Lyssaviruses and the Evolution of Rabies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WHO Expert Consultation on Rabies WHO Technical Report Series N
Since the launch of the Global framework to eliminate human 1012 rabies transmitted by dogs by 2030 in 2015, WHO has worked WHO Technical Report Series with the Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health, the Global 1012 Alliance for Rabies Control and other stakeholders and partners WHO to prepare a global strategic plan. This includes a country-centric approach to support, empower and catalyse national entities to Expert on Rabies Consultation control and eliminate rabies. In this context, WHO convened its network of collaborating centres on rabies, specialized institutions, members of the WHO Expert Advisory Panel on Rabies, rabies experts and partners to review strategic and technical guidance on rabies to support implementation of country and regional programmes. This report provides updated guidance based on evidence and programmatic experience on the multiple facets of rabies prevention, control and elimination. Key updates include: (i) surveillance strategies, including cross-sectoral linking of systems and suitable diagnostics; (ii) the latest recommendations on human and animal immunization; (iii) palliative care in low- resource settings; (iv) risk assessment to guide management of bite WHO Expert Consultation victims; and (v) a proposed process for validation and verification of countries reaching zero human deaths from rabies. on Rabies The meeting supported the recommendations endorsed by the WHO Strategic Advisory Group of Experts on Immunization in October 2017 to improve access to affordable rabies biologicals, especially for underserved populations, and increase programmatic feasibility in line with the objectives of universal Third report health coverage. The collaborative mechanisms required to prevent rabies are a model for collaboration on One Health at every level and among WHO multiple stakeholders and are a recipe for success. -
Rabies Information for Dog Owners
Rabies Information for Dog Owners Key Facts Disease in dogs: • During initial days of illness, signs can be nonspecific, such as fever, anxiety and consumption of foreign items (e.g. blankets) • Progresses to more severe signs, such as: • Behavioral change (e.g. aggression, excitability) • Incoordination, loss of balance, disorientation, weakness • Hypersalivation • Seizures • Death results within 10 days of first signs of illness Rabies in dogs is not treatable. Vaccination is key to prevention: • Rabies vaccines are protective if given before exposure to the rabies virus. • Proof of dog vaccination is mandated by many jurisdictions and required for international travel. • Dogs not current on vaccination that are likely exposed to the rabies virus may be required to be euthanized or undergo a long and expensive quarantine. What is it? Rabies is caused by infection with the rabies virus. In North America, the most common wildlife rabies The virus lives in various species of mammals and species (termed reservoirs) vary regionally and is most commonly spread through bites from one include raccoons, skunks, foxes, coyotes, and animal to another or to a human (i.e. in an infected bats. Each year in the United States over 4,000 animal’s saliva). rabid animals are reported, including several Disease in dogs may begin with vague signs of hundred rabid dogs and cats, other domestic illness, but rapidly progresses to severe neurologic species (e.g., horses, cattle, sheep, goats) and signs (e.g. aggression, incoordination). Typically, thousands of wildlife animals. death occurs within 10 days of the first signs of illness. Where is it? The rabies virus is present in nearly all parts of the world. -
Antigenic Site Changes in the Rabies Virus Glycoprotein Dictates Functionality and Neutralizing Capability Against Divergent Lyssaviruses
Antigenic site changes in the rabies virus glycoprotein dictates functionality and neutralizing capability against divergent lyssaviruses Article (Accepted Version) Evans, J S, Selden, D, Wu, G, Wright, E, Horton, D L, Fooks, A R and Banyard, A C (2018) Antigenic site changes in the rabies virus glycoprotein dictates functionality and neutralizing capability against divergent lyssaviruses. Journal of General Virology, 99. pp. 169-180. ISSN 0022-1317 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/73061/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. -
Taxonomy of the Order Mononegavirales: Second Update 2018
