2012 Report on Ohio Mineral Industries: an Annual Summary of the State’S Economic Geology with Directories of Reporting Coal and Industrial Mineral Operators

Total Page:16

File Type:pdf, Size:1020Kb

2012 Report on Ohio Mineral Industries: an Annual Summary of the State’S Economic Geology with Directories of Reporting Coal and Industrial Mineral Operators 2012 Report on Ohio Mineral Industries: An Annual Summary of the State’s Economic Geology with Directories of Reporting Coal and Industrial Mineral Operators compiled by Mark E. Wolfe Database design and data retrieval: Joseph G. Wells Interactive mineral industries map/digital cartography: Dean R. Martin STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Thomas J. Serenko, Chief Columbus 2013 DISCLAIMER The information contained herein has not been reviewed for technical accuracy and conformity with current ODNR Division of Geological Survey standards for published or open-fi le materials. The ODNR Division of Geological Survey does not guarantee this information to be free from errors, omissions, or inaccuracies and disclaims any responsibility or liability for interpretations or decisions based thereon. RECOMMENDED BIBLIOGRAPHIC CITATION Wolfe, M.E., compiler, 2013, 2012 Report on Ohio mineral industries—An annual summary of the state’s economic geology: Columbus, Ohio Department of Natural Resources, Division of Geological Survey, 29 p., 9 appendices. Editing: Charles R. Salmons Graphic design and layout: Lisa Van Doren CONTENTS 2012 Ohio ecomomic geology in brief ............................................................................................................................ 1 Coal ................................................................................................................................................................................ 2 Production ................................................................................................................................................................ 2 Economic impact ...................................................................................................................................................... 2 Industrial minerals ........................................................................................................................................................... 9 Limestone and dolomite ........................................................................................................................................... 12 Production ......................................................................................................................................................... 12 Economic impact ............................................................................................................................................... 12 Sand and gravel ........................................................................................................................................................ 16 Production ......................................................................................................................................................... 16 Economic impact ............................................................................................................................................... 16 Sandstone and conglomerate .................................................................................................................................... 19 Production ......................................................................................................................................................... 19 Economic impact ............................................................................................................................................... 19 Clay and shale .......................................................................................................................................................... 21 Production ......................................................................................................................................................... 21 Economic impact ............................................................................................................................................... 21 Salt ........................................................................................................................................................................... 24 Production ......................................................................................................................................................... 24 Economic impact ............................................................................................................................................... 24 Gypsum .................................................................................................................................................................... 25 Peat .......................................................................................................................................................................... 25 Oil and gas ...................................................................................................................................................................... 26 References cited .............................................................................................................................................................. 28 Appendix A 2012 Coal companies with sales or production ........................................................................................................ A-1 2012 Ohio alphabetical directory of producing coal mine operators ........................................................................ A-2 2012 Ohio directory of coal preparation plants and associated facilities, by coun ty ................................................. A-6 2012 Ohio directory of producing coal mine operators, by county ........................................................................... A-8 Appendix B 2012 Ohio alphabetical directory of industrial-mineral mine operators .................................................................... B-1 Appendix C 2012 Limestone/dolomite companies with sales or production ................................................................................. C-1 2012 Ohio directory of limestone/dolomite mine operators reporting sales or production, by county ....................... C-2 Appendix D 2012 Sand and gravel companies with sales or production ....................................................................................... D-1 2012 Ohio directory of sand and gravel mining operators reporting sales or production, by county .......................... D-3 Appendix E 2012 Sandstone/conglomerate companies with sales or production .......................................................................... E-1 2012 Ohio directory of sandstone/conglomerate mine operators reporting sales or production, by county ............... E-2 Appendix F 2012 Clay companies with sales or production ......................................................................................................... F-1 2012 Ohio directory of clay mine operators reporting sales or production, by coun ty ............................................... F-2 Appendix G 2012 Shale companies with sales or production ....................................................................................................... G-1 2012 Ohio directory of shale mine operators reporting sales or production, by coun ty ............................................. G-2 Appendix H 2012 Ohio directory of salt mine and salt-brining plant operators reporting sales or production, by county .............. H-1 Appendix I 2012 Ohio directory of peat mine operators reporting sales or production, by county .............................................. I-1 iii FIGURES 1. Graph showing value of coal, nonfuel minerals, and oil and gas in Ohio .................................................................. 1 2. Map showing coal production in Ohio in 2012, by county and quantity .................................................................. 3 3. Graph showing sales and value of coal in Ohio ........................................................................................................ 3 4. Stratigraphic column of coals mined in Ohio during 2012 ........................................................................................ 3 5. Map showing sales of limestone and dolomite in Ohio in 2012, by county and quantity .......................................... 12 6. Graph showing sales and value of limestone and dolomite in Ohio .......................................................................... 12 7. Stratigraphic column of industrial minerals mined in Ohio during 2012 ................................................................... 15 8. Map showing sales of sand and gravel in Ohio in 2012, by county and quantity ...................................................... 16 9. Graph showing sales and value of sand and gravel in Ohio ...................................................................................... 16 10. Map showing sales of sandstone and conglomerate in Ohio in 2012, by county and quantity .................................. 19 11. Graph showing sales and value of sandstone and conglomerate in Ohio .................................................................. 19 12. Map showing clay sales in Ohio in 2012, by county and quantity ............................................................................ 21 13. Map showing shale sales in Ohio in 2012, by county and quantity ..........................................................................
