Ichnofabrics Containing Ophiomorpha: Significance in Shallow-Water Facies Interpretation

Total Page:16

File Type:pdf, Size:1020Kb

Ichnofabrics Containing Ophiomorpha: Significance in Shallow-Water Facies Interpretation Journal of the Geological Society, London, Vol. 150, 1993, pp. 149-164, 9 figs. Printed in Northern Ireland Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation J.E. POLLARD ~,R.GOLDRING 2&S. G.BUCK 3 1Department of Geology, University of Manchester, Manchester M13 9PL, UK 2postgraduate Research Institute for Sedimentology, University of Reading, PO Box 227, Whiteknights, Reading RG6 2AB, UK 3Z & S Geology Ltd, Glover Pavillion, Campus 2, Aberdeen Science & Technology Park, Balgownie Road, Bridge of Don, Aberdeen AB22 8GW, UK Abstract: In an attempt to interpret Ophiomorpha ichnofabrics observed in core, three ichnofabrics are described from outcrops where O. nodosa is a conspicuous element. These ichnofabrics enable sandy shoreline sedimentary environments to be characterized and differentiated: (1) shoreface with mottled- Ophiomorpha-Planolites ichnofabric generally without primary lamination; (2) offshore tidal shelf sand wave facies with Macaronichnus-Ophiomorpha ichnofabric associated with primary, mainly cross- laminated or cross-bedded sands; (3) estuarine facies with Ophiomorpha ichnofabric associated with pri- mary lamination and, commonly, heterolithic sands and mudstones. Distinctions between the ichnofabrics are attributed to differences in primary stratification, the total ichnocoenoses, morphological features (such as burrow attitude, shaft restriction, pellet wall lining), to the nature of the substrate and, particu- larly, to the time available for colonization (larval settlement or relocation) and burrow construction, referred to here as the colonization window• The analysis is applied to an interval of core (Upper Jurassic, Central Graben, North Sea) and a sequence in Eocene sediments in southern England. Ophiomorpha nodosa Lundgren is one of the most widely 20mm quoted and widely known trace fossils. It is also a well-estab- lished and conspicuous trace fossil in shallow-marine sandy facies from the Mesozoic onwards. The principal account of its morphology and facies significance is by Frey et al. (1978). This pellet-lined burrow (Fig. 1) is today found over a range of~ nearshore environments, including lagoon and estuary floors, wherever the substrate consists mainly of sand grade sediment. Ophiomorpha is also known from ancient offshore deeper • .- .~., ,. water sediments where it is a not infrequent post-event trace in more proximal turbidites (e.g. Crimes 1977; Crimes et al. 1981). Several papers have recorded Ophiomorpha from non-marine facies. The occurrences reported from fluvial, deltaic and lacustrine Lower Cretaceous Wealden sediments of southern England (Kennedy & MacDougall 1969; Stewart 1978) appear not to refer to true Ophiomorpha (pellet-lined burrows) but to irregular burrows with a mudchip infill and bioglyph wall markings. However, Bown (1982) and Merrill (1984) claimed • • o " . the occurrence of Ophiomorpha in non-marine facies in the Cenozoic, and Chamberlain (1975) illustrated Ophiomorpha- \ like chimney-structures produced subaerially above burrows \ made by modern freshwater crayfish Asticus. \ The objectives of this paper are to review ichnofabrics with Fig. 1. General characteristics of (A) dissected Ophiomorpha in modern shallow marine depositional en- Ophiomorpha nodosa. burrow with sandy wall pellets, smooth inner surface to lining and vironments and to record some ancient ichnofabrics where muddy sand restriction; (B) taper of a restricted burrow (Bracknell); Ophiomorpha is common, so as to discriminate between (C) two shafts with taper into muddy layer, assumed to be several nearshore-shoreline facies, and show how these may colonization surface (Shellingford); (D) shaft truncation. Laterally, be identified and interpreted in core. Our material is some- lamination shows no indication of sedimentation break• Situation what limited in view of the very widespread occurrence of somewhat unusual because pelleted wall is usually more resistant to Ophiomorpha. Analysis is based on cores from the Upper Jur- erosion and sand of shaft less so (Bracknell); (E) base of restricted assic of the Central Graben (North Sea) and outcrops in the shaft (length 0.6m) leading into T-junction with another gallery Upper Jurassic, Lower Cretaceous, Palaeocene and Eocene