Developmental Checkpoints of the Basophil Mast Cell Lineages in Adult Murine Hematopoiesis

Total Page:16

File Type:pdf, Size:1020Kb

Developmental Checkpoints of the Basophil Mast Cell Lineages in Adult Murine Hematopoiesis Developmental checkpoints of the basophil͞mast cell lineages in adult murine hematopoiesis Yojiro Arinobu*†, Hiromi Iwasaki*†‡, Michael F. Gurish§, Shin-ichi Mizuno*, Hirokazu Shigematsu*, Hidetoshi Ozawa*, Daniel G. Tenen¶, K. Frank Austen§ʈ, and Koichi Akashi*‡** *Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, and ¶Harvard Institute of Medicine, Harvard Medical School, Boston, MA 02115; ‡Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan; and §Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 Contributed by K. Frank Austen, October 21, 2005 Basophils and mast cells, which are selectively endowed with the populations that have committed to the basophil and͞or mast high-affinity IgE receptor and mediate a range of adaptive and cell lineages. Our data show that basophils and mast cells share innate immune responses, have an unknown developmental rela- the common progenitor stage, where CCAAT͞enhancer- tionship. Here, by evaluating the expression of the ␤7 integrin, a binding protein ␣ (C͞EBP␣), the transcription factor essential molecule that is required for selective homing of mast cell pro- for granulocyte development (10), plays a critical role in their genitors (MCPs) to the periphery, we identified bipotent progen- fate decision. itors that are capable of differentiating into either cell type in the mouse spleen. These basophil͞mast cell progenitors (BMCPs) gave Materials and Methods rise to basophils and mast cells at the single-cell level and recon- Mice. C57BL͞6J, B6.SJL-Ptprca Pep3b͞BoyJ, and WBB6F1͞J- stituted both mucosal and connective tissue mast cells. We also KitW͞KitWϪv mice were purchased from The Jackson Labora- identified the basophil progenitor (BaP) and the MCP in the bone tory. C͞EBP␣F/F mice were developed as described in ref. 11. marrow and the gastrointestinal mucosa, respectively. We further They were bred and maintained in the Research Animal Facility show that the granulocyte-related transcription factor CCAAT͞ at Dana–Farber Cancer Institute in accordance with institutional enhancer-binding protein ␣ (C͞EBP␣) plays a primary role in the guidelines. fate decision of BMCPs, being expressed in BaPs but not in MCPs. Thus, circulating basophils and tissue mast cells share a common Antibodies, Cell Staining, and Sorting. Myeloid and lymphoid developmental stage at which their fate decision might be con- progenitors were purified as described in refs. 12 and 13. For trolled principally by C͞EBP␣. the staining of lineage antigens, phycoerythrin (PE)-Cy5- conjugated rat antibodies specific for CD3 (CT-CD3), CD4 integrin ͉ progenitor ͉ CCAAT͞enhancer-binding protein (RM4–5), CD8 (5H10), B220 (6B2), Gr-1 (8C5), and CD19 (6D5) (Caltag, Burlingame, CA) were used. For basophil͞mast asophils and mast cells exhibit distinct differentiation pat- cell progenitor (BMCP) sorting, spleen cells were stained with Bterns despite their multiple shared phenotypic characteris- FITC-conjugated anti-T1͞ST2, PE-conjugated anti-␤7 inte- tics. Both cell types express the ␣␤␥2 form of the high-affinity grin, allophycocyanin (APC)-conjugated anti-c-Kit (2B8), and receptor for IgE (Fc␧RI). Crosslinking of the high-affinity biotinylated anti-Fc␥RII͞III (2.4G2) (BD Pharmingen), fol- receptor for IgE (Fc␧RI) on tissue mast cells triggers immediate lowed by avidin-APC͞Cy7 (Caltag). For basophil progenitor hypersensitivity with local symptoms, and sequential recruit- (BaP) or mast cell progenitor (MCP) sorting, bone marrow or ment of basophils to these tissue sites expands the spectrum of intestinal cells were stained with FITC-conjugated anti-CD34 this inflammatory process (1). By secreting diverse inflamma- (RAM34) (BD Pharmingen), PE-conjugated anti-Fc␧RI␣ tory protein mediators, they provide innate defense