Harmonized Pharmacopeia Dehydrated Media
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insight Into the Resistome and Quorum Sensing System of a Divergent Acinetobacter Pittii Isolate from 1 an Untouched Site Of
bioRxiv preprint doi: https://doi.org/10.1101/745182; this version posted November 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Insight into the resistome and quorum sensing system of a divergent Acinetobacter pittii isolate from 2 an untouched site of the Lechuguilla Cave 3 4 Han Ming Gan1,2,3*, Peter Wengert4 , Hazel A. Barton5, André O. Hudson4 and Michael A. Savka4 5 1 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong 6 3220 ,Victoria, Australia 7 2 Deakin Genomics Centre, Deakin University, Geelong 3220 ,Victoria, Australia 8 3 School of Science, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, 9 Malaysia 10 4 Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA 11 5 Department of Biology, University of Akron, Akron, Ohio, USA 12 *Corresponding author 13 Name: Han Ming Gan 14 Email: [email protected] 15 Key words 16 Acinetobacter, quorum sensing, antibiotic resistance 17 18 Abstract 19 Acinetobacter are Gram-negative bacteria belonging to the sub-phyla Gammaproteobacteria, commonly 20 associated with soils, animal feeds and water. Some members of the Acinetobacter have been 21 implicated in hospital-acquired infections, with broad-spectrum antibiotic resistance. Here we report the 22 whole genome sequence of LC510, an Acinetobacter species isolated from deep within a pristine 23 location of the Lechuguilla Cave. -
Microbiology Media - Ready to Use, Prepared Plates
Microbiology Media - Ready to use, prepared plates Ready poured plates, general purpose media Ready poured plate, general anaerobe agar 65 65 Columbia blood agar with neomycin. Chromogenic UTI medium Catalogue No Plate diameter, mm Pack qty Price Catalogue No Pack qty Price PO794A 90 10 12.55 PO219A 10 7.54 CLED medium Catalogue No Plate diameter, mm Pack qty Price Ready poured plate, Lactobacilli PO120A 90 10 5.75 64 CLED square plate Catalogue No Plate dimensions, mm Pack qty Price MRS Agar. OXPO0299L 120 x 120 10 16.92 CLED medium with andrades Catalogue No Plate diameter, mm Pack qty Price Catalogue No Plate diameter, mm Pack qty Price PO231A 90 10 7.30 PO121A 90 10 5.75 Columbia agar base Ready poured plates, Legionnella media Catalogue No Plate diameter, mm Pack qty Price 65 OXPO0537A 90 10 5.45 MacConkey agar with salt Legionella growth medium, BCYE Catalogue No Plate diameter, mm Pack qty Price Catalogue No Plate diameter, mm Pack qty Price PO149A 90 10 5.95 PO5072A 90 10 14.72 MacConkey agar without salt Legionella selective medium, BMPA Catalogue No Plate diameter, mm Pack qty Price Catalogue No Plate diameter, mm Pack qty Price PO148A 90 10 5.58 PO0324A 90 10 20.31 MacConkey agar No. 3 Catalogue No Plate diameter, mm Pack qty Price PO495A 90 10 5.90 Malt extract agar Catalogue No Plate diameter, mm Pack qty Price PO182A 90 10 6.38 MRSA agar Catalogue No Plate diameter, mm Pack qty Price OXPO1162A 90 10 15.49 Nutrient agar Catalogue No Plate diameter, mm Pack qty Price PO155A 90 10 5.75 Plate count agar Catalogue No Plate diameter, mm Pack qty Price PO158A 90 10 6.36 R2A agar Catalogue No Plate diameter, mm Pack qty Price PO659A 90 10 6.50 Sabouraud dextrose agar Catalogue No Plate diameter, mm Pack qty Price OXPO0160A 90 10 5.54 Sorbitol MacConkey agar Catalogue No Plate diameter, mm Pack qty Price PO232A 90 10 5.84 Tryptone soya agar Catalogue No Plate diameter, mm Pack qty Price PO163A 90 10 5.49 OXPO0193-C 55 10 10.91 Yeast extract agar Catalogue No Plate diameter, mm Pack qty Price PO441A 90 10 5.08 55. -
Estudio Molecular De Poblaciones De Pseudomonas Ambientales