of (Bracknell); (F) lined shaft passing down into humic rich sand southern England. Most emphasis is placed on Eocene without lining. Humic sand truncated and burrowed by Thalassinoides sections. cf. suevicus (Fig. 8A). Bar scales A, C, D, E 10mm. 149 Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/150/1/149/4892172/gsjgs.150.1.0149.pdf by guest on 02 October 2021 150 J. E. POLLARD ET AL. Ophiomorpha in modern shallow water environments silty sand to silty mud. In shoreface sands the laminated sand is less strongly bioturbated by polychaetes. The inner offshore Despite the widespread occurrence of pelleted callianassid zone, where storm-derived silt is present, shows complete de- burrows in Recent sediments (Frey et al. 1978) only three stratification by Echinocardium, and contains burrows with a offshore to shoreface transitions and one study of subtropical thick silt lining (Palaeophycus heberti) (Reineck & Singh 1971, estuarine sediments have been described in modern environ- fig. 6). ments that allow some appreciation of the ichnofabrics In these profiles the ichnofabrics have not really been de- developed. scribed in sufficient detail to allow close comparisons to be made with the ancient ichnofabrics described below. The Georgia coast." low energy, tide dominated gulf-shoreface. The studies of modern sediments show that Ophiomorpha presents most complete description is from the gently sloping, tide- particular problems for ichnofabric analysis of ancient facies dominated low energy Georgia Coast (Howard & Reineck since in so many instances it was formed to a deep level and had 1972; Hertweck 1972) where the lower offshore zone (> 10 m) is a high potential residence time. In boxcores and in cores the in relict medium-to-coarse grained sands and only the problem is aggravated by the limited sample area. Bio- shoreward, upper offshore to shoreface sands are of present-day logically, the original burrow system related more closely to sedimentation. Storm-wave activity is low in the area and the environment that pertained at the original burrow connec- leaves no significant stratification. The distribution of biotur- tion to the sediment-water interface than to the immediately bation is variable across the shore-offshore transition but adjacent sediment (Frey & Goldring 1992). Where environ- exceeds 50% (generally 90-100%) in the upper offshore zones mental parameters change relatively rapidly, as is often the (2-10 m). Mud is present only in minor amounts. Where biotur- case in tidal nearshore environments, close association of the bation is greater than 90% reworking is so thorough that it ichnotaxa present does not necessarily imply original tiering of cannot be related to specific organisms and when between 50% an aggradational substrate. Hence it is rare that Ophiomorpha and 90%, individual structures are not obvious. In both cases and any associated traces can be integrated into a tier diagram reworking has been assumed to be due to animals found in the such as has been done for more uniform facies and event stratifi- boxcores. There is a diverse infauna but, 'overprinting' is often cation as described by Bromley & Ekdale (1986) and Ekdale & intense and Hertweck (1972) concluded that only three species, Bromley ( ! 991 ). Callianassa biformis (in the upper offshore zone, leaving a ramifying system of knobbly-lined burrows: Ophiomorpha) associated with Squilla (a mantid shrimp leaving a simple-lined Methods of ichnofabric analysis burrow) and Glyceris (a polychaete producing a mucus-lined Core material examined has been slabbed, and generally burrow) are responsible for the bioturbation that remains. lightly moistened, to display trace fossils more clearly. All outcrops examined are in soft, loose, fine- to coarse-grained Georgia coast." mesotidal riverine and salt marsh estuaries. These sand or coarse silt with some muddy intervals. Most are at were studied by Howard & Frey (1975, 1980a,h), Frey & steep to vertical sea cliffs or quarry faces. Some latex peels Howard (1980) and Mayou & Howard (1975). It is the strong have been taken but it has been found that the best contrast is lack of lateral continuity that characterizes the estuary facies in obtained by scraping moist, but not wet, sediment (in spring or respect of grain size, sedimentary structures and bioturbation, early summer) and then photographing. Systematic scraping and contrasts with the greater lateral persistence of shelf sedi- and sketching