life Review Flavivirus: From Structure to Therapeutics Development Rong Zhao 1,2,†, Meiyue Wang 1,2,†, Jing Cao 1,2, Jing Shen 1,2, Xin Zhou 3, Deping Wang 1,2,* and Jimin Cao 1,2,* 1 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China;
[email protected] (R.Z.);
[email protected] (M.W.);
[email protected] (J.C.);
[email protected] (J.S.) 2 Department of Physiology, Shanxi Medical University, Taiyuan 030001, China 3 Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
[email protected] * Correspondence:
[email protected] (D.W.);
[email protected] (J.C.) † These authors contributed equally to this work. Abstract: Flaviviruses are still a hidden threat to global human safety, as we are reminded by recent reports of dengue virus infections in Singapore and African-lineage-like Zika virus infections in Brazil. Therapeutic drugs or vaccines for flavivirus infections are in urgent need but are not well developed. The Flaviviridae family comprises a large group of enveloped viruses with a single-strand RNA genome of positive polarity. The genome of flavivirus encodes ten proteins, and each of them plays a different and important role in viral infection. In this review, we briefly summarized the major information of flavivirus and further introduced some strategies for the design and development of vaccines and anti-flavivirus compound drugs based on the structure of the viral proteins. There is no doubt that in the past few years, studies of antiviral drugs have achieved solid progress based on better understanding of the flavivirus biology.