Universitat de les Illes Balears ESTUDIO MOLECULAR DE POBLACIONES DE PSEUDOMONAS AMBIENTALES T E S I S D O C T O R A L DAVID SÁNCHEZ BERMÚDEZ DIRECTORA: ELENA GARCÍA-VALDÉS PUKKITS Departamento de Biología Universitat de les Illes Balears Palma de Mallorca, Septiembre 2013 Universitat de les Illes Balears ESTUDIO MOLECULAR DE POBLACIONES DE PSEUDOMONAS AMBIENTALES Tesis Doctoral presentada por David Sánchez Bermúdez para optar al título de Doctor en el programa Microbiología Ambiental y Biotecnología, de la Universitat de les Illes Balears, bajo la dirección de la Dra. Elena García-Valdés Pukkits. Vo Bo Director de la Tesis El doctorando DRA. ELENA GARCÍA-VALDÉS PUKKITS DAVID SÁNCHEZ BERMÚDEZ Catedrática de Universidad Universitat de les Illes Balears PALMA DE MALLORCA, SEPTIEMBRE 2013 III IV Index Agradecimientos .................................................................................................... IX Resumen ................................................................................................................ 1 Abstract ................................................................................................................... 3 Introduction ............................................................................................................ 5 I.1. The genus Pseudomonas ............................................................................................ 7 I.1.1. Definition ................................................................................................................ 7 I.1.2. -
Potato Dextrose Agar with Lecithin and Tween 80 (7575)
POTATO DEXTROSE AGAR w/ LECITHIN & TWEEN 80 (7575) Intended Use Potato Dextrose Agar w/ Lecithin & Tween 80 is used for the isolation of fungi from surfaces sanitized with quaternary ammonium compounds. Product Summary and Explanation Potato Dextrose Agar is a general purpose medium for yeasts and molds that can be supplemented with acid or antibiotics to inhibit bacterial growth. The nutritionally rich base (potato infusion) encourages mold sporulation and pigment production in some dermatophytes.1 Potato Dextrose Agar w/ Lecithin & Tween 80 is a modification of Potato Dextrose Agar. The addition of Lecithin and Tween 80 to Potato Dextrose Agar is used to neutralize antiseptics and disinfectants for environmental monitoring and other applications.2 Complete neutralization of disinfectants is important. Disinfectant carryover can cause a false no-growth test result. Principles of the Procedure Potato Infusion provides nitrogen and vitamin sources required for organism growth. Dextrose is included as a carbon source. Lecithin neutralizes quaternary ammonium compounds and ethanol, and Tween 80 neutralizes phenols, hexachlorophene, and formalin. Agar is the solidifying agent. Formula / Liter Potato Infusion (dehydrated) .................................................... 4 g Dextrose ................................................................................. 20 g Tween 80 .................................................................................. 5 g Lecithin.................................................................................. -
Cetrimide Agar Base M024
Cetrimide Agar Base M024 Intended use Cetrimide Agar Base is used for the selective isolation of Pseudomonas aeruginosa from clinical specimens. Composition** Ingredients Gms / Litre Gelatin peptone 20.000 Magnesium chloride 1.400 Potassium sulphate 10.000 Cetrimide 0.300 Agar 15.000 Final pH ( at 25°C) 7.2±0.2 **Formula adjusted, standardized to suit performance parameters Directions Suspend 46.7 grams in 1000 ml distilled water containing 10 ml glycerol. Heat, to boiling, to dissolve the medium completely. Sterilize by autoclaving at 15 lbs pressure (121°C) for 15 minutes. Cool to 45-50°C. If desired, rehydrated contents of 1 vial of Nalidixic Selective Supplement (FD130) may be added aseptically to 1000 ml medium. Mix well and pour into sterile Petri plates. Principle And Interpretation Pseudomonas aeruginosa grows well on all normal laboratory media but specific isolation of the organism, from environmental sites or from human, animal or plant sources, is best carried out on a medium, which contains a selective agent and also constituents to enhance pigment production. Most selective media depend upon the intrinsic resistance of the species to various antibacterial agents. Cetrimide inhibits the growth of many microorganisms whilst allowing Pseudomonas aeruginosa to develop typical colonies. Cetrimide is a quaternary ammonium salt, which acts as a cationic detergent that reduces surface tension in the point of contact and has precipitant, complexing and denaturing effects on bacterial membrane proteins. It exhibits inhibitory actions on a wide variety of microorganisms including Pseudomonas species other than Pseudomonas aeruginosa. King et al developed Medium A for the enhancement of pyocyanin production by Pseudomonas (1). -
Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton, -
Cetrimide Agar Plates MPH024
Cetrimide Agar Plates MPH024 For the selection and subculture of Pseudomonas aeruginosa in accordance with the harmonized method of USP/EP/BP/ JP/IP. Composition** Ingredients Gms / Litre Pancreatic digest of gelatin 20.000 Magnesium chloride 1.400 Dipotassium sulphate 10.000 Cetrimide 0.300 Agar 13.600 Glycerol 10 ml **Formula adjusted, standardized to suit performance parameters Directions Either streak, inoculate or surface spread the test inoculum (50-100 CFU) aseptically on the plate. Principle And Interpretation Pseudomonas aeruginosa grows well on all normal laboratory media but specific isolation of the organism, from environmental sites or from human, animal or plant sources, is best carried out on a medium, which contains a selective agent and also constituents to enhance pigment production. Most selective media depend upon the intrinsic resistance of the species to various antibacterial agents. Cetrimide inhibits the growth of many microorganisms whilst allowing Pseudomonas aeruginosa to develop typical colonies. Cetrimide is a quaternary ammonium salt, which acts as a cationic detergent that reduces surface tension in the point of contact and has precipitant, complexing and denaturing effects on bacterial membrane proteins. It exhibits inhibitory actions on a wide variety of microorganisms including Pseudomonas species other than Pseudomonas aeruginosa . King et al developed Medium A for the enhancement of pyocyanin production by Pseudomonas (1). Cetrimide Agar developed by Lowburry (2) is a modification of Tech Agar (Medium A) with addition of 0.1% cetrimide for selective isolation of P. aeruginosa . Later, due to the availability of the highly purified cetrimide, its concentration in the medium was decreased (3). -
Food Microbiology
Food Microbiology Food Water Dairy Beverage Online Ordering Available Food, Water, Dairy, & Beverage Microbiology Table of Contents 1 Environmental Monitoring Contact Plates 3 Petri Plates 3 Culture Media for Air Sampling 4 Environmental Sampling Boot Swabs 6 Environmental Testing Swabs 8 Surface Sanitizers 8 Hand Sanitation 9 Sample Preparation - Dilution Vials 10 Compact Dry™ 12 HardyCHROM™ Chromogenic Culture Media 15 Prepared Media 24 Agar Plates for Membrane Filtration 26 CRITERION™ Dehydrated Culture Media 28 Pathogen Detection Environmental With Monitoring Contact Plates Baird Parker Agar Friction Lid For the selective isolation and enumeration of coagulase-positive staphylococci (Staphylococcus aureus) on environmental surfaces. HardyCHROM™ ECC 15x60mm contact plate, A chromogenic medium for the detection, 10/pk ................................................................................ 