Urs Eggli . Leonard E. Newton Etymological Dictionary of Succulent Plant Names Springer-Verlag Berlin Heidelberg Gmbh Urs Eggli

Total Page:16

File Type:pdf, Size:1020Kb

Urs Eggli . Leonard E. Newton Etymological Dictionary of Succulent Plant Names Springer-Verlag Berlin Heidelberg Gmbh Urs Eggli Urs Eggli . Leonard E. Newton Etymological Dictionary of Succulent Plant Names Springer-Verlag Berlin Heidelberg GmbH Urs Eggli . Leonard E. Newton Etymological Dictionary of Succulent Plant Names , Springer Dr. Urs Eggli Sukkulenten-Sammlung Zürich Mythenquai 88 8002 Zürich Switzerland e-mail: [email protected] Professor Dr. Leonard E. Newton Department of Botany Kenyatta University P.G. Box 43844 Nairobi 00100 Kenya e-mail: [email protected] ISBN 978-3-642-05597-3 ISBN 978-3-662-07125-0 (eBook) DOI 10.1007/978-3-662-07125-0 Cataloging-in-Publication Data applied for Bibliographie information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie. detailed bibliographie data are available in the Internet at <http:/dnb.ddb.de> This work is subject to copyright. All rights reserved , whether the whole or part of the material is concerned, specifically the right s of translation, reprinting, reuse of illustrations, recitat ion, broadcasting, reproduction on microfilm or in any other way,and storage in data banks . Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its CUTTent version, and per­ mission for use must always be obtained from Springer-Verlag .Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 2004 Originally published by Springer-Verlag Berlin Heidelberg New Yorkin 2004. Softcover reprint of the hardcover Ist edition 2004 The use of general descriptive names, registered names, trademarks, ete. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design : design & production GmbH , 69121 Heidelberg, Germany Typesetting: Ready for printing by Urs Eggli; GNU groff (version 1.17.2) on Linux 3113150-WI- 5 4 3 2 1 0 - Printed on acid-free paper Contents Preface VII Abbreviations IX Introduction XI References XVII Dictionary Preface Names are important elements to handle the diversity of items in daily life - persons, object s, animal s, plants , etc. Without such names, it would be difficult to attach information to such items and to communicate information about them, and names are usually used without giving them much thought. This is not different for plants. When dealing with plants, however, it soon becomes apparent that the situation is somewhat more complex. Botanists use Latin names to bring order into the vast diversity, while everyday usage resorts to vemacular or "popular" names. As practical as these vernacular names are (it is not suggested that you should ask your greengrocer for a kilo­ gram of Solanum tuberosum or Musa paradisiaca subsp. sapientum ), their most important draw­ back is the fact that they vary widely, not only from one language to another but also from coun­ try to country, even from region to region within a large country. More importantly, vemacular names in any given language are usually only available for the plants growing locally, or for plants of some special importance, such as crops and vegetables, medicinal plants, or important garden plants. For all other plants, the Latin names used by botanists and other scientists have to be employed. Such names often appear complicated or even awkward to the ears of those not accustomed to them. Names are best memorized when their meaning is apparent, but the ever dimini shing gen­ eral knowledge of the classical languages (and here especially Latin) makes the information on the meaning of these scientific names more and more inaccessible. This is the point where the present "Etymological Dictionary" tries to fill a gap. We have tried to give a complete alphabeti­ cal list, together with concise explanations, of all the currently accepted names of succulent plants (including cacti). This task was greatly facilitated by the publication of the recently completed series "Illustrated Handbook of Succulent Plants" (Eggli & Hartmann, 2001-2003), and explanations of the ety­ mologie s of all names used in those volumes were originally part of the planned layout. For vari­ ous reasons, etymological explanations were finally included only for the genus names, but sev­ eral authors of the "Handbook" series had already supplied etymological explanation s for the names of species in the group s they contributed. It was therefore an easy decision to continue this work, expand it to cover all accepted names of succulents (including cacti), and thus provide a standardised set of etymological explanations for this intriguing and highly interesting group of plants. It is our hope that the present etymological dictionary will help towards a better under­ standing of the scientific names of the plants covered - for hobby collectors, horticulturists and botanists alike. Preface VIII Acknowledgements The compilation of this etymological dictionary relied heavily on the data supplied by several authors to the "Illustrated Handbook of Succulent Plants" series. Our sincere thanks go to E Al­ bers, S. Arroyo-Leuenberger, C. C. Berg, A. Chautems, B. Descoings, S. Carter, P. Forster, G. Germishuizen, H. 