Recommended publications
  • 65Th Annual Tri-State Geological Field Conference 2-3 October 2004
    65th Annual Tri-State Geological Field Conference 2-3 October 2004 Weis Earth Science Museum Menasha, Wisconsin The Lake & The Ledge Geological Links between the Niagara Escarpment and Lake Winnebago Joanne Kluessendorf & Donald G. Mikulic Organizers The Lake & The Ledge Geological Links between the Niagara Escarpment and Lake Winnebago 65th Annual Tri-State Geological Field Conference 2-3 October 2004 by Joanne Kluessendorf Weis Earth Science Museum, Menasha and Donald G. Mikulic Illinois State Geological Survey, Champaign With contributions by Bruce Brown, Wisconsin Geological & Natural History Survey, Stop 1 Tom Hooyer, Wisconsin Geological & Natural History Survey, Stops 2 & 5 William Mode, University of Wisconsin-Oshkosh, Stops 2 & 5 Maureen Muldoon, University of Wisconsin-Oshkosh, Stop 1 Weis Earth Science Museum University of Wisconsin-Fox Valley Menasha, Wisconsin WELCOME TO THE TH 65 ANNUAL TRI-STATE GEOLOGICAL FIELD CONFERENCE. The Tri-State Geological Field Conference was founded in 1933 as an informal geological field trip for professionals and students in Iowa, Illinois and Wisconsin. The first Tri-State examined the LaSalle Anticline in Illinois. Fifty-two geologists from the University of Chicago, University of Iowa, University of Illinois, Northwestern University, University of Wisconsin, Northern Illinois State Teachers College, Western Illinois Teachers College, and the Illinois State Geological Survey attended that trip (Anderson, 1980). The 1934 field conference was hosted by the University of Wisconsin and the 1935 by the University of Iowa, establishing the rotation between the three states. The 1947 Tri-State visited quarries at Hamilton Mound and High Cliff, two of the stops on this year’s field trip.
    [Show full text]
  • 1 Supplementary Materials and Methods 1 S1 Expanded
    1 Supplementary Materials and Methods 2 S1 Expanded Geologic and Paleogeographic Information 3 The carbonate nodules from Montañez et al., (2007) utilized in this study were collected from well-developed and 4 drained paleosols from: 1) the Eastern Shelf of the Midland Basin (N.C. Texas), 2) Paradox Basin (S.E. Utah), 3) Pedregosa 5 Basin (S.C. New Mexico), 4) Anadarko Basin (S.C. Oklahoma), and 5) the Grand Canyon Embayment (N.C. Arizona) (Fig. 6 1a; Richey et al., (2020)). The plant cuticle fossils come from localities in: 1) N.C. Texas (Lower Pease River [LPR], Lake 7 Kemp Dam [LKD], Parkey’s Oil Patch [POP], and Mitchell Creek [MC]; all representing localities that also provided 8 carbonate nodules or plant organic matter [POM] for Montañez et al., (2007), 2) N.C. New Mexico (Kinney Brick Quarry 9 [KB]), 3) S.E. Kansas (Hamilton Quarry [HQ]), 4) S.E. Illinois (Lake Sara Limestone [LSL]), and 5) S.W. Indiana (sub- 10 Minshall [SM]) (Fig. 1a, S2–4; Richey et al., (2020)). These localities span a wide portion of the western equatorial portion 11 of Euramerica during the latest Pennsylvanian through middle Permian (Fig. 1b). 12 13 S2 Biostratigraphic Correlations and Age Model 14 N.C. Texas stratigraphy and the position of pedogenic carbonate samples from Montañez et al., (2007) and cuticle were 15 inferred from N.C. Texas conodont biostratigraphy and its relation to Permian global conodont biostratigraphy (Tabor and 16 Montañez, 2004; Wardlaw, 2005; Henderson, 2018). The specific correlations used are (C. Henderson, personal 17 communication, August 2019): (1) The Stockwether Limestone Member of the Pueblo Formation contains Idiognathodus 18 isolatus, indicating that the Carboniferous-Permian boundary (298.9 Ma) and base of the Asselian resides in the Stockwether 19 Limestone (Wardlaw, 2005).