Archives of Virology (2019) 164:1233–1244 https://doi.org/10.1007/s00705-018-04126-4 VIROLOGY DIVISION NEWS Taxonomy of the order Mononegavirales: second update 2018 Piet Maes1 · Gaya K. Amarasinghe2 · María A. Ayllón3,4 · Christopher F. Basler5 · Sina Bavari6 · Kim R. Blasdell7 · Thomas Briese8 · Paul A. Brown9 · Alexander Bukreyev10 · Anne Balkema‑Buschmann11 · Ursula J. Buchholz12 · Kartik Chandran13 · Ian Crozier14 · Rik L. de Swart15 · Ralf G. Dietzgen16 · Olga Dolnik17 · Leslie L. Domier18 · Jan F. Drexler19 · Ralf Dürrwald20 · William G. Dundon21 · W. Paul Duprex22 · John M. Dye6 · Andrew J. Easton23 · Anthony R. Fooks24 · Pierre B. H. Formenty25 · Ron A. M. Fouchier15 · Juliana Freitas‑Astúa26 · Elodie Ghedin27 · Anthony Grifths28 · Roger Hewson29 · Masayuki Horie30 · Julia L. Hurwitz31 · Timothy H. Hyndman32 · Dàohóng Jiāng33 · Gary P. Kobinger34 · Hideki Kondō35 · Gael Kurath36 · Ivan V. Kuzmin37 · Robert A. Lamb38,39 · Benhur Lee40 · Eric M. Leroy41 · Jiànróng Lǐ42 · Shin‑Yi L. Marzano43 · Elke Mühlberger28 · Sergey V. Netesov44 · Norbert Nowotny45,46 · Gustavo Palacios6 · Bernadett Pályi47 · Janusz T. Pawęska48 · Susan L. Payne49 · Bertus K. Rima50 · Paul Rota51 · Dennis Rubbenstroth52 · Peter Simmonds53 · Sophie J. Smither54 · Qisheng Song55 · Timothy Song27 · Kirsten Spann56 · Mark D. Stenglein57 · David M. Stone58 · Ayato Takada59 · Robert B. Tesh10 · Keizō Tomonaga60 · Noël Tordo61,62 · Jonathan S. Towner63 · Bernadette van den Hoogen15 · Nikos Vasilakis64 · Victoria Wahl65 · Peter J. Walker66 · David Wang67,68,69 · Lin‑Fa Wang70 · Anna E. Whitfeld71 · John V. Williams22 · Gōngyín Yè72 · F. Murilo Zerbini73 · Yong‑Zhen Zhang74,75 · Jens H. Kuhn76 Published online: 20 January 2019 © This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019 Abstract In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. -
Bat Rabies and Other Lyssavirus Infections
Prepared by the USGS National Wildlife Health Center Bat Rabies and Other Lyssavirus Infections Circular 1329 U.S. Department of the Interior U.S. Geological Survey Front cover photo (D.G. Constantine) A Townsend’s big-eared bat. Bat Rabies and Other Lyssavirus Infections By Denny G. Constantine Edited by David S. Blehert Circular 1329 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2009 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Constantine, D.G., 2009, Bat rabies and other lyssavirus infections: Reston, Va., U.S. Geological Survey Circular 1329, 68 p. Library of Congress Cataloging-in-Publication Data Constantine, Denny G., 1925– Bat rabies and other lyssavirus infections / by Denny G. Constantine. p. cm. - - (Geological circular ; 1329) ISBN 978–1–4113–2259–2 1. -
Rabies Information Sheet
Rabies Information Sheet Compiled from Washington State Deaprtment of Health website Rabies Q&A: What is rabies? Rabies is a severe viral disease that affects the central nervous system. It is almost always fatal. All warm-blooded mammals including humans are susceptible to rabies. What mammals carry rabies? Bats are the only rabies reservoir in the Pacific Northwest. In Washington, rabies has not been found in raccoons, skunks, foxes or coyotes. These species may carry the virus in other regions of the United States. In developing countries, dogs are the principal rabies reservoir. How common is human rabies and what is the source of the rabies virus? Human rabies is an extremely rare disease. Since 1990, the number of reported cases in the United States has ranged from 1 to 6 cases annually. Almost all human rabies cases acquired in the United States since 1980 have been due to bat rabies virus. When human rabies occurs due to exposure outside of the United States it is usually the result of the bite of a rabid dog. Has human rabies occurred in Washington state? There was one fatal case of human rabies in Washington in 1995 and one in 1997. Both were due to bat rabies virus. These cases were the first reported in the state since 1939. How is rabies spread? The rabies virus is found in the saliva of a rabid animal. It is usually spread to humans by animal bites. Rabies could potentially be spread if the virus comes into contact with mucous membranes (eye, nose, and respiratory tract), open cuts, wounds, or abraded skin. -
Current Rabies Vaccines Do Not Confer Protective Immunity Against Divergent Lyssaviruses Circulating in Europe
