BEU Alm.Del - Bilag 355 Offentligt
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Towards the Improved Accuracy of Hepatitis E Diagnosis In
healthcare Review Towards the Improved Accuracy of Hepatitis E Diagnosis in Vulnerable and Target Groups: A Global Perspective on the Current State of Knowledge and the Implications for Practice Jasminka Talapko 1 , Tomislav Meštrovi´c 2,3, Emina Pustijanac 4 and Ivana Škrlec 1,* 1 Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; [email protected] 2 University Centre Varaždin, University North, HR-42000 Varaždin, Croatia; [email protected] 3 Clinical Microbiology and Parasitology Unit, Dr. Zora Profozi´cPolyclinic, HR-10000 Zagreb, Croatia 4 Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia; [email protected] * Correspondence: [email protected] Abstract: The hepatitis E virus (HEV) is a positive single-stranded, icosahedral, quasi-enveloped RNA virus in the genus Orthohepevirus of the family Hepeviridae. Orthohepevirus A is the most numerous species of the genus Orthohepevirus and consists of eight different HEV genotypes that can cause infection in humans. HEV is a pathogen transmitted via the fecal–oral route, most commonly by consuming fecally contaminated water. A particular danger is the HEV-1 genotype, which poses a very high risk of vertical transmission from the mother to the fetus. Several outbreaks caused by this genotype have been reported, resulting in many premature births, abortions, and also neonatal Citation: Talapko, J.; Meštrovi´c,T.; and maternal deaths. Genotype 3 is more prevalent in Europe; however, due to the openness of Pustijanac, E.; Škrlec, I. Towards the the market, i.e., trade-in animals which represent a natural reservoir of HEV (such as pigs), there is Improved Accuracy of Hepatitis E a possibility of spreading HEV infections outside endemic areas. -
WHO Expert Consultation on Rabies WHO Technical Report Series N
Since the launch of the Global framework to eliminate human 1012 rabies transmitted by dogs by 2030 in 2015, WHO has worked WHO Technical Report Series with the Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health, the Global 1012 Alliance for Rabies Control and other stakeholders and partners WHO to prepare a global strategic plan. This includes a country-centric approach to support, empower and catalyse national entities to Expert on Rabies Consultation control and eliminate rabies. In this context, WHO convened its network of collaborating centres on rabies, specialized institutions, members of the WHO Expert Advisory Panel on Rabies, rabies experts and partners to review strategic and technical guidance on rabies to support implementation of country and regional programmes. This report provides updated guidance based on evidence and programmatic experience on the multiple facets of rabies prevention, control and elimination. Key updates include: (i) surveillance strategies, including cross-sectoral linking of systems and suitable diagnostics; (ii) the latest recommendations on human and animal immunization; (iii) palliative care in low- resource settings; (iv) risk assessment to guide management of bite WHO Expert Consultation victims; and (v) a proposed process for validation and verification of countries reaching zero human deaths from rabies. on Rabies The meeting supported the recommendations endorsed by the WHO Strategic Advisory Group of Experts on Immunization in October 2017 to improve access to affordable rabies biologicals, especially for underserved populations, and increase programmatic feasibility in line with the objectives of universal Third report health coverage. The collaborative mechanisms required to prevent rabies are a model for collaboration on One Health at every level and among WHO multiple stakeholders and are a recipe for success. -