    [Show full text]
  • Development of Drinking Water and Ecological Unusually Sensitive Areas (Usas): Examples Using the Water and Biological Resources of Ohio
    Development of Drinking Water and Ecological Unusually Sensitive Areas (USAs): Examples Using the Water and Biological Resources of Ohio Colin Plank, Scott Zengel, Heidi Hinkeldey, Elaine Inouye, William Holton, Jeffery Dahlin, and Jacqueline Michel Research Planning, Inc., 1121 Park Street, Columbia, SC 29201, [email protected], 803-256-7322 (voice); 803-254-6445 (fax); and Christina Sames and Samuel Hall, Office of Pipeline Safety, Research and Special Programs Administration, U.S. Department of Transportation, Washington, D.C. 1.0 INTRODUCTION The U.S. Department of Transportation’s Research and Special Programs Administration (RSPA) is required to identify areas unusually sensitive to environmental damage in the event of a hazardous liquid pipeline accident. Pipeline operators that can affect "unusually sensitive areas" (USAs) must develop and follow an integrity management program to assess and evaluate the integrity of their pipelines. After extensive consultation with experts, government agencies, and other stakeholders, a process was developed to identify USAs for drinking water and ecological resources. In general the USA identification process involves selecting a subset of USA candidates from the larger group of Environmentally Sensitive Areas (ESAs), and then applying various filter criteria to the candidates to determine final USAs. For drinking water USAs this means identifying potentially sensitive public water systems (PWS), specifically surface water intakes and ground water wells, and subjecting them to filter
    [Show full text]
  • Xerox University Microfilms
    information t o u s e r s This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target” for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete. 4. The majority of usefs indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • U.S. GEOLOGICAL SURVEY BULLETIN 21 Cover
    rf Predictive Stratigraphic Analysis- - Concept and Application u.s. GEOLOGICAL SURVEY BULLETIN 21 Cover. Calcic paleo-Vertisol underlying the resistant transgressive marine limestone Little Stone Gap Member of the Hinton Formation (Upper Mississippian) in southwestern West Virginia. This paleosol is indicative of a relatively dry climate when evapotranspira- tion exceeded rainfall for more than 6 months out of the year. The light-gray color at the level of the photograph scale (center) is the result of gleying (bleaching) after burial. A calcified root system, located in the proximity of the scale, branches downward and sug­ gests a well-developed root system for a plant whose stem may have been up to 15 centi­ meters in diameter. Numerous mineralized fossil roots at this level indicate that land plants were very well adapted to seasonally dry conditions in nonwaterlogged environ­ ments by Late Mississippian time. Cross-cutting fractures, known as mukkara structures and caused by seasonal expansion (wet) and contraction (dry), are visible throughout the outcrop beneath the resistant limestone layer except where interrupted or destroyed by paleoroot systems. Predictive Stratigraphic Analysis Concept and Application Edited by C. Blaine Cecil and N. Terence Edgar U.S. GEOLOGICAL SURVEY BULLETIN 2110 A collection of extended abstracts of papers presented at two workshops on the title subject UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY GORDON P. EATON, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center, Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • View of Pa Element, OSU 41751, X 28, Collection
    INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Accessing theUMI World’s Information since 1938 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA Order Number 8820S06 Taxonomy and biostratigraphic significance of Wenlockian and Ludlovian (Silurian) conodonts in the midcontinent outcrop area, North America Kleffner, Mark Alan, Ph.D. The Ohio State University, 1988 UMI 300 N. Zeeb Rd. Ann Arbor, MI 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]
  • Geology of Ohio—The Silurian
    A Quarterly Publication of the Division of Geological Survey Spring 1998 GEOLOGY OF OHIO—THE SILURIAN by Michael C. Hansen he Silurian Period occurred more than 400 million years ago in the middle of the Paleo- Tzoic Era. During this 30-million-year-long span, the climate and depositional environments were different than in any other span of time in Siberia Ohio’s geologic history. Sedimentary rocks of the Silurian System dominate the bedrock surface of Laurentia (North America) China the western half of Ohio, although their exposures are limited because thick glacial sediments cover all but the southernmost portion of the outcrop area. Baltica Australia Silurian rocks in Ohio are primarily carbonates— Ohio limestones and dolomites—and the many quarries in these rocks in western Ohio indicate their impor- tance. Silurian rocks in the subsurface of eastern Ohio contain extensive deposits of salt and accu- Africa mulations of natural gas and oil. In local areas in the Antarctica South America India western half of Ohio, magnificent scenery in the form of caves, cliffs, and waterfalls are unexpected Continental configuration during Silurian time (modified from C. R. Scotese and others, 1979, benefits of Silurian rocks. Paleozoic base maps, Journal of Geology, v. 87, fig. 14). The Silurian System was named by Roderick Impey Murchison, a Scotsman who eventually be- came the director of the Geological Survey of Great Britain. He first studied these rocks in Wales and NY named them after a Celtic tribe, the Silures. His MI monumental work, The Silurian System, was pub- platform/ lished in 1838. The lower part of Murchison’s Sil- pinnacle reef urian System overlapped with the upper part of PA Adam Sedgwick’s Cambrian System, a matter which became a great dispute between these two promi- OHIO nent geologists.
