An Investigation of Centrifugal Blood-Cell Separation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
White Blood Cells and Severe COVID-19: a Mendelian Randomization Study
Journal of Personalized Medicine Article White Blood Cells and Severe COVID-19: A Mendelian Randomization Study Yitang Sun 1 , Jingqi Zhou 1,2 and Kaixiong Ye 1,3,* 1 Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; [email protected] (Y.S.); [email protected] (J.Z.) 2 School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 3 Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA * Correspondence: [email protected]; Tel.: +1-706-542-5898; Fax: +1-706-542-3910 Abstract: Increasing evidence shows that white blood cells are associated with the risk of coronavirus disease 2019 (COVID-19), but the direction and causality of this association are not clear. To evaluate the causal associations between various white blood cell traits and the COVID-19 susceptibility and severity, we conducted two-sample bidirectional Mendelian Randomization (MR) analyses with summary statistics from the largest and most recent genome-wide association studies. Our MR results indicated causal protective effects of higher basophil count, basophil percentage of white blood cells, and myeloid white blood cell count on severe COVID-19, with odds ratios (OR) per standard deviation increment of 0.75 (95% CI: 0.60–0.95), 0.70 (95% CI: 0.54–0.92), and 0.85 (95% CI: 0.73–0.98), respectively. Neither COVID-19 severity nor susceptibility was associated with white blood cell traits in our reverse MR results. Genetically predicted high basophil count, basophil percentage of white blood cells, and myeloid white blood cell count are associated with a lower risk of developing severe COVID-19. -
Eosinophil Extracellular Traps and Inflammatory Pathologies—Untangling the Web!
REVIEW published: 26 November 2018 doi: 10.3389/fimmu.2018.02763 Eosinophil Extracellular Traps and Inflammatory Pathologies—Untangling the Web! Manali Mukherjee 1*, Paige Lacy 2 and Shigeharu Ueki 3 1 Department of Medicine, McMaster University and St Joseph’s Healthcare, Hamilton, ON, Canada, 2 Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada, 3 Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan Eosinophils are an enigmatic white blood cell, whose immune functions are still under intense investigation. Classically, the eosinophil was considered to fulfill a protective role against parasitic infections, primarily large multicellular helminths. Although eosinophils are predominantly associated with parasite infections, evidence of a role for eosinophils in mediating immunity against bacterial, viral, and fungal infections has been recently reported. Among the mechanisms by which eosinophils are proposed to exert their protective effects is the production of DNA-based extracellular traps (ETs). Remarkably, Edited by: DNA serves a role that extends beyond its biochemical function in encoding RNA and Moncef Zouali, protein sequences; it is also a highly effective substance for entrapment of bacteria Institut National de la Santé et de la and other extracellular pathogens, and serves as valuable scaffolding for antimicrobial Recherche Médicale (INSERM), France mediators such as granule proteins from immune cells. Extracellular -
Hodgkin Lymphoma
Hodgkin Lymphoma Erica, Hodgkin lymphoma survivor Revised 2016 Publication Update Hodgkin Lymphoma The Leukemia & Lymphoma Society wants you to have the most up-to-date information about blood cancer treatment. See below for important new information that was not available at the time this publication was printed. In May 2017, the Food and Drug Administration (FDA) approved nivolumab (Opdivo®) for the treatment of adult patients with classical Hodgkin lymphoma (HL) that has relapsed or progressed after 3 or more lines of systemic therapy that includes autologous hematopoietic stem cell transplantation (HSCT). It is also approved for the treatment of adult patients with classical HL that has relapsed or progressed after autologous HSCT and brentuximab vedotin. These indications are approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. In March 2017, the Food and Drug Administration (FDA) approved pembrolizumab (Keytruda®) for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. For more information, contact an Information Specialist at (800) 955-4572 or [email protected]. Information Specialists: 800.955.4572 I www.LLS.org PS57 A Message from Louis J. DeGennaro, PhD President and CEO of The Leukemia & Lymphoma Society The Leukemia & Lymphoma Society (LLS) is the world’s largest voluntary health organization dedicated to finding cures for blood cancer patients. -
Key Stage 4 Control of Immunity: Cascades of Shape Student Worksheet
