Microbiology Media - Ready to Use, Prepared Plates

Total Page:16

File Type:pdf, Size:1020Kb

Microbiology Media - Ready to Use, Prepared Plates Microbiology Media - Ready to use, prepared plates Ready poured plates, general purpose media Ready poured plate, general anaerobe agar 65 65 Columbia blood agar with neomycin. Chromogenic UTI medium Catalogue No Plate diameter, mm Pack qty Price Catalogue No Pack qty Price PO794A 90 10 12.55 PO219A 10 7.54 CLED medium Catalogue No Plate diameter, mm Pack qty Price Ready poured plate, Lactobacilli PO120A 90 10 5.75 64 CLED square plate Catalogue No Plate dimensions, mm Pack qty Price MRS Agar. OXPO0299L 120 x 120 10 16.92 CLED medium with andrades Catalogue No Plate diameter, mm Pack qty Price Catalogue No Plate diameter, mm Pack qty Price PO231A 90 10 7.30 PO121A 90 10 5.75 Columbia agar base Ready poured plates, Legionnella media Catalogue No Plate diameter, mm Pack qty Price 65 OXPO0537A 90 10 5.45 MacConkey agar with salt Legionella growth medium, BCYE Catalogue No Plate diameter, mm Pack qty Price Catalogue No Plate diameter, mm Pack qty Price PO149A 90 10 5.95 PO5072A 90 10 14.72 MacConkey agar without salt Legionella selective medium, BMPA Catalogue No Plate diameter, mm Pack qty Price Catalogue No Plate diameter, mm Pack qty Price PO148A 90 10 5.58 PO0324A 90 10 20.31 MacConkey agar No. 3 Catalogue No Plate diameter, mm Pack qty Price PO495A 90 10 5.90 Malt extract agar Catalogue No Plate diameter, mm Pack qty Price PO182A 90 10 6.38 MRSA agar Catalogue No Plate diameter, mm Pack qty Price OXPO1162A 90 10 15.49 Nutrient agar Catalogue No Plate diameter, mm Pack qty Price PO155A 90 10 5.75 Plate count agar Catalogue No Plate diameter, mm Pack qty Price PO158A 90 10 6.36 R2A agar Catalogue No Plate diameter, mm Pack qty Price PO659A 90 10 6.50 Sabouraud dextrose agar Catalogue No Plate diameter, mm Pack qty Price OXPO0160A 90 10 5.54 Sorbitol MacConkey agar Catalogue No Plate diameter, mm Pack qty Price PO232A 90 10 5.84 Tryptone soya agar Catalogue No Plate diameter, mm Pack qty Price PO163A 90 10 5.49 OXPO0193-C 55 10 10.91 Yeast extract agar Catalogue No Plate diameter, mm Pack qty Price PO441A 90 10 5.08 55.