't Hart (t), H.-D. Ihlenfeldt, E. van Jaarsveld, M. Kimnach, U. Meve, R. Moran, R. Nyffeler, G. D. Rowley, G. E Smith, J. Thiede, and W. J. de Wilde. Our work to com­ plete and standardise the etymological data, and especially our search for biographical informa­ tion, was greatly supported by Gordon D. Rowley and Dieter J. Supthut. Others who supplied much valuable information are M. B. Bayer, V. Gapon, M. J. & R. C. Kimberley, A. B. Pullen, L. Springate, and N. P. Taylor. Numerous colleagues have supplied fur­ ther snippets of information, and we are grateful for an their help. Additional help was also pro­ vided by several authors of recently described taxa, as wen as by living persons who were hon­ oured with the name of a plant taxon. Their help is also greatly appreciated. Finally, it is the pleasant duty of one of us (U.E.) to thank the director of the Sukkulenten­ Sammlung Zürich, Dr. Thomas Bolliger, as wen as the administration of Grün Stadt Zürich, for permission to use computing infrastructure for the etymological database that was developed dur­ ing this project. A further word of sincere thanks goes to Springer Verlag, and especially to Dr. Jutta Lindenbom, who favoured the present project and thus enabled this volume to become a companion volume to the "Illustrated Handbook of Succulent Plants". Nairobi / Zürich, January 2004 Leonard E. Newton & Urs Eggli Abbreviations Arab. Arabian C Central Comp. Comparative Dept. Department Dirn. Diminutive Distr. District E East, eastern Engl. English esp . especially f. fernale fl. (floruit) flourishing, active Gen. Genitive Germ. German Gr. Greek ICBN International Code of Botanical Nomenclature IHSP Illustrated Handbook of Succulent Plants ItaI. Italian Lat. Latin m. male MLat. Medieval Latin N North, northern n. neuter NE Northeast, northeastern NW Northwest, northwestern PI. Plural Provo Province RBG Royal Botanic Gardens RSA Republic of South Africa S South, southern SE Southeast, southeastern Span. Spanish SuperI. Superlative SW Southwest, southwestern syn. synonym USA United States of America W West, western Introduction Coverage discredit the publications concerned). If the newly published taxa are interpreted as having The taxa for which etymologies are sup­ at least some standing (at the editors ' discre­ plied in this volume are those accepted in the tion), etymologies have been included in this volumes of the Illustrated Handbook of Succu­ volume. Such taxa were always accepted when lent Plants (Eggli 2001-2003, Hartmann 2001 they were published by the authority I authori­ and Albers & al. 2002). In the case of the ties who contributed the relevant Handbook cacti, the list of accepted names was derived treatment. The infraspecific taxa (esp. variet­ from The Cactus Family (Anderson 2001), ies) described as new in recent years are which in turn is primarily based on the second mostly unlikely to be of major taxonomic im­ edition of the CITES Cactaceae Checklist portance, and these are consequently ignored (Hunt 1999). The many synonyms, i.e. names for this work. that have gone out of use, are not included here. Deviation s from the sources just cited are Cactaceae: Deviations from the taxonomy relatively minor and can be described as fol­ presented by Anderson (2001) are again rela­ lows: tively few. The most obvious change is the recognition of the genera Pierrebraunia, Sul­ Illustrated Handbook of Succulent Plants corebutia and Weingartia (included in the syn­ (IHSP): With the exception of a couple of cor­ onymy of Arrojadoa and, respectively for the rection s of errors and the inclusion of a very latter two, in Rebutia). At species level, few names erroneously not covered in these changes are mostly due to research published volumes, there are no deviations. A few of the subsequently to the compilation of Anderson's etymologies for generic names in the IHSP book, and usually concern names accepted by have been slightly modified. In addition, Anderson, but which are now recognized as names of doubtful or uncertain application synonyms. This is most notably the case for were included with a short discussion and de­ Opuntia. For several of the larger genera, addi­ scription in the main body of the text in the tional infraspecific taxa have been accepted in case of the Aizoaceae, but were listed sepa­ comparison with the taxonomy by Anderson, rately and without explanation in the other again based on recent research. All these four volumes. Consequently, the doubtful changes have been made with the goal of giv­ names in Aizoac eae are included in our list, ing an even coverage of etymologies for all unless the discussion in Hartmann (2001) sug­ relevant taxa, and they reflect on-going re­ gests that they do not belong in the family, search as well as (in some cases) a continua­ whilst those listed in the other volumes are tion of current usage.