was used to determine three-dimensional form. ments of the same area. This reflects particularly the rapid This was not always successful owing to the nature of the out- changes in hydraulic regime. The point bars exhibit an unusual crops and because of traces crossing and loss of burrow con- assemblage of traces that are normally found over a range of tinuity. At the same time sketches of the ichnofabrics were depositional environments. Bioturbation is most intense in the made, generally at xl scale, and in many cases the fabrics were middle reaches of estuaries. Howard & Frey (1980a) em- quantified using the methods explained in Taylor & Goldring phasized that it is not simply the primary structures, dominated (1993). The graphical method is useful in distinguishing
Recommended publications
  • A CRITICAL EVALUATION of the LOWER-MIDDLE PALAEOLITHIC ARCHAEOLOGICAL RECORD of the CHALK UPLANDS of NORTHWEST EUROPE Lesley
    A CRITICAL EVALUATION OF THE LOWER-MIDDLE PALAEOLITHIC ARCHAEOLOGICAL RECORD OF THE CHALK UPLANDS OF NORTHWEST EUROPE The Chilterns, Pegsdon, Bedfordshire (photograph L. Blundell) Lesley Blundell UCL Thesis submitted for the degree of PhD September 2019 2 I, Lesley Blundell, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed: 3 4 Abstract Our understanding of early human behaviour has always been and continues to be predicated on an archaeological record unevenly distributed in space and time. More than 80% of British Lower-Middle Palaeolithic findspots were discovered during the late 19th/early 20th centuries, the majority from lowland fluvial contexts. Within the British planning process and some academic research, the resultant findspot distributions are taken at face value, with insufficient consideration of possible bias resulting from variables operating on their creation. This leads to areas of landscape outside the river valleys being considered to have only limited archaeological potential. This thesis was conceived as an attempt to analyse the findspot data of the Lower-Middle Palaeolithic record of the Chalk uplands of southeast Britain and northern France within a framework complex enough to allow bias in the formation of findspot distribution patterns and artefact preservation/discovery opportunities to be identified and scrutinised more closely. Taking a dynamic, landscape = record approach, this research explores the potential influence of geomorphology, 19th/early 20th century industrialisation and antiquarian collecting on the creation of the Lower- Middle Palaeolithic record through the opportunities created for artefact preservation and release.
    [Show full text]
  • The Earliest Bioturbators As Ecosystem Engineers
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Engineering the Cambrian explosion: the earliest bioturbators as ecosystem engineers LIAM G. HERRINGSHAW1,2*, RICHARD H. T. CALLOW1,3 & DUNCAN MCILROY1 1Department of Earth Sciences, Memorial University of Newfoundland, Prince Philip Drive, St John’s, NL, A1B 3X5, Canada 2Geology, School of Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK 3Statoil ASA, Stavanger 4035, Norway *Correspondence: [email protected] Abstract: By applying modern biological criteria to trace fossil types and assessing burrow mor- phology, complexity, depth, potential burrow function and the likelihood of bioirrigation, we assign ecosystem engineering impact (EEI) values to the key ichnotaxa in the lowermost Cambrian (Fortunian). Surface traces such as Monomorphichnus have minimal impact on sediment properties and have very low EEI values; quasi-infaunal traces of organisms that were surficial modifiers or biodiffusors, such as Planolites, have moderate EEI values; and deeper infaunal, gallery biodiffu- sive or upward-conveying/downward-conveying traces, such as Teichichnus and Gyrolithes, have the highest EEI values. The key Cambrian ichnotaxon Treptichnus pedum has a moderate to high EEI value, depending on its functional interpretation. Most of the major functional groups of mod- ern bioturbators are found to have evolved during the earliest Cambrian, including burrow types that are highly likely to have been bioirrigated. In fine-grained (or microbially bound) sedimentary environments, trace-makers of bioirrigated burrows would have had a particularly significant impact, generating advective fluid flow within the sediment for the first time, in marked contrast with the otherwise diffusive porewater systems of the Proterozoic.