against (MAR-1), APC-conjugated anti-c-Kit (2B8), and͞or APC͞ parasitic or bacterial infections (2–4) and also play a critical role Cy7-conjugated anti-CD45.2 (104). Cells were double-sorted in the development of a variety of autoimmune disorders (5). A by using a highly modified double-laser (488-nm͞350-nm marked increase in activated intraepithelial and bronchial Enterprise II and 647-nm Spectrum) FACS (Moflo-MLS, smooth muscle mast cells characterizes bronchial asthma, and a Cytomation, Fort Collins, CO). Cells were doubly sorted and prominent basophil infiltration is noted with fatal diseases. In were deposited into 60-well Terasaki plates by using an cutaneous allergic diseases, mast cell activation is the basis of automatic cell deposition unit system (14). itching hives, whereas basophils are abundant in contact hyper- sensitivity eruptions (6). However, basophils exist as mature cells Infection with Trichinella spiralis and Ovalbumin (OVA) Sensitization. in the circulation, whereas mast cells circulate as progenitors and The method for T. spiralis infection has been reported previously complete their maturation after migration into peripheral tissues (14). For the OVA sensitization, mice were immunized i.p. twice such as the skin, heart, lung, and the gastrointestinal mucosa. with OVA (10 ␮g, Sigma-Aldrich) adsorbed to 1 mg of alum Their origin and developmental relationships remain as one of (Pierce) 7 days apart. Ten days after the second immunization, the major issues in the biology of hematopoiesis (7) and in the pathobiology of allergic diseases. Conflict of interest statement: No conflicts declared. In adult mice, the intestine is the main peripheral tissue IMMUNOLOGY harboring mast cell colony-forming activity (8). We have shown Abbreviations: MCP, mast cell progenitor; BMCP, basophil͞mast cell progenitor; BaP, ␤ ␤ basophil progenitor; C͞EBP␣, CCAAT͞enhancer-binding protein ␣; OVA, ovalbumin; CMP, that the 7-integrin ( 7) is an essential molecule for tissue- common myeloid progenitor; MEP, megakaryocyte͞erythrocyte progenitor; GMP, granu- specific homing of putative precursors for intestinal mast cells (8) locyte͞monocyte progenitor; EoP, eosinophil lineage-committed progenitor. ϩ and that mast cell potential resides mostly in the c-Kit fraction, †Y.A. and H.I. contributed equally to this work. at least in the murine bone marrow (9). To identify a candidate ʈTo whom correspondence may be addressed. E-mail: [email protected]. population that seeds putative intestinal progenitors for mast **To whom correspondence may be addressed at: Department of Cancer Immunology and cells, we evaluated the expression level of ␤7 in hematopoietic AIDS, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115. E-mail: progenitor populations in the bone marrow, the spleen, and the koichi࿝[email protected]. intestine. This approach enabled us to isolate a set of progenitor © 2005 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0509148102 PNAS ͉ December 13, 2005 ͉ vol. 102 ͉ no. 50 ͉ 18105–18110 Downloaded by guest on September 27, 2021 Fig. 1. Identification of BMCPs in C57BL͞6 murine hematopoiesis. (A) The expression of ␤7 and T1͞ST2 in the bone marrow myeloerythroid progenitors and peritoneal mast cells (MC). A fraction of myeloerythroid progenitors expressed a low level of ␤7. (B) The surface phenotype of ␤7hi BMCPs in the spleen. (C)(Left) Morphology of purified LinϪc-KitϩFc␥RII͞IIIhi␤7hi BMCPs. These cells gave rise exclusively to mast cells and basophils (Right) in the presence of a panel of myeloerythroid cytokines (see Materials and Methods). May–Giemsa staining was used. (Magnification: ϫ1,000.) (D) A basophil͞mast cell colony developed from a single BMCP in vitro. May–Giemsa staining was used. (Magnification: ϫ1,000.) (E) Clonogenic analysis of ␤7lo bone marrow myeloerythroid progenitors and ␤7hi BMCP. Note that a fraction of the spleen BMCP and the bone marrow ␤7lo GMP gave rise to both basophils and mast cells at the single-cell