Recommended publications
  • Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
    antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton,
    [Show full text]
  • Microbiological and Metagenomic Characterization of a Retail Delicatessen Galotyri-Like Fresh Acid-Curd Cheese Product
    fermentation Article Microbiological and Metagenomic Characterization of a Retail Delicatessen Galotyri-Like Fresh Acid-Curd Cheese Product John Samelis 1,* , Agapi I. Doulgeraki 2,* , Vasiliki Bikouli 2, Dimitrios Pappas 3 and Athanasia Kakouri 1 1 Dairy Research Department, Hellenic Agricultural Organization ‘DIMITRA’, Katsikas, 45221 Ioannina, Greece; [email protected] 2 Hellenic Agricultural Organization ‘DIMITRA’, Institute of Technology of Agricultural Products, 14123 Lycovrissi, Greece; [email protected] 3 Skarfi EPE—Pappas Bros Traditional Dairy, 48200 Filippiada, Greece; [email protected] * Correspondence: [email protected] (J.S.); [email protected] (A.I.D.); Tel.: +30-2651094789 (J.S.); +30-2102845940 (A.I.D.) Abstract: This study evaluated the microbial quality, safety, and ecology of a retail delicatessen Galotyri-like fresh acid-curd cheese traditionally produced by mixing fresh natural Greek yogurt with ‘Myzithrenio’, a naturally fermented and ripened whey cheese variety. Five retail cheese batches (mean pH 4.1) were analyzed for total and selective microbial counts, and 150 presumptive isolates of lactic acid bacteria (LAB) were characterized biochemically. Additionally, the most and the least diversified batches were subjected to a culture-independent 16S rRNA gene sequencing analysis. LAB prevailed in all cheeses followed by yeasts. Enterobacteria, pseudomonads, and staphylococci were present as <100 viable cells/g of cheese. The yogurt starters Streptococcus thermophilus and Lactobacillus delbrueckii were the most abundant LAB isolates, followed by nonstarter strains of Lactiplantibacillus, Lacticaseibacillus, Enterococcus faecium, E. faecalis, and Leuconostoc mesenteroides, Citation: Samelis, J.; Doulgeraki, A.I.; whose isolation frequency was batch-dependent. Lactococcus lactis isolates were sporadic, except Bikouli, V.; Pappas, D.; Kakouri, A. Microbiological and Metagenomic for one cheese batch.
    [Show full text]
  • Food Microbiology
    Food Microbiology Food Water Dairy Beverage Online Ordering Available Food, Water, Dairy, & Beverage Microbiology Table of Contents 1 Environmental Monitoring Contact Plates 3 Petri Plates 3 Culture Media for Air Sampling 4 Environmental Sampling Boot Swabs 6 Environmental Testing Swabs 8 Surface Sanitizers 8 Hand Sanitation 9 Sample Preparation - Dilution Vials 10 Compact Dry™ 12 HardyCHROM™ Chromogenic Culture Media 15 Prepared Media 24 Agar Plates for Membrane Filtration 26 CRITERION™ Dehydrated Culture Media 28 Pathogen Detection Environmental With Monitoring Contact Plates Baird Parker Agar Friction Lid For the selective isolation and enumeration of coagulase-positive staphylococci (Staphylococcus aureus) on environmental surfaces. HardyCHROM™ ECC 15x60mm contact plate, A chromogenic medium for the detection, 10/pk ................................................................................ 89407-364 differentiation, and enumeration of Escherichia coli and other coliforms from environmental surfaces (E. coli D/E Neutralizing Agar turns blue, coliforms turn red). For the enumeration of environmental organisms. 15x60mm plate contact plate, The media is able to neutralize most antiseptics 10/pk ................................................................................ 89407-354 and disinfectants that may inhibit the growth of environmental organisms. Malt Extract 15x60mm contact plate, Malt Extract is recommended for the cultivation and 10/pk ................................................................................89407-482
    [Show full text]
  • View Our Full Water Sampling Vials Product Offering