    [Show full text]
  • Geologic Map of Alaska
    Geologic Map of Alaska Compiled by Frederic H. Wilson, Chad P. Hults, Charles G. Mull, and Susan M. Karl Pamphlet to accompany Scientific Investigations Map 3340 2015 U.S. Department of the Interior U.S. Geological Survey Front cover. Color shaded relief map of Alaska and surroundings. Sources: 100-meter-resolution natural image of Alaska, http://nationalmap.gov/small_scale/mld/nate100.html; rivers and lakes dataset, http://www.asgdc.state.ak.us/; bathymetry and topography of Russia and Canada, https://www.ngdc.noaa.gov/mgg/global/global.html. Back cover. Previous geologic maps of Alaska: 1906—Brooks, A.H., Abbe, Cleveland, Jr., and Goode, R.U., 1906, The geography and geology of Alaska; a summary of existing knowledge, with a section on climate, and a topographic map and description thereof: U.S. Geological Survey Professional Paper 45, 327 p., 1 sheet. 1939—Smith, P.S., 1939, Areal geology of Alaska: U.S. Geological Survey Professional Paper 192, 100 p., 18 plates. 1957—Dutro, J.T., Jr., and Payne, T.G., 1957, Geologic map of Alaska: U.S. Geological Survey, scale 1:2,500,000. 1980—Beikman, H.M., 1980, Geologic map of Alaska: U.S. Geological Survey Special Map, scale 1:2,500,000, 2 sheets. Geologic Map of Alaska Compiled by Frederic H. Wilson, Chad P. Hults, Charles G. Mull, and Susan M. Karl Pamphlet to accompany Scientific Investigations Map 3340 2015 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S.
    [Show full text]
  • Ichnology As a Tool in Carbonate Reservoir Characterization, Khuff Formation Gulf Petrolink, Bahrain
    GeoArabia, v. 14, no. 3, 2009, p. 17-38 Ichnology as a tool in carbonate reservoir characterization, Khuff Formation Gulf PetroLink, Bahrain Ichnology as a tool in carbonate reservoir characterization: A case study from the Permian – Triassic Khuff Formation in the Middle East Dirk Knaust ABSTRACT In the Upper Permian to Lower Triassic Khuff Formation in the Arabian Gulf, a vast shallow-marine carbonate platform developed broad facies belts with little significant changes in the lithofacies. However, trace fossil assemblages and ichnofabrics, in combination with sedimentological observations, serve in subdividing this platform and in distinguishing sub-environments. From proximal to distal, these are sabkha and salina, tidal flat, restricted lagoon, open lagoon, platform margin, shoreface/inner ramp, slope/outer ramp and basin/deeper intra-shelf. In this way, changes in relative sea level can be better reconstructed and guide the sequence stratigraphic interpretation. Meter- scale shallowing-upward cycles dominate the succession and, in addition to conventional methods, bioturbation, trace fossil assemblages and tiering patterns aid in interpreting subtidal, lower and upper intertidal and supratidal portions of these peritidal cycles. Bioturbation (and cryptobioturbation) have an impact on the primary reservoir quality before diagenetic processes overprint the deposits. For instance, deposit-feeders (such as vermiform organisms) introduce a certain amount of mud and decrease porosity and permeability considerably, whereas others like the Zoophycos-producers fill their dwellings with ooid grains and turn a mudstone from a barrier to a flow unit. This novel study demonstrates the value of ichnological information in carbonate reservoir characterization and the significance of trace fossil analysis in facies interpretation, reservoir zonation and the impact of bioturbation on the reservoir quality.
    [Show full text]
  • Palaeobiological and Palaeonvironmental Significance of the Pliocene Trace Fossil Dactyloidites Peniculus
    Palaeobiological and palaeonvironmental significance of the Pliocene trace fossil Dactyloidites peniculus ALFRED UCHMAN and PETER PERVESLER Uchman, A. and Pervesler, P. 2007. Palaeobiological and palaeonvironmental significance of the Pliocene trace fossil Dactyloidites peniculus. Acta Palaeontologica Polonica 52 (4): 799–808. The radial trace fossil Dactyloidites peniculus occurs in a deep tier in totally bioturbated shoreface sediments of Pliocene age in the Stirone Valley, N Italy, together with Thalassinoides isp. and Ophiomorpha nodosa. Long, narrow shafts run− ning from centre of the radiating structure and abundant faecal pellets in the radial structure were discovered. The trace maker of D. peniculus, probably a polychaete, deposited the pellets deeply in the sediment, probably for reinforcement of the tubes and a gardening of microbes for feeding. This trace fossil exclusively occurs within a narrow horizon at the top of a shallowing−up section interpreted as a high−stand system tract, below a discontinuity surface capped by finer sedi− ments. D. peniculus was formed in soft sandy sediments under stable conditions related to the latest phases of the high− stand system tract. Therefore, it is a candidate for indication of similar environmental situations having a soft sandy, but stable sea floor. Key words: Tracefossils,Dactyloidites, gardening, sequence stratigraphy, marine flooding, foredeep, Neogene, Pliocene. Alfred Uchman [[email protected]] Institute of Geological Sciences, Jagiellonian University, ul. Oleandry 2a, PL−30−063 Kraków, Poland; Peter Pervesler [[email protected]] Department of Palaeontology, University of Vienna, Althanstrasse 14, A−1090 Vienna, Austria. Introduction fill related to the Southern Alps and Apennines. The Late Pliocene sediments are interpreted as a regressive succession Dactyloidites peniculus, a radial trace fossil, has been de− deposited in the transition from outer to inner shelf (Domi− scribed by D’Alessandro and Bromley (1986) from Pleisto− nici 2001, 2004).