level. (F) FACS analysis of day-7 progeny of the bone marrow ␤7Ϫ and ␤7lo GMP. Both populations gave rise to Fc␧RI␣ϩCD11cϩ basophils and Fc␧RI␣ϩCD11cϪ mast cells expressing c-Kit. the mice were exposed to an aerosol of 1% OVA in PBS for 30 C͞EBP␣F/F mice and infected with MIG-Cre retroviruses, as min by using a PARI nebulizer (PARI Respiratory Equipment, reported in ref. 11. Midlothian, VA). Mice were analyzed 1 day after the fifth daily exposure. Results A Population Expressing a High Level of ␤7 Resides in the Spleen but Cell Cultures. Cells were cultured in Iscove’s modified Dulbecco’s Not in the Bone Marrow. We evaluated the expression of ␤7 within medium supplemented with 20% FCS. Cultures were performed stem͞progenitor populations that did not express a panel of in the presence of cytokine cocktails containing murine stem lineage antigens (Lin) but expressed c-Kit. In the bone marrow, cell factor (20 ng͞ml), IL-3 (20 ng͞ml), IL-5 (50 ng͞ml), IL-6 LinϪSca-1ϩc-Kitϩ hematopoietic stem cells (HSCs) did not (20 ng͞ml), IL-7 (20 ng͞ml), IL-9 (50 ng͞ml), IL-11 (10 express ␤7, but a low level of ␤7 expression was found in a ng͞ml), granulocyte–macrophage colony-stimulating factor fraction of progenitor populations, such as common myeloid (10 ng͞ml), erythropoietin (2 units͞ml), and thrombopoietin progenitors (CMPs), megakaryocyte͞erythrocyte progenitors (10 ng͞ml) (R & D Systems). Cells were cultured at 37°C in a (MEPs), and granulocyte͞monocyte progenitors (GMPs) (13) ␤ humidified chamber under 5% CO2. (Fig. 1A). In contrast, cells expressing 7 at high levels were found in the LinϪc-Kitϩ fraction of the spleen. These ␤7hi cells In Vivo Reconstitution Assay. Four hundred splenic BMCPs or existed only in a fraction expressing Fc␥RII͞III (Fig. 1B), at a intestinal MCPs were purified from C57BL͞6 (Ly5.1) mice and level comparable to that in GMPs (13), neutrophils, and mono- injected i.p. into nonirradiated W͞Wv mice. Eight weeks after cytes (not shown). ␤7hi spleen cells expressed CD34, a marker for the injection, peritoneal lavage cells were analyzed. Three hematopoietic progenitors that can generate mast cells and thousand purified BMCPs (Ly5.1) were also injected intrave- basophils (15) and for mature mast cells (16). They also ex- nously into W͞Wv mice after 2.5-Gy irradiation.
Recommended publications
  • White Blood Cells and Severe COVID-19: a Mendelian Randomization Study
    Journal of Personalized Medicine Article White Blood Cells and Severe COVID-19: A Mendelian Randomization Study Yitang Sun 1 , Jingqi Zhou 1,2 and Kaixiong Ye 1,3,* 1 Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; [email protected] (Y.S.); [email protected] (J.Z.) 2 School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 3 Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA * Correspondence: [email protected]; Tel.: +1-706-542-5898; Fax: +1-706-542-3910 Abstract: Increasing evidence shows that white blood cells are associated with the risk of coronavirus disease 2019 (COVID-19), but the direction and causality of this association are not clear. To evaluate the causal associations between various white blood cell traits and the COVID-19 susceptibility and severity, we conducted two-sample bidirectional Mendelian Randomization (MR) analyses with summary statistics from the largest and most recent genome-wide association studies. Our MR results indicated causal protective effects of higher basophil count, basophil percentage of white blood cells, and myeloid white blood cell count on severe COVID-19, with odds ratios (OR) per standard deviation increment of 0.75 (95% CI: 0.60–0.95), 0.70 (95% CI: 0.54–0.92), and 0.85 (95% CI: 0.73–0.98), respectively. Neither COVID-19 severity nor susceptibility was associated with white blood cell traits in our reverse MR results. Genetically predicted high basophil count, basophil percentage of white blood cells, and myeloid white blood cell count are associated with a lower risk of developing severe COVID-19.