    TABLE OF CONTENTS Environmental Monitoring 1 Sample Prep and Dilution 8 Dehydrated Culture Media - Criterion™ 12 Prepared Culture Media 14 Chromogenic Media - HardyCHROM™ 18 CompactDry™ 20 Quality Control 24 Membrane Filtration 25 Rapid Tests 26 Lab Supplies/Sample Collection 27 Made in the USA Headquarters Distribution Centers 1430 West McCoy Lane Santa Maria, California Santa Maria, CA 93455 Olympia, Washington 800.266.2222 : phone Salt Lake City, Utah [email protected] Phoenix, Arizona HardyDiagnostics.com Dallas, Texas Springboro, Ohio Hardy Diagnostics has a Quality Lake City, Florida Management System that is certified Albany, New York to ISO 13485 and is a FDA licensed Copyright © 2020 Hardy Diagnostics Raleigh, North Carolina medical device manufacturer. Environmental Monitoring Hardy Diagnostics offers a wide selection of quality products intended to help keep you up to date with regulatory compliance, ensure the efficacy of your cleaning protocol, and properly monitor your environment. 800.266.2222 [email protected] HardyDiagnostics.com 1 Environmental Monitoring Air Sampling TRIO.BAS™ Impact Air Samplers introduced the newest generation of microbial air sampling. These ergonomically designed instruments combine precise air sampling with modern connectivity to help you properly assess the air quality of your laboratory and simplify your process. MONO DUO Each kit includes: Each kit includes: TRIO.BAS™ MONO air sampler, induction TRIO.BAS™ DUO air sampler, battery battery charger and cable, aspirating charger
    [Show full text]
  • Isolation, Identification and Investigation Of
    foods Article Isolation, Identification and Investigation of Fermentative Bacteria from Sea Bass (Dicentrarchus labrax): Evaluation of Antifungal Activity of Fermented Fish Meat and By-Products Broths Francisco J. Martí-Quijal 1 , Andrea Príncep 1, Adrián Tornos 1 , Carlos Luz 1, Giuseppe Meca 1, Paola Tedeschi 2, María-José Ruiz 1, Francisco J. Barba 1,* and Jordi Mañes 1 1 Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; [email protected] (F.J.M.-Q.); [email protected] (A.P.); [email protected] (A.T.); [email protected] (C.L.); [email protected] (G.M.); [email protected] (M.-J.R.); [email protected] (J.M.) 2 Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy; [email protected] * Correspondence: [email protected] Received: 2 April 2020; Accepted: 17 April 2020; Published: 4 May 2020 Abstract: During fish production processes, great amounts of by-products are generated, representing 30–70% of the initial weight. Thus, this research study is investigating 30 lactic acid bacteria ≈ (LAB) derived from the sea bass gastrointestinal tract, for anti-fungal activity. It has been previously suggested that LAB showing high proteolitic activity are the most suitable candidates for such an investigation. The isolation was made using a MRS (Man Rogosa Sharpe) broth cultivation medium at 37 ºC under anaerobiosis conditions, while the evaluation of the enzymatic activity was made using the API® ZYM kit.
    [Show full text]
  • Characterization of Cucumber Fermentation Spoilage Bacteria by Enrichment Culture and 16S Rdna Cloning
    Characterization of Cucumber Fermentation Spoilage Bacteria by Enrichment Culture and 16S rDNA Cloning Fred Breidt, Eduardo Medina, Doria Wafa, Ilenys P´erez-D´ıaz, Wendy Franco, Hsin-Yu Huang, Suzanne D. Johanningsmeier, and Jae Ho Kim Abstract: Commercial cucumber fermentations are typically carried out in 40000 L fermentation tanks. A secondary fermentation can occur after sugars are consumed that results in the formation of acetic, propionic, and butyric acids, concomitantly with the loss of lactic acid and an increase in pH. Spoilage fermentations can result in significant economic loss for industrial producers. The microbiota that result in spoilage remain incompletely defined. Previous studies have implicated yeasts, lactic acid bacteria, enterobacteriaceae, and Clostridia as having a role in spoilage fermentations. We report that Propionibacterium and Pectinatus isolates from cucumber fermentation spoilage converted lactic acid to propionic acid, increasing pH. The analysis of 16S rDNA cloning libraries confirmed and expanded the knowledge gained from previous studies using classical microbiological methods. Our data show that Gram-negative anaerobic bacteria supersede Gram-positive Fermincutes species after the pH rises from around 3.2 to pH 5, and propionic and butyric acids are produced. Characterization of the spoilage microbiota is an important first step in efforts to prevent cucumber fermentation spoilage. Keywords: pickled vegetables, Pectinatus, Propionibacteria, secondary cucumber fermentation, spoilage M: Food Microbiology Practical Application: An understanding of the microorganisms that cause commercial cucumber fermentation spoilage & Safety may aid in developing methods to prevent the spoilage from occurring. Introduction cucumbers fermented at 2.3% NaCl (Fleming and others 1989). Commercial cucumber fermentations are typically carried out In this fermentation tank, the initial lactic acid fermentation was in large 40000 L outdoor tanks (reviewed by Breidt and others completed within 2 wk, with 1.2% lactic acid formed (pH 3.6) 2007).