    [Show full text]
  • 227 10 SD01 Licence Strategy Template
    Mole Abstraction licensing strategy February 2013 A licensing strategy to manage water resources sustainably Reference number/code LIT 3097 We are the Environment Agency. It's our job to look after your environment and make it a better place - for you, and for future generations. Your environment is the air you breathe, the water you drink and the ground you walk on. Working with business, Government and society as a whole, we are making your environment cleaner and healthier. The Environment Agency. Out there, making your environment a better place. Published by: Environment Agency Horizon House Deanery Road Bristol BS1 5AH Tel: 0370 8506506 Email: [email protected] www.environment-agency.gov.uk © Environment Agency All rights reserved. This document may be reproduced with prior permission of the Environment Agency. Environment Agency Mole CAMS 1 Map 1 Mole CAMS (Catchment Abstraction Management Strategy) area Back 2 Environment Agency Mole CAMS Foreword Kent and South London (KSL) is home to six million people and covers an area of 6,000km² with a diverse range of environments and related pressures. Proposed growth will continue to stretch the resources available to support this increasing population. Water is our most essential natural resource, and it is our job to ensure that we manage and use it effectively and sustainably. KSL is one of the driest parts of England and Wales and there are many catchments where there is little or no water available for abstraction during dry periods. Demand from agriculture and industry, and above average household consumption all add to this pressure and affect both the water environment and fresh supplies.
    [Show full text]
  • MAY 2014 VOLUME 41, ISSUE 05 Canadian Publication Mail Contract – 40070050 MORE THAN MAPPING WANT to LIFT YOUR PETREL® WORKFLOWS to NEW HEIGHTS?
    20 Fossils Hunting for Provinces 28 Go Take a Hike 34 GeoConvention 2014: Focus 36 Bringing the Cretaceous Sea to Mount Royal University: A Proposal to Fund the East Gate Entrance Fossil Display $10.00 MAY 2014 VOLUME 41, ISSUE 05 Canadian Publication Mail Contract – 40070050 MORE THAN MAPPING WANT TO LIFT YOUR PETREL® WORKFLOWS TO NEW HEIGHTS? Seamlessly bring more data into the fold. Dynamically present your insight like never before. SOFTWARE SERVICES CONNECTIVITY DATA MANAGEMENT The Petrosys Plug-in for Petrel® gives you access to powerful Petrosys mapping, surface modeling and data exchange from right where you need it – inside Petrel. Now you have the power to effortlessly and meticulously bring your critical knowledge together on one potent mapping canvas. Work intuitively with your Petrel knowledge and, should you so require, simultaneously aggregate, map and model data direct from multiple other sources – OpenWorks®, ArcSDE®, IHS™ Kingdom®, PPDM™ and more. Refine, enhance and then present your results in beautiful, compelling detail. The result? Decision-making is accelerated through consistent mapping and surface modeling as focus moves from regional overview through to the field and reservoir scale. To learn more go to www.petrosys.com.au/petrel. Petrel is a registered trademark of Schlumberger Limited and/or its affiliates. OpenWorks is a registered trademark of Halliburton. ESRI trademarks provided under license from ESRI. IHS and Kingdom are trademarks or registered trademarks of IHS, Inc. PPDM is a trademark of the Professional Petroleum Data Management (PPDM) Association. MAY 2014 – VOLUME 41, ISSUE 05 ARTICLES Fossils Hunting for Provinces ..................................................................................................... 20 CSPG OFFICE Tools to Tackle the Riddle of the Sands ...............................................................................