Characterizing and Evaluating the Zoonotic Potential of Novel Viruses Discovered in Vampire Bats
viruses Article Characterizing and Evaluating the Zoonotic Potential of Novel Viruses Discovered in Vampire Bats Laura M. Bergner 1,2,* , Nardus Mollentze 1,2 , Richard J. Orton 2 , Carlos Tello 3,4, Alice Broos 2, Roman Biek 1 and Daniel G. Streicker 1,2 1 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; [email protected] (N.M.); [email protected] (R.B.); [email protected] (D.G.S.) 2 MRC–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; [email protected] (R.J.O.); [email protected] (A.B.) 3 Association for the Conservation and Development of Natural Resources, Lima 15037, Peru; [email protected] 4 Yunkawasi, Lima 15049, Peru * Correspondence: [email protected] Abstract: The contemporary surge in metagenomic sequencing has transformed knowledge of viral diversity in wildlife. However, evaluating which newly discovered viruses pose sufficient risk of infecting humans to merit detailed laboratory characterization and surveillance remains largely speculative. Machine learning algorithms have been developed to address this imbalance by ranking the relative likelihood of human infection based on viral genome sequences, but are not yet routinely Citation: Bergner, L.M.; Mollentze, applied to viruses at the time of their discovery. Here, we characterized viral genomes detected N.; Orton, R.J.; Tello, C.; Broos, A.; through metagenomic sequencing of feces and saliva from common vampire bats (Desmodus rotundus) Biek, R.; Streicker, D.G. and used these data as a case study in evaluating zoonotic potential using molecular sequencing Characterizing and Evaluating the data. -
HEPATITIS E VIRCLIA® Igm MONOTEST
EN 1 N KIT FEATURES: HEPATITIS E VIRCLIA® IgM All reagents supplied are ready to use. Serum dilution solution and conjugate are coloured to help in MONOTEST the performance of the technique. For in vitro diagnostic use Sample predilution is not necessary. Reagents required for the run of the test are included in the VCM067: Indirect chemiluminescent immunoassay (CLIA) to monodose presentation. test IgM antibodies against hepatitis E virus in human serum/plasma. 24 tests. KIT CONTENTS: 1 VIRCLIA® HEPATITIS E IgM MONODOSE: 24 monodoses consisting of 3 reaction wells and 5 reagent wells with de INTRODUCTION: following composition : Hepatitis E virus (HEV) is the causative agent of hepatitis E. HEV Wells A, B, C: reaction wells; wells coated with anti-IgM belongs to the family Hepeviridae. Four out of seven genotypes antibodies (µ-specific). of Orthohepevirus A are known to infect humans. Genotypes 1 Well D: Conjugate: orange; containing HEV recombinant and 2 are responsible for human infections exclusively and are antigen, peroxidase conjugate dilution and Neolone and endemic in Asia, Africa and some American countries. Bronidox as preservatives. Genotypes 3 and 4 are zoonotic and present in Europe, United Well E: Serum dilution solution: blue; phosphate buffer States, Japan, China and Taiwan. HEV is transmitted via the fecal-oral route. Foodborne infection can occur from containing protein stabilizers and Neolone and Bronidox as consumption of uncooked/undercooked meat or organs from preservatives. infected animals. A wide range of clinical manifestations, from Well F: Calibrator: clear; positiveONLY serum dilution containing asymptomatic or subclinical to acute liver failure, can be Neolone and Bronidox as preservatives. -