89407-364 differentiation, and enumeration of Escherichia coli and other coliforms from environmental surfaces (E. coli D/E Neutralizing Agar turns blue, coliforms turn red). For the enumeration of environmental organisms. 15x60mm plate contact plate, The media is able to neutralize most antiseptics 10/pk ................................................................................ 89407-354 and disinfectants that may inhibit the growth of environmental organisms. Malt Extract 15x60mm contact plate, Malt Extract is recommended for the cultivation and 10/pk ................................................................................89407-482 -
Prepared Culture Media
PREPARED CULTURE MEDIA 121517SS PREPARED CULTURE MEDIA Made in the USA AnaeroGRO™ DuoPak A 02 Bovine Blood Agar, 5%, with Esculin 13 AnaeroGRO™ DuoPak B 02 Bovine Blood Agar, 5%, with Esculin/ AnaeroGRO™ BBE Agar 03 MacConkey Biplate 13 AnaeroGRO™ BBE/PEA 03 Bovine Selective Strep Agar 13 AnaeroGRO™ Brucella Agar 03 Brucella Agar with 5% Sheep Blood, Hemin, AnaeroGRO™ Campylobacter and Vitamin K 13 Selective Agar 03 Brucella Broth with 15% Glycerol 13 AnaeroGRO™ CCFA 03 Brucella with H and K/LKV Biplate 14 AnaeroGRO™ Egg Yolk Agar, Modified 03 Buffered Peptone Water 14 AnaeroGRO™ LKV Agar 03 Buffered Peptone Water with 1% AnaeroGRO™ PEA 03 Tween® 20 14 AnaeroGRO™ MultiPak A 04 Buffered NaCl Peptone EP, USP 14 AnaeroGRO™ MultiPak B 04 Butterfield’s Phosphate Buffer 14 AnaeroGRO™ Chopped Meat Broth 05 Campy Cefex Agar, Modified 14 AnaeroGRO™ Chopped Meat Campy CVA Agar 14 Carbohydrate Broth 05 Campy FDA Agar 14 AnaeroGRO™ Chopped Meat Campy, Blood Free, Karmali Agar 14 Glucose Broth 05 Cetrimide Select Agar, USP 14 AnaeroGRO™ Thioglycollate with Hemin and CET/MAC/VJ Triplate 14 Vitamin K (H and K), without Indicator 05 CGB Agar for Cryptococcus 14 Anaerobic PEA 08 Chocolate Agar 15 Baird-Parker Agar 08 Chocolate/Martin Lewis with Barney Miller Medium 08 Lincomycin Biplate 15 BBE Agar 08 CompactDry™ SL 16 BBE Agar/PEA Agar 08 CompactDry™ LS 16 BBE/LKV Biplate 09 CompactDry™ TC 17 BCSA 09 CompactDry™ EC 17 BCYE Agar 09 CompactDry™ YMR 17 BCYE Selective Agar with CAV 09 CompactDry™ ETB 17 BCYE Selective Agar with CCVC 09 CompactDry™ YM 17 BCYE -
View Our Full Water Sampling Vials Product Offering
TABLE OF CONTENTS Environmental Monitoring 1 Sample Prep and Dilution 8 Dehydrated Culture Media - Criterion™ 12 Prepared Culture Media 14 Chromogenic Media - HardyCHROM™ 18 CompactDry™ 20 Quality Control 24 Membrane Filtration 25 Rapid Tests 26 Lab Supplies/Sample Collection 27 Made in the USA Headquarters Distribution Centers 1430 West McCoy Lane Santa Maria, California Santa Maria, CA 93455 Olympia, Washington 800.266.2222 : phone Salt Lake City, Utah [email protected] Phoenix, Arizona HardyDiagnostics.com Dallas, Texas Springboro, Ohio Hardy Diagnostics has a Quality Lake City, Florida Management System that is certified Albany, New York to ISO 13485 and is a FDA licensed Copyright © 2020 Hardy Diagnostics Raleigh, North Carolina medical device manufacturer. Environmental Monitoring Hardy Diagnostics offers a wide selection of quality products intended to help keep you up to date with regulatory compliance, ensure the efficacy of your cleaning protocol, and properly monitor your environment. 800.266.2222 [email protected] HardyDiagnostics.com 1 Environmental Monitoring Air Sampling TRIO.BAS™ Impact Air Samplers introduced the newest generation of microbial air sampling. These ergonomically designed instruments combine precise air sampling with modern connectivity to help you properly assess the air quality of your laboratory and simplify your process. MONO DUO Each kit includes: Each kit includes: TRIO.BAS™ MONO air sampler, induction TRIO.BAS™ DUO air sampler, battery battery charger and cable, aspirating charger -