    [Show full text]
  • The Cambrian-Ordovician Siliciclastic Platform of the Balcarce Formation
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España Poiré, D.G.; Spalletti, L.A.; Del Valle, A. The Cambrian-Ordovician siliciclastic platform of the Balcarce Formation (Tandilia System, Argentina): Facies, trace fossils, palaeoenvironments and sequence stratigraphy Geologica Acta: an international earth science journal, vol. 1, núm. 1, 2003, pp. 41-60 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50510105 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.1, Nº1, 2003, 41-60 Available online at www.geologica-acta.com The Cambrian-Ordovician siliciclastic platform of the Balcarce Formation (Tandilia System, Argentina): Facies, trace fossils, palaeoenvironments and sequence stratigraphy D.G. POIRÉ 1 L.A. SPALLETTI 1 and A. DEL VALLE 1 Centro de Investigaciones Geológicas. UNLP-CONICET calle 1 n° 644, 1900 La Plata, Argentina. E-mail: [email protected] ABSTRACT The Lower Palaeozoic sedimentary cover of the Tandilia (Balcarce Formation) is made up of thick quartz are- nite beds together with kaolinitic claystones and thin fine-grained conglomerates. The Balcarce Formation was formed in the nearshore and inner shelf environments of a tide-dominated and storm influenced open platform. It shows many features suggesting tidal sedimentation. Coarse-grained facies were formed by sand bar migra- tion and accretion. Heterolithic packages are interpreted as interbar (swale) deposits.
    [Show full text]
  • The Stratigraphical Framework for the Palaeogene Successions of the London Basin, UK
    The stratigraphical framework for the Palaeogene successions of the London Basin, UK Open Report OR/12/004 BRITISH GEOLOGICAL SURVEY OPEN REPORT OR/12/004 The National Grid and other Ordnance Survey data are used The stratigraphical framework for with the permission of the Controller of Her Majesty’s Stationery Office. the Palaeogene successions of the Licence No: 100017897/2012. London Basin, UK Key words Stratigraphy; Palaeogene; southern England; London Basin; Montrose Group; Lambeth Group; Thames Group; D T Aldiss Bracklesham Group. Front cover Borehole core from Borehole 404T, Jubilee Line Extension, showing pedogenically altered clays of the Lower Mottled Clay of the Reading Formation and glauconitic sands of the Upnor Formation. The white bands are calcrete, which form hard bands in this part of the Lambeth Group (Section 3.2.2.2 of this report) BGS image P581688 Bibliographical reference ALDISS, D T. 2012. The stratigraphical framework for the Palaeogene successions of the London Basin, UK. British Geological Survey Open Report, OR/12/004. 94pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © NERC 2012.
    [Show full text]
  • PDF Linkchapter
    Index [Italic page numbers indicate major references] Abajo Mountains, 382, 388 Amargosa River, 285, 309, 311, 322, Arkansas River, 443, 456, 461, 515, Abort Lake, 283 337, 341, 342 516, 521, 540, 541, 550, 556, Abies, 21, 25 Amarillo, Texas, 482 559, 560, 561 Abra, 587 Amarillo-Wichita uplift, 504, 507, Arkansas River valley, 512, 531, 540 Absaroka Range, 409 508 Arlington volcanic field, 358 Acer, 21, 23, 24 Amasas Back, 387 Aromas dune field, 181 Acoma-Zuni scction, 374, 379, 391 Ambrose tenace, 522, 523 Aromas Red Sand, 180 stream evolution patterns, 391 Ambrosia, 21, 24 Arroyo Colorado, 395 Aden Crater, 368 American Falls Lava Beds, 275, 276 Arroyo Seco unit, 176 Afton Canyon, 334, 341 American Falls Reservoir, 275, 276 Artemisia, 21, 24 Afton interglacial age, 29 American River, 36, 165, 173 Ascension Parish, Louisana, 567 aggradation, 167, 176, 182, 226, 237, amino acid ash, 81, 118, 134, 244, 430 323, 336, 355, 357, 390, 413, geochronology, 65, 68 basaltic, 85 443, 451, 552, 613 ratios, 65 beds, 127,129 glaciofluvial, 423 aminostratigraphy, 66 clays, 451 Piedmont, 345 Amity area, 162 clouds, 95 aggregate, 181 Anadara, 587 flows, 75, 121 discharge, 277 Anastasia Formation, 602, 642, 647 layer, 10, 117 Agua Fria Peak area, 489 Anastasia Island, 602 rhyolitic, 170 Agua Fria River, 357 Anchor Silt, 188, 198, 199 volcanic, 54, 85, 98, 117, 129, Airport bench, 421, 423 Anderson coal, 448 243, 276, 295, 396, 409, 412, Alabama coastal plain, 594 Anderson Pond, 617, 618 509, 520 Alamosa Basin, 366 andesite, 75, 80, 489 Ash Flat, 364 Alamosa