Antigenic Site Changes in the Rabies Virus Glycoprotein Dictates Functionality and Neutralizing Capability Against Divergent Lyssaviruses
Antigenic site changes in the rabies virus glycoprotein dictates functionality and neutralizing capability against divergent lyssaviruses Article (Accepted Version) Evans, J S, Selden, D, Wu, G, Wright, E, Horton, D L, Fooks, A R and Banyard, A C (2018) Antigenic site changes in the rabies virus glycoprotein dictates functionality and neutralizing capability against divergent lyssaviruses. Journal of General Virology, 99. pp. 169-180. ISSN 0022-1317 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/73061/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. -
Taxonomy of the Order Mononegavirales: Second Update 2018
Archives of Virology (2019) 164:1233–1244 https://doi.org/10.1007/s00705-018-04126-4 VIROLOGY DIVISION NEWS Taxonomy of the order Mononegavirales: second update 2018 Piet Maes1 · Gaya K. Amarasinghe2 · María A. Ayllón3,4 · Christopher F. Basler5 · Sina Bavari6 · Kim R. Blasdell7 · Thomas Briese8 · Paul A. Brown9 · Alexander Bukreyev10 · Anne Balkema‑Buschmann11 · Ursula J. Buchholz12 · Kartik Chandran13 · Ian Crozier14 · Rik L. de Swart15 · Ralf G. Dietzgen16 · Olga Dolnik17 · Leslie L. Domier18 · Jan F. Drexler19 · Ralf Dürrwald20 · William G. Dundon21 · W. Paul Duprex22 · John M. Dye6 · Andrew J. Easton23 · Anthony R. Fooks24 · Pierre B. H. Formenty25 · Ron A. M. Fouchier15 · Juliana Freitas‑Astúa26 · Elodie Ghedin27 · Anthony Grifths28 · Roger Hewson29 · Masayuki Horie30 · Julia L. Hurwitz31 · Timothy H. Hyndman32 · Dàohóng Jiāng33 · Gary P. Kobinger34 · Hideki Kondō35 · Gael Kurath36 · Ivan V. Kuzmin37 · Robert A. Lamb38,39 · Benhur Lee40 · Eric M. Leroy41 · Jiànróng Lǐ42 · Shin‑Yi L. Marzano43 · Elke Mühlberger28 · Sergey V. Netesov44 · Norbert Nowotny45,46 · Gustavo Palacios6 · Bernadett Pályi47 · Janusz T. Pawęska48 · Susan L. Payne49 · Bertus K. Rima50 · Paul Rota51 · Dennis Rubbenstroth52 · Peter Simmonds53 · Sophie J. Smither54 · Qisheng Song55 · Timothy Song27 · Kirsten Spann56 · Mark D. Stenglein57 · David M. Stone58 · Ayato Takada59 · Robert B. Tesh10 · Keizō Tomonaga60 · Noël Tordo61,62 · Jonathan S. Towner63 · Bernadette van den Hoogen15 · Nikos Vasilakis64 · Victoria Wahl65 · Peter J. Walker66 · David Wang67,68,69 · Lin‑Fa Wang70 · Anna E. Whitfeld71 · John V. Williams22 · Gōngyín Yè72 · F. Murilo Zerbini73 · Yong‑Zhen Zhang74,75 · Jens H. Kuhn76 Published online: 20 January 2019 © This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019 Abstract In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. -
Taxonomy of the Order Bunyavirales: Update 2019
Archives of Virology (2019) 164:1949–1965 https://doi.org/10.1007/s00705-019-04253-6 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: update 2019 Abulikemu Abudurexiti1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Tatjana Avšič‑Županc5 · Matthew J. Ballinger6 · Dennis A. Bente7 · Martin Beer8 · Éric Bergeron9 · Carol D. Blair10 · Thomas Briese11 · Michael J. Buchmeier12 · Felicity J. Burt13 · Charles H. Calisher10 · Chénchén Cháng14 · Rémi N. Charrel15 · Il Ryong Choi16 · J. Christopher S. Clegg17 · Juan Carlos de la Torre18 · Xavier de Lamballerie15 · Fēi Dèng19 · Francesco Di Serio20 · Michele Digiaro21 · Michael