viruses Perspective Current Rabies Vaccines Do Not Confer Protective Immunity against Divergent Lyssaviruses Circulating in Europe Juan E. Echevarría 1,2,* , Ashley C. Banyard 3,4,5, Lorraine M. McElhinney 3 and Anthony R. Fooks 3,4,6 1 Instituto de Salud Carlos III, 28220 Madrid, Spain 2 CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain 3 Department of Virology, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK; [email protected] (A.C.B.); [email protected] (L.M.M.); [email protected] (A.R.F.) 4 Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK 5 School of Life Sciences, University of West Sussex, Falmer, West Sussex BN1 9QG, UK 6 Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK * Correspondence: [email protected]; Tel.: +34-918223676 Received: 29 August 2019; Accepted: 18 September 2019; Published: 24 September 2019 Abstract: The use of the rabies vaccine for post-exposure prophylaxis started as early as 1885, revealing a safe and efficient tool to prevent human rabies cases. Preventive vaccination is the basis for the control of canine-mediated rabies, which has already been eliminated from extensive parts of the world, including Europe. Plans to eliminate canine-mediated human rabies by 2030 have been agreed upon by international organisations. However, rabies vaccines are not efficacious against some divergent lyssaviruses. The presence in European indigenous bats of recently described lyssaviruses, which are not neutralised by antibody responses to existing vaccines, as well as the declaration of an imported case of an African lyssavirus, which also escapes vaccine-derived protection, leaves the European health authorities unable to provide efficacious protective vaccines to some potential situations of human exposure. -
Virus Taxonomy and Replication
VIRUS TAXONOMY AND REPLICATION Paulo Eduardo Brandão, PhD Department of Preventive Veterinary Medicine and Animal Health School of Veterinary Medicine University of São Paulo, Brazil I. VIRUS STRUCTURE AND COMPOSITION GENOME EITHER RNA OR DNA I. VIRUS STRUCTURE AND COMPOSITION GENOME RNA VIRUSES: NUMBER OF RNA STRANDS = 1 or 2 3.5 to 32 kb Coronaviruses SINGLE-STRANDED RNA Rabies virus Rotavirus Reovirus DOUBLE-STRANDED RNA I. VIRUS STRUCTURE AND COMPOSITION GENOME RNA VIRUSES: NUMBER OF RNA SEGMENTS = 1 TO 11 Coronaviruses Rabies virus NON-SEGMENTED RNA SEGMENTED RNA Influenzavirus Reovirus Rotavirus I. VIRUS STRUCTURE AND COMPOSITION GENOME RNA VIRUSES: RNA POLARITY Messenger RNA (mRNA) Ribosomes Genome Protein I. VIRUS STRUCTURE AND COMPOSITION GENOME RNA VIRUSES: RNA POLARITY VIRUS GENOME SERVES AS mRNA AND IS DIRECTLY TRANSLATED BY RIBOSOMES INTO VIRUS PROTEINS POSITIVE-SENSE RNA Coronaviruses Classical swine fever Foot-and-mouth disease virus A mRNA MUST BE SINTHESIZED AND NEGATIVE-SENSE RNA ONLY THEN TRANSLATED BY RIBOSOMES Rabies virus Influenzaviruses Canine distemper virus I. VIRUS STRUCTURE AND COMPOSITION GENOME RETROVIRUSES: QUITE DIFFERENT! Reverse transcriptase INTEGRATION RNA GENOME COMPLEMENTARY DNA TO HOST CELL DNA I. VIRUS STRUCTURE AND COMPOSITION GENOME DNA STRANDS AND POLARITY (1.8 thousand to 2.8 million base pairs) DOUBLE-STRANDED: MOST DNA VIRUSES SINGLE-STRANDED (NEGATIVE SENSE OR POSITIVE SENSE): e.g. PARVOVIRUS In this case, a dsDNA will be produced during infection I. VIRUS STRUCTURE AND COMPOSITION GENOME DNA MORPHOLOGY LINEAR: MOST DNA VIRUSES CIRCULAR: CIRCOVIRUS I. VIRUS STRUCTURE AND COMPOSITION GENOME The Baltmore classification of viruses based on genome type I. VIRUS STRUCTURE AND COMPOSITION CAPSID THE CAPSID IS THE GENOME PROTEIN COAT Icosahedral simetry Mateu MG 2013 Helical simetry T=triangulation number: number of pentagons and hexagons in the icosahedron I. -
Complete Sections As Applicable
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2015.006aM officers) Short title: Implementation of taxon-wide non-Latinized binomial species names in the family Rhabdoviridae (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 10 are required) 6 7 8 9 10 Author(s): ICTV Rhabdoviridae Study Group: Walker, Peter Chair Australia [email protected] Blasdell, Kim Member Australia [email protected] Calisher, Charlie H. Member USA [email protected] Dietzgen, Ralf G. Member Australia [email protected] Kondo, Hideki Member Japan [email protected] Kurath, Gael Member USA [email protected] Longdon, Ben Member UK [email protected] Stone, David Member UK [email protected] Tesh, Robert B. Member USA [email protected] Tordo, Noël Member France [email protected] Vasilakis, Nikos Member USA [email protected] Whitfield, Anna Member USA [email protected] and Kuhn, Jens H., [email protected] Corresponding author with e-mail address: Walker, Peter (ICTV Rhabdoviridae Study Group Chair), [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . -
Arenaviridae Astroviridae Filoviridae Flaviviridae Hantaviridae