    [Show full text]
  • Geology of London, UK
    Proceedings of the Geologists’ Association 123 (2012) 22–45 Contents lists available at ScienceDirect Proceedings of the Geologists’ Association jo urnal homepage: www.elsevier.com/locate/pgeola Review paper Geology of London, UK a, b,c d e c Katherine R. Royse *, Mike de Freitas , William G. Burgess , John Cosgrove , Richard C. Ghail , f g h i j k Phil Gibbard , Chris King , Ursula Lawrence , Rory N. Mortimore , Hugh Owen , Jackie Skipper a British Geological Survey, Keyworth, Nottingham NG12 5GG, UK b First Steps Ltd, Unit 17 Hurlingham Studios, London SW6 3PA, UK c Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK d Department of Earth Sciences, University College London, WC1E 6BT, UK e Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK f Cambridge Quaternary, Department of Geography, University of Cambridge, CB2 3EN, UK g 16A Park Road, Bridport, Dorset, UK h Crossrail Ltd. 25 Canada Square, Canary Wharf, London E14 5LQ, UK i University of Brighton & ChalkRock Ltd, 32 Prince Edwards Road, Lewes BN7 1BE, UK j Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK k Geotechnical Consulting Group (GCG), 52A Cromwell Road, London SW7 5BE, UK A R T I C L E I N F O A B S T R A C T Article history: The population of London is around 7 million. The infrastructure to support this makes London one of the Received 25 February 2011 most intensively investigated areas of upper crust. However construction work in London continues to Received in revised form 5 July 2011 reveal the presence of unexpected ground conditions.
    [Show full text]
  • Environmental Significance of Ophiomorpha in a Transgressive Regressive Sequence of the Spitsbergen Paleocene Jeno`` Nagy,1 Francisco J
    RESEARCH/REVIEW ARTICLE Environmental significance of Ophiomorpha in a transgressive regressive sequence of the Spitsbergen Paleocene Á Jeno`` Nagy,1 Francisco J. Rodrı´guez Tovar2 & Matı´as Reolid3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, NO-0316 Oslo, Norway 2 Department of Stratigraphy and Paleontology, University of Granada, Campus Fuentenueva sn, ES-18071 Granada, Spain 3 Department of Geology, University of Jae´ n, Campus Las Lagunillas sn, ES-23071 Jae´ n, Spain Keywords Abstract Trace fossils; Paleocene; shoreface sandstones; brackish water; transgression The study focuses on occurrences of Ophiomorpha burrows in a transgressiveÁ signal. regressive succession composing the Early Paleocene Firkanten Formation deposited in paralic, prodelta to delta front conditions in the Central Basin Correspondence of Spitsbergen. The burrows colonize sandstones of the Todalen Member at Jeno`` Nagy, Department of Geosciences, four sites and belong to two ichnospecies: Ophiomorpha cf. nodosa, forming University of Oslo, PO Box 1047 Blindern, dominantly vertical shafts; and O. cf. irregulaire, consisting of horizontal sinuous NO-0316 Oslo, Norway. tunnels ending in subconical shafts. Both species are observed in shoreface E-mail: [email protected] sandstones deposited as a barrier bar. Lithological features and stratigraphic positions suggest that the trace-makers preferentially colonized high-energy sand environments. Foraminiferal faunas occurring below and above the barrier sandstones indicate brackish water conditions for the Ophiomorpha levels, which accordingly are of restricted, monospecific nature. It is inferred that the trace-makers had a dominantly suspension feeding habit as a modern analogue Calianassa major. Portrayed in a sequence stratigraphic framework, the Ophiomorpha-bearing sandstones in middle reaches of the Central Basin were deposited in the final stage of the transgressive systems tract, which drowned the underlying coal-bearing paralic facies.
    [Show full text]