Key Stage 4 The Importance of Shape Control of Immunity: Cascades of The action of enzymes is often compared to that of a lock and a key. Use your understanding of enzyme action, and the key Shape words below, to explain how enzymes work. Complimentary Specific Active site Student worksheet Enzyme-substrate-complex Catalyses Introduction Reused Activation energy Substrate Shape …………………………………………………………………………………………………… The immune system includes a powerful and intricate network of cells with the capacity to target and destroy disease causing …………………………………………………………………………………………………… microorganisms (pathogens). …………………………………………………………………………………………………… For the immune system to function effectively it must be carefully coordinated; the system must be able to identify …………………………………………………………………………………………………… pathogens and neutralise them. In each case, immune cells rely …………………………………………………………………………………………………… on the interaction of molecules with specific shapes to bring about their effect. In the following activities you will examine …………………………………………………………………………………………………… the importance of shape in the functioning of the immune …………………………………………………………………………………………………… system. …………………………………………………………………………………………………… Draw a cartoon diagram to support your answer above. www.oxfordsparks.ox.ac.uk/content/our-immune-system-battle-within Introduction to the immune system Cascades of shapes – a story of the immune system The immune system is comprised of many different cells that all Instructions work together to perform the complex task of recognising Read the information about each activity of the immune pathogens as ‘non-self’ and coordinating an appropriate system. Use this information to draw a cartoon of what is response to destroy them. going on. While there are many different cells involved, at GCSE level you Remember that the shape of molecules will be important are introduced to the two major categories of immune white and at points these will be required to fit together. -
Auto-Immune Disorders Treated with Therapeutic Apheresis
Immunology Research and Therapy Journal Open Access Research Article Auto-Immune Disorders treated with Therapeutic Apheresis Rolf Bambauer¹*, Reinhard Latza², Daniel Burgard³ and Ralf Schiel4 1Formerly: Institute for Blood Purification, Germany 2Laboratorium of Medicine, Germany 3Heart Center Duisburg, Germany 4Inselklinik Heringsdorf GmbH, Germany A R T I C L E I N F O A B S T R A C T Article history: Received: 12 June 2017 Auto-immune diseases based on an immune pathogenesis produce auto Accepted: 03 August 2017 Published: 14 August 2017 antibodies and circulating immune complexes, which cause inflammation in the Keywords: tissues of various organs. In most cases, these diseases have a bad prognosis Auto-immune disorders; Therapeutic apheresis; without treatment. Therapeutic plasma exchange with hollow fiber modules is Renal, Neurologic; Hematologic; used since more than 40 years and has led in combination with Dermatologic diseases immunosuppressive therapies to a steady increase in survival rates over the Copyright: © 2017 Bambauer R et al., last decades. Here we provide an overview of the most important pathogenic Immunol Res Ther J This is an open access article distributed aspects indicating that therapeutic apheresis can be a supportive therapy in under the Creative Commons Attribution License, which permits unrestricted use, auto immune diseases, such as renal, neurologic, hematologic and distribution, and reproduction in any medium, provided the original work is dermatologic diseases. properly cited. Introduction Citation this article: Bambauer R, Latza R, Burgard D, Schiel R. Auto-Immune Disorders The term auto immune disease relates to diseases caused by antibodies acting treated with Therapeutic Apheresis. against the body´s own tissue. -
Basophil/Mast Cell Progenitors in the Spleen Marrow and by Increasing
IL-3 Induces Basophil Expansion In Vivo by Directing Granulocyte-Monocyte Progenitors to Differentiate into Basophil Lineage-Restricted Progenitors in the Bone This information is current as Marrow and by Increasing the Number of of September 26, 2021. Basophil/Mast Cell Progenitors in the Spleen Keitaro Ohmori, Yuchun Luo, Yi Jia, Jun Nishida, Zhengqi Wang, Kevin D. Bunting, Demin Wang and Hua Huang Downloaded from J Immunol 2009; 182:2835-2841; ; doi: 10.4049/jimmunol.0802870 http://www.jimmunol.org/content/182/5/2835 http://www.jimmunol.org/ References This article cites 41 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/182/5/2835.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IL-3 Induces Basophil Expansion In Vivo by Directing Granulocyte-Monocyte Progenitors to Differentiate into Basophil Lineage-Restricted Progenitors in the Bone Marrow and by Increasing the Number of Basophil/Mast Cell Progenitors in the Spleen1 Keitaro Ohmori,2* Yuchun Luo,* Yi Jia,* Jun Nishida,* Zhengqi Wang,† Kevin D. -
Basophils Trigger Emphysema Development in a Murine Model of COPD Through IL-4–Mediated Generation of MMP-12–Producing Macrophages