    [Show full text]
  • BD Industry Catalog
    PRODUCT CATALOG INDUSTRIAL MICROBIOLOGY BD Diagnostics Diagnostic Systems Table of Contents Table of Contents 1. Dehydrated Culture Media and Ingredients 5. Stains & Reagents 1.1 Dehydrated Culture Media and Ingredients .................................................................3 5.1 Gram Stains (Kits) ......................................................................................................75 1.1.1 Dehydrated Culture Media ......................................................................................... 3 5.2 Stains and Indicators ..................................................................................................75 5 1.1.2 Additives ...................................................................................................................31 5.3. Reagents and Enzymes ..............................................................................................75 1.2 Media and Ingredients ...............................................................................................34 1 6. Identification and Quality Control Products 1.2.1 Enrichments and Enzymes .........................................................................................34 6.1 BBL™ Crystal™ Identification Systems ..........................................................................79 1.2.2 Meat Peptones and Media ........................................................................................35 6.2 BBL™ Dryslide™ ..........................................................................................................80
    [Show full text]
  • Harmonized Pharmacopeia Dehydrated Media
    Harmonised Pharmacopoeia Compliant to Dehydrated Culture Media EP 10th Edition 1. Sterility Testing Sterility testing is required when developing and manufacturing products for pharmaceutical applications as part of a sterilisation validation process as well as routine testing before release. Manufacturers must provide adequate and reliable sterility test data to ensure their product meets strict safety guidelines. Neogen offers the below media for sterility testing, which have been developed in accordance with the European Pharmacopoeia (EP) compliance guidelines: Fluid Thioglycollate Medium NCM0108 This medium has been designed for the detection of aerobic and anaerobic organisms including Clostridia spp., Pseudomonas spp. and Staphylococci. The medium has a nutritionally rich base to support the growth of a wide range of organisms as well as low oxygen reduction potential to prevent any species that may have a negative effect on the recovery and growth of contaminants. NCM0108 Tryptic Soy Broth (Soybean-Casein Digest Broth) NCM0004 This is a highly nutritious medium for the cultivation of a wide range of microorganisms including Aspergillus spp., Bacillus spp. and Candida spp. This versatile medium promotes growth of both fungi and aerobic bacteria, and can also be used as a pre-enrichment broth for non-sterile products. NCM0004 2. Examination of Non-Sterile Products Not all products which are released to market are required to be sterile. Instead, to guarantee that the product meets safety and quality standards, manufacturers are required to evaluate the microbial content of each product and ensure no organisms of concern are present. Neogen’s media range for the examination of non-sterile products has been developed for detection and enumeration of each organism specified within the HP including: Bile-Tolerant Gram-Negative Bacteria Enterobacteriaceae Enrichment (EE) Broth Mossel NCM0057 This is a selective broth for the enrichment of Enterobacteriaceae.