Hantaviridae 0.7 Filoviridae 0.6 Picornaviridae 0.3 Wenling red spikefish hantavirus Rhinovirus C Ahab virus * Possum enterovirus * Aronnax virus * * Wenling minipizza batfish hantavirus Wenling filefish filovirus Norway rat hunnivirus * Wenling yellow goosefish hantavirus Starbuck virus * * Porcine teschovirus European mole nova virus Human Marburg marburgvirus Mosavirus Asturias virus * * * Tortoise picornavirus Egyptian fruit bat Marburg marburgvirus Banded bullfrog picornavirus * Spanish mole uluguru virus Human Sudan ebolavirus * Black spectacled toad picornavirus * Kilimanjaro virus * * * Crab-eating macaque reston ebolavirus Equine rhinitis A virus Imjin virus * Foot and mouth disease virus Dode virus * Angolan free-tailed bat bombali ebolavirus * * Human cosavirus E Seoul orthohantavirus Little free-tailed bat bombali ebolavirus * African bat icavirus A Tigray hantavirus Human Zaire ebolavirus * Saffold virus * Human choclo virus *Little collared fruit bat ebolavirus Peleg virus * Eastern red scorpionfish picornavirus * Reed vole hantavirus Human bundibugyo ebolavirus * * Isla vista hantavirus * Seal picornavirus Human Tai forest ebolavirus Chicken orivirus Paramyxoviridae 0.4 * Duck picornavirus Hepadnaviridae 0.4 Bildad virus Ned virus Tiger rockfish hepatitis B virus Western African lungfish picornavirus * Pacific spadenose shark paramyxovirus * European eel hepatitis B virus Bluegill picornavirus Nemo virus * Carp picornavirus * African cichlid hepatitis B virus Triplecross lizardfish paramyxovirus * * Fathead minnow picornavirus -
Rabies Surveillance in California Annual Report 2015
Rabies Surveillance in California Annual Report 2015 Veterinary Public Health Section Infectious Diseases Branch Division of Communicable Disease Control Center for Infectious Diseases California Department of Public Health October 2016 Rabies Surveillance in California, 2015 Introduction Rabies is a severe zoonotic encephalitis caused by a Rhabdovirus in the genus Lyssavirus. Following a variable incubation period that can range from one week to several years, early clinical signs and symptoms of rabies--including headache, fever, chills, cough or sore throat, anorexia, nausea, vomiting, and malaise--are non-specific and easily mistaken for more common conditions. Disease progresses rapidly (within 1-2 weeks) to central and peripheral neurologic manifestations including altered mental status (e.g., hyperactivity and agitation), irritation at the site where the virus was introduced, hydrophobia, excessive salivation, and difficulty swallowing due to laryngeal spasms. Ultimately, autonomic instability, coma, and death occur, due mainly to cardiac or respiratory failure. No treatment protocol has proven consistently effective for clinical rabies and reports of patients surviving are exceedingly rare. If a person is exposed to the virus, prompt post-exposure prophylaxis (PEP) by administration of rabies immune globulin and vaccine can prevent progression to clinical rabies. Variants of rabies virus are maintained in certain mammalian species, but all rabies viruses are capable of infecting any mammal, including humans. In California, bat variant rabies viruses exist throughout the state, while the California skunk variant is found mostly north of the Tehachapi mountain range. Domestic animals (dogs, cats, and livestock) can be infected with these rabies variants through contact with rabid wildlife; but the rarity of domestic animal rabies in California limits the potential for the virus to evolve and sustain transmission in these species. -
Systematic Review of Important Viral Diseases in Africa in Light of the ‘One Health’ Concept
pathogens Article Systematic Review of Important Viral Diseases in Africa in Light of the ‘One Health’ Concept Ravendra P. Chauhan 1 , Zelalem G. Dessie 2,3 , Ayman Noreddin 4,5 and Mohamed E. El Zowalaty 4,6,7,* 1 School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; [email protected] 2 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4001, South Africa; [email protected] 3 Department of Statistics, College of Science, Bahir Dar University, Bahir Dar 6000, Ethiopia 4 Infectious Diseases and Anti-Infective Therapy Research Group, Sharjah Medical Research Institute and College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; [email protected] 5 Department of Medicine, School of Medicine, University of California, Irvine, CA 92868, USA 6 Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, SE 75185 Uppsala, Sweden 7 Division of Virology, Department of Infectious Diseases and St. Jude Center of Excellence for Influenza Research and Surveillance (CEIRS), St Jude Children Research Hospital, Memphis, TN 38105, USA * Correspondence: [email protected] Received: 17 February 2020; Accepted: 7 April 2020; Published: 20 April 2020 Abstract: Emerging and re-emerging viral diseases are of great public health concern. The recent emergence of Severe Acute Respiratory Syndrome (SARS) related coronavirus (SARS-CoV-2) in December 2019 in China, which causes COVID-19 disease in humans, and its current spread to several countries, leading to the first pandemic in history to be caused by a coronavirus, highlights the significance of zoonotic viral diseases.