A. Drebot22 · Xiaˇoméi Duàn14 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst7 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28 · Stephan Günther29 · Anne‑Lise Haenni30 · Roy A. Hall31 · Jussi Hepojoki32,33 · Roger Hewson34 · Zhìhóng Hú19 · Holly R. Hughes35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa39 · Jonas Klingström40 · Chūn Kòu14 · Lies Laenen41,42 · Amy J. Lambert35 · Stanley A. Langevin43 · Dan Liu44 · Igor S. Lukashevich45 · Tāo Luò1 · Chuánwèi Lüˇ 19 · Piet Maes41 · William Marciel de Souza46 · Marco Marklewitz37,38 · Giovanni P. Martelli47 · Keita Matsuno48,49 · Nicole Mielke‑Ehret50 · Maria Minutolo3 · Ali Mirazimi51 · Abulimiti Moming14 · Hans‑Peter Mühlbach50 · Rayapati Naidu52 · Beatriz Navarro20 · Márcio Roberto Teixeira Nunes53 · Gustavo Palacios25 · Anna Papa54 · Alex Pauvolid‑Corrêa55 · Janusz T. Pawęska56,57 · Jié Qiáo19 · Sheli R. Radoshitzky25 · Renato O. Resende58 · Víctor Romanowski59 · Amadou Alpha Sall60 · Maria S. Salvato61 · Takahide Sasaya62 · Shū Shěn19 · Xiǎohóng Shí63 · Yukio Shirako64 · Peter Simmonds65 · Manuela Sironi66 · Jin‑Won Song67 · Jessica R. Spengler9 · Mark D. Stenglein68 · Zhèngyuán Sū19 · Sùróng Sūn14 · Shuāng Táng19 · Massimo Turina69 · Bó Wáng19 · Chéng Wáng1 · Huálín Wáng19 · Jūn Wáng19 · Tàiyún Wèi70 · Anna E. -
Taxonomy of the Order Bunyavirales: Second Update 2018
Archives of Virology (2019) 164:927–941 https://doi.org/10.1007/s00705-018-04127-3 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: second update 2018 Piet Maes1 · Scott Adkins2 · Sergey V. Alkhovsky3 · Tatjana Avšič‑Županc4 · Matthew J. Ballinger5 · Dennis A. Bente6 · Martin Beer7 · Éric Bergeron8 · Carol D. Blair9 · Thomas Briese10 · Michael J. Buchmeier11 · Felicity J. Burt12,13 · Charles H. Calisher9 · Rémi N. Charrel14 · Il Ryong Choi15 · J. Christopher S. Clegg16 · Juan Carlos de la Torre17 · Xavier de Lamballerie14 · Joseph L. DeRisi18,19,20 · Michele Digiaro21 · Mike Drebot22 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst6 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28,29 · Stephan Günther30 · Anne‑Lise Haenni31 · Roy A. Hall32 · Roger Hewson33 · Holly R. Hughes34 · Rakesh K. Jain35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa37,39 · Jonas Klingström40 · Richard Kormelink41 · Amy J. Lambert34 · Stanley A. Langevin42 · Igor S. Lukashevich43 · Marco Marklewitz37,38 · Giovanni P. Martelli44 · Nicole Mielke‑Ehret45 · Ali Mirazimi46 · Hans‑Peter Mühlbach45 · Rayapati Naidu47 · Márcio Roberto Teixeira Nunes48 · Gustavo Palacios25 · Anna Papa49 · Janusz T. Pawęska50,51 · Clarence J. Peters6 · Alexander Plyusnin52 · Sheli R. Radoshitzky25 · Renato O. Resende53 · Víctor Romanowski54 · Amadou Alpha Sall55 · Maria S. Salvato56 · Takahide Sasaya57 · Connie Schmaljohn25 · Xiǎohóng Shí58 · Yukio Shirako59 · Peter Simmonds60 · Manuela Sironi61 · -
Taxonomy of the Family Arenaviridae and the Order Bunyavirales: Update 2018
Archives of Virology https://doi.org/10.1007/s00705-018-3843-5 VIROLOGY DIVISION NEWS Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018 Piet Maes1 · Sergey V. Alkhovsky2 · Yīmíng Bào3 · Martin Beer4 · Monica Birkhead5 · Thomas Briese6 · Michael J. Buchmeier7 · Charles H. Calisher8 · Rémi N. Charrel9 · Il Ryong Choi10 · Christopher S. Clegg11 · Juan Carlos de la Torre12 · Eric Delwart13,14 · Joseph L. DeRisi15 · Patrick L. Di Bello16 · Francesco Di Serio17 · Michele Digiaro18 · Valerian V. Dolja19 · Christian Drosten20,21,22 · Tobiasz Z. Druciarek16 · Jiang Du23 · Hideki Ebihara24 · Toufc