Basophils trigger emphysema development in a murine model of COPD through IL-4–mediated generation of MMP-12–producing macrophages Sho Shibataa,b, Kensuke Miyakea, Tomoya Tateishib, Soichiro Yoshikawaa, Yoshinori Yamanishia, Yasunari Miyazakib, Naohiko Inaseb, and Hajime Karasuyamaa,1 aDepartment of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; and bDepartment of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan Edited by Kazuhiko Yamamoto, the University of Tokyo; Max Planck–The University of Tokyo Center for Integrative Inflammology, the University of Tokyo, Tokyo, Japan, and accepted by Editorial Board Member Tadatsugu Taniguchi November 2, 2018 (received for review August 13, 2018) Chronic obstructive pulmonary disease (COPD) is a leading cause of COPD even after smoking has stopped (9). As an alternative morbidity and mortality worldwide. It has generally been consid- approach, a protease-induced model was established (10) soon ered a non-Th2-type lung disorder, characterized by progressive after the discovery of the association between α1-antitrypsin airflow limitation with inflammation and emphysema, but its deficiency and emphysema in humans (11), implying that an im- cellular and molecular mechanism remains ill defined, compared balance between proteases and antiproteases in the lung may re- with that of asthma characterized by reversible airway obstruc- sult in emphysema formation. Intratracheal or intranasal instillation tion. Here we show a previously unappreciated role for basophils of elastolytic enzymes, such as papain, human neutrophil elastase, at the initiation phase of emphysema formation in an elastase- and porcine pancreatic elastase, is utilized to trigger emphysema induced murine model of COPD in that basophils represent less formation (10, 12, 13). -
Understanding the Immune System: How It Works
Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them. -
The Term Meaning White Blood Cells Is
The Term Meaning White Blood Cells Is Micro Angelico still desalinate: venatic and unclimbed Elliot originate quite significatively but globes her proximocracoviennes and admeasuring catechetically. politely. Welsh Hazardableis attritional orand pollened, endows Sherwood voicelessly never as statant comb-outs Ira interpenetrates any output! Trophoblast cells are destined to give rise to many of the extraembryonic tissues. Genetic disorders and blood the cells is a permanent hair shaft, great care provider first line reported by lab technician may be included in circulation, the superficial veins. The part of the brain that controls coordinated movement. What Is A Medical Technologist? Inflammation of the liver. MPV is used along with platelet count to diagnose some diseases. After circulating in the bloodstream for about a day, monocytes enter body tissues to become macrophages, which can destroy some germs by surrounding and digesting them. The legacy of this great resource continues as the Merck Veterinary Manual in the US and Canada and the MSD Manual outside of North America. An abnormal increase in the volume of circulating blood. These small cells seem to sound an alarm when infectious agents invade your blood. Comparisons may be useful for a differential diagnosis. Finally, emotional or physical stress can also cause elevated white blood cell counts. The ability of the body to learn to fight specific infections after being exposed to the germs that cause them. However, you may also visit the Cookie Settings at any time to provide controlled consent, and you can withdraw your consent there. Severe pain that occurs suddenly and usually lasts a short while. -
The Role of Eosinophils and Basophils in Allergic Diseases Considering Genetic Findings
The role of eosinophils and basophils in allergic diseases considering genetic findings. Rachel Nadif, Farid Zerimech, Emmanuelle Bouzigon, Regis Matran To cite this version: Rachel Nadif, Farid Zerimech, Emmanuelle Bouzigon, Regis Matran. The role of eosinophils and ba- sophils in allergic diseases considering genetic findings.. Current Opinion in Allergy and Clinical Im- munology, Lippincott, Williams & Wilkins, 2013, 13 (5), pp.507-13. 10.1097/ACI.0b013e328364e9c0. inserm-00880260 HAL Id: inserm-00880260 https://www.hal.inserm.fr/inserm-00880260 Submitted on 3 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The role of eosinophils and basophils in allergic diseases considering genetic findings Rachel Nadifa,b, Farid Zerimechc,d, Emmanuelle Bouzigone,f, Regis Matranc,d Affiliations: aInserm, Centre for research in Epidemiology and Population Health (CESP), U1018, Respiratory and Environmental Epidemiology Team, F-94807, Villejuif, France bUniv Paris-Sud, UMRS 1018, F-94807, Villejuif, France cCHRU de Lille, F-59000, Lille, France dUniv Lille Nord de France, EA4483, F-59000, Lille, France eUniv Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d’Hématologie, F-75007, Paris, France fInserm, UMR-946, F-75010, Paris, France Correspondence to Rachel Nadif, PhD, Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, Respiratory and Environmental Epidemiology Team, F-94807, Villejuif, France. -
How Are White Blood Cells Classified?