Recommended publications
  • Haseltonia Articles and Authors.Xlsx
    ABCDEFG 1 CSSA "HASELTONIA" ARTICLE TITLES #1 1993–#26 2019 AUTHOR(S) R ISSUE(S) PAGES KEY WORD 1 KEY WORD 2 2 A Cactus Database for the State of Baja California, Mexico Resendiz Ruiz, María Elena 2000 7 97-99 BajaCalifornia Database A First Record of Yucca aloifolia L. (Agavaceae/Asparagaceae) Naturalized Smith, Gideon F, Figueiredo, 3 in South Africa with Notes on its uses and Reproductive Biology Estrela & Crouch, Neil R 2012 17 87-93 Yucca Fotinos, Tonya D, Clase, Teodoro, Veloz, Alberto, Jimenez, Francisco, Griffith, M A Minimally Invasive, Automated Procedure for DNA Extraction from Patrick & Wettberg, Eric JB 4 Epidermal Peels of Succulent Cacti (Cactaceae) von 2016 22 46-47 Cacti DNA 5 A Morphological Phylogeny of the Genus Conophytum N.E.Br. (Aizoaceae) Opel, Matthew R 2005 11 53-77 Conophytum 6 A New Account of Echidnopsis Hook. F. (Asclepiadaceae: Stapeliae) Plowes, Darrel CH 1993 1 65-85 Echidnopsis 7 A New Cholla (Cactaceae) from Baja California, Mexico Rebman, Jon P 1998 6 17-21 Cylindropuntia 8 A New Combination in the genus Agave Etter, Julia & Kristen, Martin 2006 12 70 Agave A New Series of the Genus Opuntia Mill. (Opuntieae, Opuntioideae, Oakley, Luis & Kiesling, 9 Cactaceae) from Austral South America Roberto 2016 22 22-30 Opuntia McCoy, Tom & Newton, 10 A New Shrubby Species of Aloe in the Imatong Mountains, Southern Sudan Leonard E 2014 19 64-65 Aloe 11 A New Species of Aloe on the Ethiopia-Sudan Border Newton, Leonard E 2002 9 14-16 Aloe A new species of Ceropegia sect.
    [Show full text]
  • A Numerical Taxonomy of the Genus Rosularia (Dc.) Stapf from Pakistan and Kashmir
    Pak. J. Bot., 44(1): 349-354, 2012. A NUMERICAL TAXONOMY OF THE GENUS ROSULARIA (DC.) STAPF FROM PAKISTAN AND KASHMIR GHULAM RASOOL SARWAR* AND MUHAMMAD QAISER Centre for Plant Conservation, University of Karachi, Karachi-75270, Pakistan Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Karachi, Pakistan Abstract Numerical analysis of the taxa belonging to the genus Rosularia (DC.) Stapf was carried out to find out their phenetic relationship. Data from different disciplines viz. general, pollen and seed morphology, chemistry and distribution pattern were used. As a result of cluster analysis two distinct groups are formed. Out of which one group consists of R. sedoides (Decne.) H. Ohba and R. alpestris A. Boriss. while other group comprises R. adenotricha (Wall. ex Edgew.) Jansson ssp. adenotricha , R. adenotricha ssp. chitralica, G.R. Sarwar, R. rosulata (Edgew.) H. Ohba and R. viguieri (Raym.-Hamet ex Frod.) G.R. Sarwar. Distribution maps of all the taxa, along with key to the taxa are also presented. Introduction studied the genus Rosularia and indicated that the genus is polyphyletic. Mayuzumi & Ohba (2004) analyzed the Rosularia is a small genus composed of 28 species, relationships within the genus Rosularia. According to distributed in arid or semiarid regions ranging from N. different workers Rosularia is polyphyletic. Africa to C. Asia through E. Mediterranean (Mabberley, There are no reports on numerical studies of 2008). Some of the taxa of Rosularia are in general Crassulaceae except the genus Sedum from Pakistan cultivation and several have great appeal due to their (Sarwar & Qaiser, 2011). The primary aim of this study is extraordinarily regular rosettes on the leaf colouring in to analyze diagnostic value of morphological characters in various seasons.