Elbeaino18 · Rose C. Gergerich16 · Amethyst N. Gillis25 · Jean‑Paul J. Gonzalez26 · Anne‑Lise Haenni27 · Jussi Hepojoki28,29 · Udo Hetzel29,30 · Thiện Hồ16 · Ní Hóng31 · Rakesh K. Jain32 · Petrus Jansen van Vuren5,33 · Qi Jin34,35 · Miranda Gilda Jonson36 · Sandra Junglen20,22 · Karen E. Keller37 · Alan Kemp5 · Anja Kipar29,30 · Nikola O. Kondov13 · Eugene V. Koonin38 · Richard Kormelink39 · Yegor Korzyukov28 · Mart Krupovic40 · Amy J. Lambert41 · Alma G. Laney42 · Matthew LeBreton43 · Igor S. Lukashevich44 · Marco Marklewitz20,22 · Wanda Markotter5,33 · Giovanni P. Martelli45 · Robert R. Martin37 · Nicole Mielke‑Ehret46 · Hans‑Peter Mühlbach46 · Beatriz Navarro17 · Terry Fei Fan Ng14 · Márcio Roberto Teixeira Nunes47,48 · Gustavo Palacios49 · Janusz T. Pawęska5,33 · Clarence J. Peters50 · Alexander Plyusnin28 · Sheli R. Radoshitzky49 · Víctor Romanowski51 · Pertteli Salmenperä28,52 · Maria S. Salvato53 · Hélène Sanfaçon54 · Takahide Sasaya55 · Connie Schmaljohn49 · Bradley S. Schneider25 · Yukio Shirako56 · Stuart Siddell57 · Tarja A. Sironen28 · Mark D. Stenglein58 · Nadia Storm5 · Harikishan Sudini59 · Robert B. Tesh48 · Ioannis E. Tzanetakis16 · Mangala Uppala59 · Olli Vapalahti28,30,60 · Nikos Vasilakis48 · Peter J. Walker61 · Guópíng Wáng31 · Lìpíng Wáng31 · Yànxiăng Wáng31 · Tàiyún Wèi62 · Michael R. -
Current Rabies Vaccines Do Not Confer Protective Immunity Against Divergent Lyssaviruses Circulating in Europe
viruses Perspective Current Rabies Vaccines Do Not Confer Protective Immunity against Divergent Lyssaviruses Circulating in Europe Juan E. Echevarría 1,2,* , Ashley C. Banyard 3,4,5, Lorraine M. McElhinney 3 and Anthony R. Fooks 3,4,6 1 Instituto de Salud Carlos III, 28220 Madrid, Spain 2 CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain 3 Department of Virology, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK; [email protected] (A.C.B.); [email protected] (L.M.M.); [email protected] (A.R.F.) 4 Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK 5 School of Life Sciences, University of West Sussex, Falmer, West Sussex BN1 9QG, UK 6 Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK * Correspondence: [email protected]; Tel.: +34-918223676 Received: 29 August 2019; Accepted: 18 September 2019; Published: 24 September 2019 Abstract: The use of the rabies vaccine for post-exposure prophylaxis started as early as 1885, revealing a safe and efficient tool to prevent human rabies cases. Preventive vaccination is the basis for the control of canine-mediated rabies, which has already been eliminated from extensive parts of the world, including Europe. Plans to eliminate canine-mediated human rabies by 2030 have been agreed upon by international organisations. However, rabies vaccines are not efficacious against some divergent lyssaviruses. The presence in European indigenous bats of recently described lyssaviruses, which are not neutralised by antibody responses to existing vaccines, as well as the declaration of an imported case of an African lyssavirus, which also escapes vaccine-derived protection, leaves the European health authorities unable to provide efficacious protective vaccines to some potential situations of human exposure. -
Genomic Diversity and Spatiotemporal Distributions of Lassa Virus Outbreaks in Nigeria