How are white blood cells classified? Copyright 2017 by the Rector and Visitors of the University of Virginia How are white blood cells classified? Types of White Blood Cells: Neutrophil Eosinophil Basophil Lymphocyte Monocyte . The types of white blood cells are shown above. The next page will describe lymphocytes in further detail. A healthy individual has all of these white blood cells types, but within specific ranges. Deviation from these ranges can indicate acute illness or a chronic disease. A mnemonic that is often used to remember the relative amount of each white blood cell that should be present is “Never Let Monkeys Eat Bananas.” Never Neutrophil Highest amounts Let Lymphocyte Monkeys Monocyte Eat Eosinophil Bananas Basophil Lowest amounts . In other words, neutrophils should always be present in higher amounts compared to the other cell types. This will be described further in “A first step in diagnosing LGL leukemia: The blood smear.” Copyright 2017 by the Rector and Visitors of the University of Virginia How are white blood cells classified? Introduction: White blood cells are blood cells that fight infection and disease. Lymphocytes are a type of white blood cell. They can identify antigens (substances foreign to the body) and cause an immune response. There are three types of lymphocytes: T-cell, NK-cell, and B-cell. In healthy adults, 10-15% of the lymphocytes are large granular lymphocytes (LGLs). To learn more about LGL cells, see “A first step in diagnosing LGL leukemia: The blood smear.” A person is diagnosed with LGL leukemia if there is a clonal (copied) population of T-cells or NK-cells present. -
Granulocytes in Helminth Infection - Who Is Calling the Shots?
Current Medicinal Chemistry, 2012, 19, 1567-1586 1567 Granulocytes in Helminth Infection - Who is Calling the Shots? B.L. Makepeace1, C. Martin2, J.D. Turner3 and S. Specht*,4 1Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, Liverpool L69 7ZJ, UK 2USM 7245 MCAM, CNRS MNHN, Muséum National d’Histoire Naturelle, 61 rue Buffon, 75231 Paris Cedex 05, France 3Department of Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK 4Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53105 Bonn, Germany Abstract: Helminths are parasitic organisms that can be broadly described as “worms” due to their elongated body plan, but which otherwise differ in shape, development, migratory routes and the predilection site of the adults and larvae. They are divided into three major groups: trematodes (flukes), which are leaf-shaped, hermaphroditic (except for blood flukes) flatworms with oral and ventral suckers; cestodes (tapeworms), which are segmented, hermaphroditic flatworms that inhabit the intestinal lumen; and nematodes (roundworms), which are dioecious, cylindrical parasites that inhabit intestinal and peripheral tissue sites. Helminths exhibit a sublime co-evolution with the host´s immune system that has enabled them to successfully colonize almost all multicellular species present in every geographical environment, including over two billion humans. In the face of this challenge, the host immune system has evolved to strike a delicate balance between attempts to neutralize the infectious assault versus limitation of damage to host tissues. Among the most important cell types during helminthic invasion are granulocytes: eosinophils, neutrophils and basophils. Depending on the specific context, these leukocytes may have pivotal roles in host protection, immunopathology, or facilitation of helminth establishment.