    [Show full text]
  • The Use of MALDI-TOF Mass Spectrometry, Ribotyping and Phenotypic Tests to Identify Lactic Acid Bacteria from Fermented Cereal Foods in Abidjan (Côte D’Ivoire)
    Send Orders for Reprints to [email protected] 78 The Open Microbiology Journal, 2014, 8, 78-86 Open Access The Use of MALDI-TOF Mass Spectrometry, Ribotyping and Phenotypic Tests to Identify Lactic Acid Bacteria from Fermented Cereal Foods in Abidjan (Côte d’Ivoire) Amenan A. Soro-Yao1,*, Peter Schumann2, Philippe Thonart3,4, Koffi M. Djè1 and Rüdiger Pukall2 1Food Science and Technology Unit, Nangui Abrogoua University, 02 BP 801 Abidjan 02, Côte d’Ivoire 2Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany 3Wallon Center for Industrial Microbiology (CWBI), University of Liège, Bld du Rectorat 29-B40, B 4000 Liège, Belgium 4Wallon Center of Industrial Biology, Bio-industry Unit, Gembloux Agro-BioTech, 5030 Gembloux, Belgium Abstract: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) protein analysis, automated ribotyping, and phenotypic tests (e.g., cell morphology, gas production from glucose, growth and acid production on homofermemtative-heterofermentative differential (HHD) agar medium, sugar fermentation patterns) were used to identify 23 lactic acid bacteria (LAB) isolated from fermented cereal foods available in Abidjan, Côte d’Ivoire. Pediococcus acidilactici (56.5%), Lactobacillus fermentum (30.4%), L. salivarius (4.3%), P. pentosaceus (4.3%) and L. plantarum subsp. plantarum (4.3%) were the species and subspecies identified. Protein based identification was confirmed by automated ribotyping for selected isolates and was similar to that provided by the phenotypic characterization. MALDI-TOF MS protein analysis provided a high level of discrimination among the isolates and could be used for the rapid screening of LAB starter cultures. Keywords: Cereal foods, fermentation, food microbiology, lactic acid bacteria, MALDI-TOF MS, ribotyping, species identification, starter cultures.
    [Show full text]
  • Dual Inhibition of Salmonella Enterica and Clostridium Perfringens by New Probiotic Candidates Isolated from Chicken Intestinal Mucosa
    microorganisms Article Dual Inhibition of Salmonella enterica and Clostridium perfringens by New Probiotic Candidates Isolated from Chicken Intestinal Mucosa Ayesha Lone 1,†, Walid Mottawea 1,2,† , Yasmina Ait Chait 1 and Riadh Hammami 1,* 1 NuGUT Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H8M5, Canada; [email protected] (A.L.); [email protected] (W.M.); [email protected] (Y.A.C.) 2 Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt * Correspondence: [email protected]; Tel.: +1-613-562-5800 (ext. 4110) † Those authors Contributed equally to this work. Abstract: The poultry industry is the fastest-growing agricultural sector globally. With poultry meat being economical and in high demand, the end product’s safety is of importance. Globally, governments are coming together to ban the use of antibiotics as prophylaxis and for growth promotion in poultry. Salmonella and Clostridium perfringens are two leading pathogens that cause foodborne illnesses and are linked explicitly to poultry products. Furthermore, numerous outbreaks occur every year. A substitute for antibiotics is required by the industry to maintain the same productivity level and, hence, profits. We aimed to isolate and identify potential probiotic strains from the ceca mucosa of the chicken intestinal tract with bacteriocinogenic properties. We were able to isolate multiple and diverse strains, including a new uncultured bacterium, with inhibitory activity against Salmonella Typhimurium ATCC 14028, Salmonella Abony NCTC 6017, Salmonella Choleraesuis Citation: Lone, A.; Mottawea, W.; ATCC 10708, Clostridium perfringens ATCC 13124, and Escherichia coli ATCC 25922. The five most Ait Chait, Y.; Hammami, R.
