subjected to a culture-independent 16S rRNA gene sequencing analysis. LAB prevailed in all cheeses followed by yeasts. Enterobacteria, pseudomonads, and staphylococci were present as <100 viable cells/g of cheese. The yogurt starters Streptococcus thermophilus and Lactobacillus delbrueckii were the most abundant LAB isolates, followed by nonstarter strains of Lactiplantibacillus, Lacticaseibacillus, Enterococcus faecium, E. faecalis, and Leuconostoc mesenteroides, Citation: Samelis, J.; Doulgeraki, A.I.; whose isolation frequency was batch-dependent. Lactococcus lactis isolates were sporadic, except Bikouli, V.; Pappas, D.; Kakouri, A. Microbiological and Metagenomic for one cheese batch.
    [Show full text]
  • Food Microbiology
    Food Microbiology Food Water Dairy Beverage Online Ordering Available Food, Water, Dairy, & Beverage Microbiology Table of Contents 1 Environmental Monitoring Contact Plates 3 Petri Plates 3 Culture Media for Air Sampling 4 Environmental Sampling Boot Swabs 6 Environmental Testing Swabs 8 Surface Sanitizers 8 Hand Sanitation 9 Sample Preparation - Dilution Vials 10 Compact Dry™ 12 HardyCHROM™ Chromogenic Culture Media 15 Prepared Media 24 Agar Plates for Membrane Filtration 26 CRITERION™ Dehydrated Culture Media 28 Pathogen Detection Environmental With Monitoring Contact Plates Baird Parker Agar Friction Lid For the selective isolation and enumeration of coagulase-positive staphylococci (Staphylococcus aureus) on environmental surfaces. HardyCHROM™ ECC 15x60mm contact plate, A chromogenic medium for the detection, 10/pk ................................................................................ 89407-364 differentiation, and enumeration of Escherichia coli and other coliforms from environmental surfaces (E. coli D/E Neutralizing Agar turns blue, coliforms turn red). For the enumeration of environmental organisms. 15x60mm plate contact plate, The media is able to neutralize most antiseptics 10/pk ................................................................................ 89407-354 and disinfectants that may inhibit the growth of environmental organisms. Malt Extract 15x60mm contact plate, Malt Extract is recommended for the cultivation and 10/pk ................................................................................89407-482
    [Show full text]
  • APPENDIX a Media and Reagents
    APPENDIX A Media and Reagents Pauline K. w. Yu, M.S. The use of appropriate and dependable media is integral to the isolation and identification of microorganisms. Unfortunately, comparative data docu­ menting the relative efficacy or value of media designed for similar purposes are often lacking. Moreover, one cannot presume identity in composition of a given generic product which is manufactured by several companies because each may supplement the generic products with components, often of a proprietary nature and not specified in the product's labeling. Finally, the actual production of similar products may vary among manufacturers to a sufficient extent to affect their performance. For all of these reasons, therefore, product selection for the laboratory should not be strictly based on cost considerations and should certainly not be based on promotional materials. Evaluations that have been published in the scientific literature should be consulted when available. Alternatively, the prospective buyer should consult a recognized authority in the field. It is seldom necessary for the laboratory to prepare media using basic components since these are usually available combined in dehydrated form from commercial sources; however, knowledge of a medium's basic compo­ nents is helpful in understanding how the medium works and what might be wrong when it does not work. Hence, the components have been listed for each medium included in this chapter. All dehydrated media must be prepared exactly according to the manu­ facturers' directions. Any deviation from these directions may adversely affect or significantly alter a medium's performance. Containers of media should be dated on receipt and when opened, and the media should never be used beyond expiration dates specified by the manufacturers or recom­ mended by quality control programs.
    [Show full text]