Genomic Diversity and Spatiotemporal Distributions of Lassa Virus Outbreaks in Nigeria Abdulwahid Abaukaka Yahaya Tehran University of Medical Sciences Yazdan Asgari ( [email protected] ) Tehran University of Medical Sciences https://orcid.org/0000-0001-6993-6956 Research article Keywords: Genomic, Lassa Virus, Phylogeography, Spatiotemporal and Nigeria Posted Date: October 28th, 2019 DOI: https://doi.org/10.21203/rs.2.16266/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Abstract Background Lassa virus (LASV) is a single-negative strand RNA Arenavirus (genus Mammarenavirus), oriented in both negative and positive senses. Due to the increase in the fatality rate of deadly disease LASV caused (Lassa fever), widespread LASV in Nigeria has been a subject of interest. Following the upsurge of LASV endemicity in 2012, another marked incidence recorded in Nigeria, 2018, with 394 conrmed cases in 19 states, and an estimated 25% cases led to death. This study aimed at acquiring the genetic variation of LASV ancestral evolution with the evolvement of new strains in different lineage and its geographical distributions within a specic time of outbreaks through Bayesian inference, using genomic sequence across affected states in Nigeria. Results From the result, we were able to establish the relationship of Lassa mamarenavirus and other arenaviruses by classifying them into distinct monophyletic groups, i.e., the old world arenaviruses, new world arenaviruses, and Reptarenaviruses. Corresponding promoter sites for genetic expression of the viral genome were analyzed based on Transcription Starting Site (TSS), the S_Segment (MK291249.1) is about 2917–2947 bp and L_Segment (MH157036.1), is about1863–1894 bp long. -
Taxonomy of the Order Bunyavirales: Second Update 2018
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Arch Virol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 March 01. Published in final edited form as: Arch Virol. 2019 March ; 164(3): 927–941. doi:10.1007/s00705-018-04127-3. TAXONOMY OF THE ORDER BUNYAVIRALES: SECOND UPDATE 2018 A full list of authors and affiliations appears at the end of the article. Abstract In October 2018, the order Bunyavirales was amended by inclusion of the family Arenaviridae, abolishment of three families, creation of three new families, 19 new genera, and 14 new species, and renaming of three genera and 22 species. This article presents the updated taxonomy of the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV). Keywords Arenaviridae; arenavirid; arenavirus; bunyavirad; Bunyavirales; bunyavirid; Bunyaviridae; bunyavirus; emaravirus; Feraviridae; feravirid, feravirus; fimovirid; Fimoviridae; fimovirus; goukovirus; hantavirid; Hantaviridae; hantavirus; hartmanivirus; herbevirus; ICTV; International Committee on Taxonomy of Viruses; jonvirid; Jonviridae; jonvirus; mammarenavirus; nairovirid; Nairoviridae; nairovirus; orthobunyavirus; orthoferavirus; orthohantavirus; orthojonvirus; orthonairovirus; orthophasmavirus; orthotospovirus; peribunyavirid; Peribunyaviridae; peribunyavirus; phasmavirid; phasivirus; Phasmaviridae; phasmavirus; phenuivirid; Phenuiviridae; phenuivirus; phlebovirus; reptarenavirus; tenuivirus; tospovirid; Tospoviridae; tospovirus; virus classification; virus nomenclature; virus taxonomy INTRODUCTION The virus order Bunyavirales was established in 2017 to accommodate related viruses with segmented, linear, single-stranded, negative-sense or ambisense RNA genomes classified into 9 families [2]. Here we present the changes that were proposed via an official ICTV taxonomic proposal (TaxoProp 2017.012M.A.v1.Bunyavirales_rev) at http:// www.ictvonline.org/ in 2017 and were accepted by the ICTV Executive Committee (EC) in [email protected].