Effects of Growth Media on the Diversity of Culturable Fungi from Lichens
molecules Article Effects of Growth Media on the Diversity of Culturable Fungi from Lichens Lucia Muggia 1,*,†, Theodora Kopun 2,† and Martin Grube 2 1 Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy 2 Institute of Plant Science, Karl-Franzens University of Graz, Holteigasse 6, 8010 Graz, Austria; [email protected] (T.K.); [email protected] (M.G.) * Correspondence: [email protected] or [email protected]; Tel.: +39-04-0558-8825 † These authors contributed equally to the work. Academic Editor: Joel Boustie Received: 1 March 2017; Accepted: 11 May 2017; Published: 17 May 2017 Abstract: Microscopic and molecular studies suggest that lichen symbioses contain a plethora of associated fungi. These are potential producers of novel bioactive compounds, but strains isolated on standard media usually represent only a minor subset of these fungi. By using various in vitro growth conditions we are able to modulate and extend the fraction of culturable lichen-associated fungi. We observed that the presence of iron, glucose, magnesium and potassium in growth media is essential for the successful isolation of members from different taxonomic groups. According to sequence data, most isolates besides the lichen mycobionts belong to the classes Dothideomycetes and Eurotiomycetes. With our approach we can further explore the hidden fungal diversity in lichens to assist in the search of novel compounds. Keywords: Dothideomycetes; Eurotiomycetes; Leotiomycetes; nuclear ribosomal subunits DNA; nutrients; Sordariomycetes 1. Introduction Lichens are self-sustaining symbiotic associations of specialized fungi (the mycobionts), and green algae or cyanobacteria (the photobionts), which are located extracellularly within a matrix of fungal hyphae and from which the fungi derive carbon nutrition [1]. -
Articles, Onomic Units (Otus) of Which Half Were Related to Bacteria Their Numbers Are Highly Variable in Both Time and Space
Biogeosciences, 4, 115–124, 2007 www.biogeosciences.net/4/115/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. Fluorescent pseudomonads isolated from Hebridean cloud and rain water produce biosurfactants but do not cause ice nucleation H. E. Ahern1, K. A. Walsh2, T. C. J. Hill2, and B. F. Moffett2 1University of East London, Romford Road, Stratford, London, UK 2Environment Agency, Wallingford, UK Received: 1 September 2006 – Published in Biogeosciences Discuss.: 4 October 2006 Revised: 11 January 2007 – Accepted: 9 February 2007 – Published: 12 February 2007 Abstract. Microorganisms were discovered in clouds over 1 Introduction 100 years ago but information on bacterial community struc- ture and function is limited. Clouds may not only be a niche There has been a resurgence of interest in microorganisms within which bacteria could thrive but they might also in- in the atmosphere due, in part, to heightened awareness of fluence dynamic processes using ice nucleating and cloud disease epidemiology. Health issues however may be less condensing abilities. Cloud and rain samples were collected important than their role in cloud and rainfall processes and from two mountains in the Outer Hebrides, NW Scotland, link to climate change. Recently it has been reported that UK. Community composition was determined using a com- there are between 1500 and 355 000 bacteria per millilitre of bination of amplified 16S ribosomal DNA restriction analy- cloud water (Sattler et al., 2001, Bauer et al., 2002 and Am- sis and sequencing. 256 clones yielded 100 operational tax- ato et al., 2005). Therefore, as with other aerosol particles, onomic units (OTUs) of which half were related to bacteria their numbers are highly variable in both time and space.