    [Show full text]
  • The Distribution of Immune Cells in the Uveal Tract of the Normal Eye
    THE DISTRIBUTION OF IMMUNE CELLS IN THE UVEAL TRACT OF THE NORMAL EYE PAUL G. McMENAMIN Perth, Western Australia SUMMARY function of these cells in the normal iris, ciliary body Inflammatory and immune-mediated diseases of the and choroid. The role of such cell types in ocular eye are not purely the consequence of infiltrating inflammation, which will be discussed by other inflammatory cells but may be initiated or propagated authors in this issue, is not the major focus of this by immune cells which are resident or trafficking review; however, a few issues will be briefly through the normal eye. The uveal tract in particular considered where appropriate. is the major site of many such cells, including resident tissue macro phages, dendritic cells and mast cells. This MACRO PHAGES review considers the distribution and location of these and other cells in the iris, ciliary body and choroid in Mononuclear phagocytes arise from bone marrow the normal eye. The uveal tract contains rich networks precursors and after a brief journey in the blood as of both resident macrophages and MHe class 11+ monocytes immigrate into tissues to become macro­ dendritic cells. The latter appear strategically located to phages. In their mature form they are widely act as sentinels for capturing and sampling blood-borne distributed throughout the body. Macrophages are and intraocular antigens. Large numbers of mast cells professional phagocytes and play a pivotal role as are present in the choroid of most species but are effector cells in cell-mediated immunity and inflam­ virtually absent from the anterior uvea in many mation.1 In addition, due to their active secretion of a laboratory animals; however, the human iris does range of important biologically active molecules such contain mast cells.
    [Show full text]
  • Maintenance Basophil and Mast Cell
    The STAT5−GATA2 Pathway Is Critical in Basophil and Mast Cell Differentiation and Maintenance This information is current as Yapeng Li, Xiaopeng Qi, Bing Liu and Hua Huang of September 25, 2021. J Immunol 2015; 194:4328-4338; Prepublished online 23 March 2015; doi: 10.4049/jimmunol.1500018 http://www.jimmunol.org/content/194/9/4328 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2015/03/20/jimmunol.150001 Material 8.DCSupplemental References This article cites 38 articles, 14 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/194/9/4328.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The STAT5–GATA2 Pathway Is Critical in Basophil and Mast Cell Differentiation and Maintenance Yapeng Li,* Xiaopeng Qi,*,1 Bing Liu,*,† and Hua Huang*,‡ Transcription factor GATA binding protein 2 (GATA2) plays critical roles in hematopoietic stem cell survival and proliferation, granulocyte–monocyte progenitor differentiation, and basophil and mast cell differentiation.
    [Show full text]
  • Basophil/Mast Cell Progenitors in the Spleen Marrow and by Increasing
    IL-3 Induces Basophil Expansion In Vivo by Directing Granulocyte-Monocyte Progenitors to Differentiate into Basophil Lineage-Restricted Progenitors in the Bone This information is current as Marrow and by Increasing the Number of of September 26, 2021. Basophil/Mast Cell Progenitors in the Spleen Keitaro Ohmori, Yuchun Luo, Yi Jia, Jun Nishida, Zhengqi Wang, Kevin D. Bunting, Demin Wang and Hua Huang Downloaded from J Immunol 2009; 182:2835-2841; ; doi: 10.4049/jimmunol.0802870 http://www.jimmunol.org/content/182/5/2835 http://www.jimmunol.org/ References This article cites 41 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/182/5/2835.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IL-3 Induces Basophil Expansion In Vivo by Directing Granulocyte-Monocyte Progenitors to Differentiate into Basophil Lineage-Restricted Progenitors in the Bone Marrow and by Increasing the Number of Basophil/Mast Cell Progenitors in the Spleen1 Keitaro Ohmori,2* Yuchun Luo,* Yi Jia,* Jun Nishida,* Zhengqi Wang,† Kevin D.