    [Show full text]
  • Prepared Culture Media
    PREPARED CULTURE MEDIA 030220SG PREPARED CULTURE MEDIA Made in the USA AnaeroGRO™ DuoPak A 02 Bovine Blood Agar, 5%, with Esculin 13 AnaeroGRO™ DuoPak B 02 Bovine Blood Agar, 5%, with Esculin/ AnaeroGRO™ BBE Agar 03 MacConkey Biplate 13 AnaeroGRO™ BBE/PEA 03 Bovine Selective Strep Agar 13 AnaeroGRO™ Brucella Agar 03 Brucella Agar with 5% Sheep Blood, Hemin, AnaeroGRO™ Campylobacter and Vitamin K 13 Selective Agar 03 Brucella Broth with 15% Glycerol 13 AnaeroGRO™ CCFA 03 Brucella with H and K/LKV Biplate 14 AnaeroGRO™ Egg Yolk Agar, Modifi ed 03 Buffered Peptone Water 14 AnaeroGRO™ LKV Agar 03 Buffered Peptone Water with 1% AnaeroGRO™ PEA 03 Tween® 20 14 AnaeroGRO™ MultiPak A 04 Buffered NaCl Peptone EP, USP 14 AnaeroGRO™ MultiPak B 04 Butterfi eld’s Phosphate Buffer 14 AnaeroGRO™ Chopped Meat Broth 05 Campy Cefex Agar, Modifi ed 14 AnaeroGRO™ Chopped Meat Campy CVA Agar 14 Carbohydrate Broth 05 Campy FDA Agar 14 AnaeroGRO™ Chopped Meat Campy, Blood Free, Karmali Agar 14 Glucose Broth 05 Cetrimide Select Agar, USP 14 AnaeroGRO™ Thioglycollate with Hemin and CET/MAC/VJ Triplate 14 Vitamin K (H and K), without Indicator 05 CGB Agar for Cryptococcus 14 Anaerobic PEA 08 Chocolate Agar 15 Baird-Parker Agar 08 Chocolate/Martin Lewis with Barney Miller Medium 08 Lincomycin Biplate 15 BBE Agar 08 CompactDry™ SL 16 BBE Agar/PEA Agar 08 CompactDry™ LS 16 BBE/LKV Biplate 09 CompactDry™ TC 17 BCSA 09 CompactDry™ EC 17 BCYE Agar 09 CompactDry™ YMR 17 BCYE Selective Agar with CAV 09 CompactDry™ ETB 17 BCYE Selective Agar with CCVC 09 CompactDry™ YM 17
    [Show full text]
  • Cave Silver’ Biofilms on Rocks in the Former Homestake Mine in South Dakota, USA Amanpreet K
    International Journal of Speleology 48 (2) 145-154 Tampa, FL (USA) May 2019 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Culture-based analysis of ‘Cave Silver’ biofilms on Rocks in the former Homestake mine in South Dakota, USA Amanpreet K. Brar1 and David Bergmann2* 1Florida State University, 319 Stadium Dr., Tallahassee, FL 32306-4295, USA 2Black Hills State University, 1200 W. University St., Spearfish, SD 57789, USA Abstract: Tunnels in a warm, humid area of the 1478 m level of the Sanford Underground Research Facility (SURF), located in a former gold mine in South Dakota, USA, host irregular, thin whitish, iridescent biofilms, which appear superficially similar to ‘cave silver’ biofilms described from limestone and lava tube caves, despite the higher rock temperature (32°C) and differing rock surface (phyllite) present at SURF. In this study, we investigated the diversity of cultivable bacteria constituting the cave silver by using several media: CN agar, CN gellan gum and 0.1X R2A agar. The highest colony count (CFU/g of sample) was observed on 0.1X R2A medium. The bacterial strains were grouped into 39 distinct genotypes by randomly amplified polymorphic DNA (RAPD) analysis. In addition, the bacterial strains were further characterized based on their phenotypic and biochemical properties. 16S rRNA gene sequencing classified the cave silver isolates into three major bacterial phyla: Proteobacteria, Actinobacteria and Firmicutes. Isolates included some known genera; such as Taonella, Dongia, Mesorhizobium, Ralstonia, Pedomicrobium, Bauldia, Pseudolabrys, Reyrnella, Mizugakiibacter, Bradyrhizobium, Pseudomonas, Micrococcus, Sporichthya, Allokutzneria, Amycolatopsis, Pseudonocardia, and Paenibacillus.
    [Show full text]