    [Show full text]
  • Floristic and Ecological Characterization of Habitat Types on an Inselberg in Minas Gerais, Southeastern Brazil
    Acta Botanica Brasilica - 31(2): 199-211. April-June 2017. doi: 10.1590/0102-33062016abb0409 Floristic and ecological characterization of habitat types on an inselberg in Minas Gerais, southeastern Brazil Luiza F. A. de Paula1*, Nara F. O. Mota2, Pedro L. Viana2 and João R. Stehmann3 Received: November 21, 2016 Accepted: March 2, 2017 . ABSTRACT Inselbergs are granitic or gneissic rock outcrops, distributed mainly in tropical and subtropical regions. Th ey are considered terrestrial islands because of their strong spatial and ecological isolation, thus harboring a set of distinct plant communities that diff er from the surrounding matrix. In Brazil, inselbergs scattered in the Atlantic Forest contain unusually high levels of plant species richness and endemism. Th is study aimed to inventory species of vascular plants and to describe the main habitat types found on an inselberg located in the state of Minas Gerais, in southeastern Brazil. A total of 89 species of vascular plants were recorded (belonging to 37 families), of which six were new to science. Th e richest family was Bromeliaceae (10 spp.), followed by Cyperaceae (seven spp.), Orchidaceae and Poaceae (six spp. each). Life forms were distributed in diff erent proportions between habitats, which suggested distinct microenvironments on the inselberg. In general, habitats under similar environmental stress shared common species and life-form proportions. We argue that fl oristic inventories are still necessary for the development of conservation strategies and management of the unique vegetation on inselbergs in Brazil. Keywords: endemism, granitic and gneissic rock outcrops, life forms, terrestrial islands, vascular plants occurring on rock outcrops within the Atlantic Forest Introduction domain, 416 are endemic to these formations (Stehmann et al.
    [Show full text]
  • Sedum Society Newsletter(130) Pp
    Open Research Online The Open University’s repository of research publications and other research outputs Kalanchoe arborescens - a Madagascan giant Journal Item How to cite: Walker, Colin (2019). Kalanchoe arborescens - a Madagascan giant. Sedum Society Newsletter(130) pp. 81–84. For guidance on citations see FAQs. c [not recorded] https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk NUMBER 130 SEDUM SOCIETY NEWSLETTER JULY 2019 FRONT COVER Roy Mottram kindly supplied: “The Diet” copy of this Japanese herbal which is sharp and crisp (see page 97). “I counted the plates, and this copy is complete with 200 plates, in 8 parts, bound here in 2 vols. I checked for another Sedum but none are Established April 1987, now ending our present, so Maximowicz was basing his 32nd year. S. kagamontanum on this same plate, Subscriptions run from October to the following September. Anyone requesting translating the location as Mt. Kaga and to join after June, unless there is a special citing t.40 incorrectly. The "t.43" plate request, will receive his or her first number is also wrong. It is actually t.33 of Newsletter in October. If you do not the whole work, or Vol.2 t.8. The book is receive your copy by the 10th of April, July or October, or the 15th January, then bound back to front [by Western standards] please write to the editor: Ray as in all Japanese books of the day.” RM.
    [Show full text]
  • South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae)
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae) Lendel, Anita Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-93287 Dissertation Published Version Originally published at: Lendel, Anita. South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae). 2013, University of Zurich, Faculty of Science. South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae) _________________________________________________________________________________ Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr.sc.nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anita Lendel aus Kroatien Promotionskomitee: Prof. Dr. H. Peter Linder (Vorsitz) PD. Dr. Reto Nyffeler Prof. Dr. Elena Conti Zürich, 2013 Table of Contents Acknowledgments 1 Introduction 3 Chapter 1. Phylogenetics and taxonomy of the tribe Cereeae s.l., with particular focus 15 on the subtribe Trichocereinae (Cactaceae – Cactoideae) Chapter 2. Floral evolution in the South American tribe Cereeae s.l. (Cactaceae: 53 Cactoideae): Pollination syndromes in a comparative phylogenetic context Chapter 3. Contemporaneous and recent radiations of the world’s major succulent 86 plant lineages Chapter 4. Tackling the molecular dating paradox: underestimated pitfalls and best 121 strategies when fossils are scarce Outlook and Future Research 207 Curriculum Vitae 209 Summary 211 Zusammenfassung 213 Acknowledgments I really believe that no one can go through the process of doing a PhD and come out without being changed at a very profound level.