    [Show full text]
  • Basophils Trigger Emphysema Development in a Murine Model of COPD Through IL-4–Mediated Generation of MMP-12–Producing Macrophages
    Basophils trigger emphysema development in a murine model of COPD through IL-4–mediated generation of MMP-12–producing macrophages Sho Shibataa,b, Kensuke Miyakea, Tomoya Tateishib, Soichiro Yoshikawaa, Yoshinori Yamanishia, Yasunari Miyazakib, Naohiko Inaseb, and Hajime Karasuyamaa,1 aDepartment of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; and bDepartment of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan Edited by Kazuhiko Yamamoto, the University of Tokyo; Max Planck–The University of Tokyo Center for Integrative Inflammology, the University of Tokyo, Tokyo, Japan, and accepted by Editorial Board Member Tadatsugu Taniguchi November 2, 2018 (received for review August 13, 2018) Chronic obstructive pulmonary disease (COPD) is a leading cause of COPD even after smoking has stopped (9). As an alternative morbidity and mortality worldwide. It has generally been consid- approach, a protease-induced model was established (10) soon ered a non-Th2-type lung disorder, characterized by progressive after the discovery of the association between α1-antitrypsin airflow limitation with inflammation and emphysema, but its deficiency and emphysema in humans (11), implying that an im- cellular and molecular mechanism remains ill defined, compared balance between proteases and antiproteases in the lung may re- with that of asthma characterized by reversible airway obstruc- sult in emphysema formation. Intratracheal or intranasal instillation tion. Here we show a previously unappreciated role for basophils of elastolytic enzymes, such as papain, human neutrophil elastase, at the initiation phase of emphysema formation in an elastase- and porcine pancreatic elastase, is utilized to trigger emphysema induced murine model of COPD in that basophils represent less formation (10, 12, 13).
    [Show full text]
  • Understanding the Immune System: How It Works
    Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them.
    [Show full text]
  • The Term Meaning White Blood Cells Is
    The Term Meaning White Blood Cells Is Micro Angelico still desalinate: venatic and unclimbed Elliot originate quite significatively but globes her proximocracoviennes and admeasuring catechetically. politely. Welsh Hazardableis attritional orand pollened, endows Sherwood voicelessly never as statant comb-outs Ira interpenetrates any output! Trophoblast cells are destined to give rise to many of the extraembryonic tissues. Genetic disorders and blood the cells is a permanent hair shaft, great care provider first line reported by lab technician may be included in circulation, the superficial veins. The part of the brain that controls coordinated movement. What Is A Medical Technologist? Inflammation of the liver. MPV is used along with platelet count to diagnose some diseases. After circulating in the bloodstream for about a day, monocytes enter body tissues to become macrophages, which can destroy some germs by surrounding and digesting them. The legacy of this great resource continues as the Merck Veterinary Manual in the US and Canada and the MSD Manual outside of North America. An abnormal increase in the volume of circulating blood. These small cells seem to sound an alarm when infectious agents invade your blood. Comparisons may be useful for a differential diagnosis. Finally, emotional or physical stress can also cause elevated white blood cell counts. The ability of the body to learn to fight specific infections after being exposed to the germs that cause them. However, you may also visit the Cookie Settings at any time to provide controlled consent, and you can withdraw your consent there. Severe pain that occurs suddenly and usually lasts a short while.