    [Show full text]
  • Article Full Text PDF (760KB)
    OHIO JOURNAL OF SCIENCE 227 AUTHOR INDEX TO VOLUME 91 Anderson, R.J., 159 Gallaway, M.S., 167 Olive, J.H., 112 Anderson, T.D., 146 Gandee, R.N., 182 Opdycke, G., 195 Angle, M.P., 83 Arscott, T.G., 191 Harmon, R.S., 112 Rudolph, E.D., 104 Hatfield, C.B., 27 Rupp, R.F., 16 Bart.J., 186 Heath, R.T., 184 Bellisari, A., 129 Henry, J.J., 148 Schumacher, G.A., 56 Beuerlein, J.E., 191 Hummer, J.W., 154 Seibert, H.C., 163 Boettcher, S.E., 122 Hurnmon, W.D., 167 Shrake, D.L., 49, 56 Boyd, R.C., 148 Snow, R.S., 16 Bugliosi, E.F., 209 Javadi, M., 191 St. John, F.L., 172 Jezerinac, R.F., 108 Stanley, T.R., Jr., 186 Camp, M.J., 27 Johansen, J.R., 118 Storck, R.J., 90 Chang, S.S., 146 Strobel, M.L., 209 Clapham, W.B.,Jr., 199 Kalisz, P.J., 122 Swinford, E.M., 56 Conover, J.H., 163 KnokeJ.K., 159 Szabo, J.P., 90 Coogan, A.H., 35 Kulander, B.R., 2 Tipton, R.M., 2 Dayner, D.M., 118 Lacki, M.J., 154 Dean, S.L., 2 Larsen, G.E., 69 Webster, H.J., 154 Deitchman, R., 182 Louie, R., 159 Wells, N.A., 35 Dzik, A.J., 134 Lowell, T.V., 16 ForsythJ.L, 2, 77 Majoras, J.J., 35 INDEX TO VOLUME 91 A horizon, 123 gerardi, 124 bahia grass, 159 abscission, 194 scoparius, 124 Ball State University, 16 Acadian orogeny, 212 anhydrite, 214 Department of Geology, 16 Acanthoclema ohioense, 33 annelids, 30 Barletts Run, 110 Acer Anomoeoneis vitrea (Grun.) Ross, 120 Barren Group, Lower, 70 rubrum, 125 Anse des Feves, 195 Barren Group, Upper, 70 accharum, 125 ants, 164 Barren Measures, Lower, 72 Achnanthes apoplastocyanin, 193 Bass Island Group (Late Silurian), 211 linearis (W.