    [Show full text]
  • The Role of Eosinophils and Basophils in Allergic Diseases Considering Genetic Findings
    The role of eosinophils and basophils in allergic diseases considering genetic findings. Rachel Nadif, Farid Zerimech, Emmanuelle Bouzigon, Regis Matran To cite this version: Rachel Nadif, Farid Zerimech, Emmanuelle Bouzigon, Regis Matran. The role of eosinophils and ba- sophils in allergic diseases considering genetic findings.. Current Opinion in Allergy and Clinical Im- munology, Lippincott, Williams & Wilkins, 2013, 13 (5), pp.507-13. 10.1097/ACI.0b013e328364e9c0. inserm-00880260 HAL Id: inserm-00880260 https://www.hal.inserm.fr/inserm-00880260 Submitted on 3 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The role of eosinophils and basophils in allergic diseases considering genetic findings Rachel Nadifa,b, Farid Zerimechc,d, Emmanuelle Bouzigone,f, Regis Matranc,d Affiliations: aInserm, Centre for research in Epidemiology and Population Health (CESP), U1018, Respiratory and Environmental Epidemiology Team, F-94807, Villejuif, France bUniv Paris-Sud, UMRS 1018, F-94807, Villejuif, France cCHRU de Lille, F-59000, Lille, France dUniv Lille Nord de France, EA4483, F-59000, Lille, France eUniv Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d’Hématologie, F-75007, Paris, France fInserm, UMR-946, F-75010, Paris, France Correspondence to Rachel Nadif, PhD, Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, Respiratory and Environmental Epidemiology Team, F-94807, Villejuif, France.
    [Show full text]
  • The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection
    cells Review The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection Fátima Conceição-Silva 1,* , Clarissa S. M. Reis 1,2,†, Paula Mello De Luca 1,† , Jessica Leite-Silva 1,3,†, Marta A. Santiago 1,†, Alexandre Morrot 1,4 and Fernanda N. Morgado 1,† 1 Laboratory of Immunoparasitology, Oswaldo Cruz Institute (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21.040-360, RJ, Brazil; [email protected] (C.S.M.R.); pmdeluca@ioc.fiocruz.br (P.M.D.L.); [email protected] (J.L.-S.); marta.santiago@ioc.fiocruz.br (M.A.S.); alexandre.morrot@ioc.fiocruz.br (A.M.); morgado@ioc.fiocruz.br (F.N.M.) 2 Postgraduate Program in Clinical Research in Infectious Diseases, INI-Fiocruz, Rio de Janeiro 21.040-360, RJ, Brazil 3 Postgraduate Program in Parasitic Biology, IOC-Fiocruz, Rio de Janeiro 21.040-360, RJ, Brazil 4 Tuberculosis Research Laboratory, Faculty of Medicine, Federal University of Rio de Janeiro-RJ, Rio de Janeiro 21.941-901, RJ, Brazil * Correspondence: fconcei@ioc.fiocruz.br † These authors equally contribute to this work. Abstract: The first formal description of the microbicidal activity of extracellular traps (ETs) con- taining DNA occurred in neutrophils in 2004. Since then, ETs have been identified in different populations of cells involved in both innate and adaptive immune responses. Much of the knowledge has been obtained from in vitro or ex vivo studies; however, in vivo evaluations in experimental models and human biological materials have corroborated some of the results obtained. Two types Citation: Conceição-Silva, F.; Reis, of ETs have been described—suicidal and vital ETs, with or without the death of the producer cell.
    [Show full text]
  • How Are White Blood Cells Classified?
    How are white blood cells classified? Copyright 2017 by the Rector and Visitors of the University of Virginia How are white blood cells classified? Types of White Blood Cells: Neutrophil Eosinophil Basophil Lymphocyte Monocyte . The types of white blood cells are shown above. The next page will describe lymphocytes in further detail. A healthy individual has all of these white blood cells types, but within specific ranges. Deviation from these ranges can indicate acute illness or a chronic disease. A mnemonic that is often used to remember the relative amount of each white blood cell that should be present is “Never Let Monkeys Eat Bananas.” Never Neutrophil Highest amounts Let Lymphocyte Monkeys Monocyte Eat Eosinophil Bananas Basophil Lowest amounts . In other words, neutrophils should always be present in higher amounts compared to the other cell types. This will be described further in “A first step in diagnosing LGL leukemia: The blood smear.” Copyright 2017 by the Rector and Visitors of the University of Virginia How are white blood cells classified? Introduction: White blood cells are blood cells that fight infection and disease. Lymphocytes are a type of white blood cell. They can identify antigens (substances foreign to the body) and cause an immune response. There are three types of lymphocytes: T-cell, NK-cell, and B-cell. In healthy adults, 10-15% of the lymphocytes are large granular lymphocytes (LGLs). To learn more about LGL cells, see “A first step in diagnosing LGL leukemia: The blood smear.” A person is diagnosed with LGL leukemia if there is a clonal (copied) population of T-cells or NK-cells present.