    [Show full text]
  • Index to the Geologic Names of North America
    Index to the Geologic Names of North America GEOLOGICAL SURVEY BULLETIN 1056-B Index to the Geologic Names of North America By DRUID WILSON, GRACE C. KEROHER, and BLANCHE E. HANSEN GEOLOGIC NAMES OF NORTH AMERICA GEOLOGICAL SURVEY BULLETIN 10S6-B Geologic names arranged by age and by area containing type locality. Includes names in Greenland, the West Indies, the Pacific Island possessions of the United States, and the Trust Territory of the Pacific Islands UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.G. - Price 60 cents (paper cover) CONTENTS Page Major stratigraphic and time divisions in use by the U.S. Geological Survey._ iv Introduction______________________________________ 407 Acknowledgments. _--__ _______ _________________________________ 410 Bibliography________________________________________________ 410 Symbols___________________________________ 413 Geologic time and time-stratigraphic (time-rock) units________________ 415 Time terms of nongeographic origin_______________________-______ 415 Cenozoic_________________________________________________ 415 Pleistocene (glacial)______________________________________ 415 Cenozoic (marine)_______________________________________ 418 Eastern North America_______________________________ 418 Western North America__-__-_____----------__-----____ 419 Cenozoic (continental)___________________________________
    [Show full text]
  • Vertebrate Coprolites
    Bulletin 57 New Mexico Museum of Natural History & Science A Division of the DEPARTMENT OF CULTURAL AFFAIRS Vertebrate Coprolites edited by Adrian P. Hunt, Jesper Milàn, Spencer G. Lucas and Justin A. Spielmann Albuquerque, 2012 Hunt et al., eds., 2012, Vertebrate Coprolites. New Mexico Museum of Natural History and Science, Bulletin 57. 5 VERTEBRATE COPROLITE STUDIES: STATUS AND PROSPECTUS ADRIAN P. HUNT1, SPENCER G. LUCAS2, JESPER MILÀN3, 4 AND JUSTIN A. SPIELMANN2 1 Flying Heritage Collection, 3407 109th Street SW, Everett, WA 98204, e-mail: [email protected]; 2 New Mexico Museum of Natural History and Science, 1801 Mountain Road NW, Albuquerque, NM 87104, e-mails: [email protected], [email protected]; 3 GeomuseumFaxe/Østsjællands Museum, Østervej 2, DK-4640 Faxe, Denmark, e-mail: [email protected]; 4 Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark Abstract—The history of study of vertebrate coprolites can be divided into four phases: (1) 1800-1890 – initial studies; (2) 1890-1910 – first bloom; (3) 1910-1950 – intermittent work; (4) 1950-1990 – maturing science (in archeology and Pleistocene coprolite studies); and (5) 1990 to present – maturing science (study of pre-Pleistocene coprolites). The oldest putative vertebrate coprolites are Ordovician in age. Few Silurian coprolites have been described, and some large coprolites of this age have been ascribed to eurypterids. Devonian coprolites are common, but poorly described. Mississippian vertebrate coprolites have been minimally studied, but they prob- ably represent the first relatively abundant coprofaunas. Several Pennsylvanian coprofaunas have been described. The Permo-Triassic seems to be an acme zone for coprolites as a result of their abundance in redbeds.
    [Show full text]
  • The University of Kansas Paleontological Contributions Roger
    The University of Kansas Paleontological Contributions Roger. L. Kaesler, Editor Order from: The Paleontological Institute The University of Kansas Lindley Hall 1475 Jayhawk Blvd, Room 121 Lawrence, KS 66045 USA 785-864-3338 http://paleo.ku.edu NEW SERIES ISSN 1046-8390 1 Denver, L. E. and R. L. Kaesler. Paleoenvironmental significance of stromatolites in the Americus Limestone Member (Lower Permian, Midcontinent, USA), 11 p., 12 fig. 2 Kontrovitz, M., N. R. Ainsworth, R. D. Burnett, and J. M. Slack. 1992. Induced color in ostracode shells: an experimental study, 10 p., 1 fig. No. 1, 2 in one cover. _____________________________________________________ 5.00 3 Palmer, A. R. and L. N. Repina. 1993. Through a glass darkly: taxonomy, phylogeny, and biostratigraphy of the Olenellina, 35 p., 13 fig. 5.00 4 Hageman, S. J. 1993. Effects of nonnormality on studies of morphological variation of a Rhabdomesine bryozoan, Streblotrypa (Streblascopora) prisca (Gabb and Horn), 13 p., 4 fig. 5.00 5 Doyle, P., D. T. Donovan, and M. Nixon. 1994. Phylogeny and systematics of the Coleoidea, 15 p., 4 fig. 5.00 6 Finks, R. M. 1995. Some New Genera of Paleozoic Calcareous Sponges, 6 p., 11 fig. 5.00 7 Rigby, J. K., and B. Senowbari-Daryan. 1995. Upper Permian Inozoid, Demospongid, and Hexactinellid Sponges from Djebel Tebaga, Tunisia, 130 p., 37 fig., 11 tables, 81 pl. 5.00 8 Krebs, J. W., R. L. Kaesler, E. A. Brosius, D. L. Miller, and Y.-M. Chang. 1996. PaleoBank, A Relational Database for Invertebrate Paleontology: The Data Model, 7 p., 1 fig., 2 tables.
    [Show full text]