    [Show full text]
  • Granulocytes in Helminth Infection - Who Is Calling the Shots?
    Current Medicinal Chemistry, 2012, 19, 1567-1586 1567 Granulocytes in Helminth Infection - Who is Calling the Shots? B.L. Makepeace1, C. Martin2, J.D. Turner3 and S. Specht*,4 1Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, Liverpool L69 7ZJ, UK 2USM 7245 MCAM, CNRS MNHN, Muséum National d’Histoire Naturelle, 61 rue Buffon, 75231 Paris Cedex 05, France 3Department of Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK 4Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53105 Bonn, Germany Abstract: Helminths are parasitic organisms that can be broadly described as “worms” due to their elongated body plan, but which otherwise differ in shape, development, migratory routes and the predilection site of the adults and larvae. They are divided into three major groups: trematodes (flukes), which are leaf-shaped, hermaphroditic (except for blood flukes) flatworms with oral and ventral suckers; cestodes (tapeworms), which are segmented, hermaphroditic flatworms that inhabit the intestinal lumen; and nematodes (roundworms), which are dioecious, cylindrical parasites that inhabit intestinal and peripheral tissue sites. Helminths exhibit a sublime co-evolution with the host´s immune system that has enabled them to successfully colonize almost all multicellular species present in every geographical environment, including over two billion humans. In the face of this challenge, the host immune system has evolved to strike a delicate balance between attempts to neutralize the infectious assault versus limitation of damage to host tissues. Among the most important cell types during helminthic invasion are granulocytes: eosinophils, neutrophils and basophils. Depending on the specific context, these leukocytes may have pivotal roles in host protection, immunopathology, or facilitation of helminth establishment.
    [Show full text]
  • Mast Cells Mediate Acute Inflammatory Responses to Implanted Biomaterials (Histamine͞phagocytes)
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 8841–8846, July 1998 Medical Sciences Mast cells mediate acute inflammatory responses to implanted biomaterials (histamineyphagocytes) LIPING TANG*†,TIMOTHY A. JENNINGS‡, AND JOHN W. EATON* *Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and ‡Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY 12208 Edited by Anthony Cerami, The Kenneth S. Warren Laboratories, Tarrytown, NY, and approved May 26, 1998 (received for review March 2, 1998) ABSTRACT Implanted biomaterials trigger acute and In attempting to define the mechanisms involved in bioma- chronic inflammatory responses. The mechanisms involved in terial-mediated inflammatory responses, we have somewhat such acute inflammatory responses can be arbitrarily divided arbitrarily divided the events into (i) phagocyte transmigration into phagocyte transmigration, chemotaxis, and adhesion to through the endothelial barrier, (ii) chemotaxis toward the implant surfaces. We earlier observed that two chemokines— implant, and (iii) phagocyte adherence to implant surfaces. macrophage inflammatory protein 1aymonocyte chemoat- Our earlier results indicate that interaction between the tractant protein 1—and the phagocyte integrin Mac-1 phagocyte integrin, Mac-1 (CD11byCD18), and surface fibrin- (CD11byCD18)ysurface fibrinogen interaction are, respec- ogen is critical in the adherence of phagocytes to biomaterial tively, required for phagocyte chemotaxis and adherence to implants (1, 20). In addition, both macrophage inflammatory biomaterial surfaces. However, it is still not clear how the protein 1a and monocyte chemoattractant protein 1, two initial transmigration of phagocytes through the endothelial potent chemokines, are involved in phagocyte chemotaxis barrier into the area of the implant is triggered. Because toward the implant (21).
    [Show full text]