    [Show full text]
  • Survey of Succulent Plants from Various Regions of Maharashtra
    Journal of Medicinal Plants Studies 2018; 6(5): 78-80 ISSN (E): 2320-3862 ISSN (P): 2394-0530 Survey of succulent plants from various regions of NAAS Rating: 3.53 JMPS 2018; 6(5): 78-80 Maharashtra © 2018 JMPS Received: 29-07-2018 Accepted: 30-08-2018 Dr. Hanmant R Aglave Dr. Hanmant R Aglave Principal, Shahir Annabhau Abstract Sathe Mahavidalaya, Survey of succulent plants in Maharashtra region was done by collecting the information from the Mukhed, Maharashtra, India experienced medicinal practitioners. In present investigation it is observed about 4 Families, 5 Genus and 5 Species were identified with relevant information and documented in this paper with regard to their Botanical Name, family, Habitat, flowering Fruiting session and medicinal properties like anti- inflammatory, antioxidant, antipyretic, anti-diabetic, anticancer etc. Keywords: Succulent plants, family, genus, antipyretic Introduction Drought and increased temperature of the Earth's surface associated with climate change are [1, 2] likely to pose significant social and economic challenges . Understanding the impacts of these changes on primary producers such as plants, and their value as natural capital, will be crucial for designing measures to reduce the negative consequences of climate perturbations. A multitude of adaptations to heat and water stress have evolved in plants to regulate metabolism and reproduction in water‐limiting environments. The succulent plants also known as succulents or sometimes fat plants having some parts that are more than normally thickened and fleshy, usually to retain water in arid climates or soil conditions. The succulents comes from the latin word sucus, meaning juice or sap succulent plants may store water in various structures, such as leaves and stems.
    [Show full text]
  • Phylogenetic Relationships in the Cactus Family (Cactaceae) Based on Evidence from Trnk/Matk and Trnl-Trnf Sequences
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/51215925 Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences ARTICLE in AMERICAN JOURNAL OF BOTANY · FEBRUARY 2002 Impact Factor: 2.46 · DOI: 10.3732/ajb.89.2.312 · Source: PubMed CITATIONS DOWNLOADS VIEWS 115 180 188 1 AUTHOR: Reto Nyffeler University of Zurich 31 PUBLICATIONS 712 CITATIONS SEE PROFILE Available from: Reto Nyffeler Retrieved on: 15 September 2015 American Journal of Botany 89(2): 312±326. 2002. PHYLOGENETIC RELATIONSHIPS IN THE CACTUS FAMILY (CACTACEAE) BASED ON EVIDENCE FROM TRNK/ MATK AND TRNL-TRNF SEQUENCES1 RETO NYFFELER2 Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA Cacti are a large and diverse group of stem succulents predominantly occurring in warm and arid North and South America. Chloroplast DNA sequences of the trnK intron, including the matK gene, were sequenced for 70 ingroup taxa and two outgroups from the Portulacaceae. In order to improve resolution in three major groups of Cactoideae, trnL-trnF sequences from members of these clades were added to a combined analysis. The three exemplars of Pereskia did not form a monophyletic group but a basal grade. The well-supported subfamilies Cactoideae and Opuntioideae and the genus Maihuenia formed a weakly supported clade sister to Pereskia. The parsimony analysis supported a sister group relationship of Maihuenia and Opuntioideae, although the likelihood analysis did not. Blossfeldia, a monotypic genus of morphologically modi®ed and ecologically specialized cacti, was identi®ed as the sister group to all other Cactoideae.
    [Show full text]
  • Cactus Explorers Journal
    Bradleya 34/2016 pages 100–124 What is a cephalium? Root Gorelick Department of Biology and School of Mathematics & Statistics and Institute of Interdisciplinary Studies, Carleton University, 1125 Raven Road, Ottawa, Ontario K1S 5B6 Canada (e-mail: [email protected]) Photographs by the author unless otherwise stated. Summary : There are problems with previous at - gibt meist einen abgrenzbaren Übergang vom tempts to define ‘cephalium’, such as via produc - photosynthetisch aktiven Gewebe zum nicht pho - tion of more hairs and spines, confluence of tosynthetisch aktiven und blütentragenden areoles, or periderm development at or under - Cephalium, die beide vom gleichen Triebspitzen - neath each areole after flowering. I propose using meristem abstammen. Cephalien haben eine an - the term ‘cephalium’ only for a combination of dere Phyllotaxis als die vegetativen these criteria, i.e. flowering parts of cacti that Sprossabschnitte und sitzen der vorhandenen have confluent hairy or spiny areoles exterior to a vegetativen Phyllotaxis auf. Wenn blühende Ab - thick periderm, where these hairs, spines, and schnitte nur einen Teil der oben genannten Merk - periderms arise almost immediately below the male aufweisen, schlage ich vor, diese Strukturen shoot apical meristem, and with more hairs and als „Pseudocephalien“ zu bezeichnen. spines on reproductive parts than on photosyn - thetic parts of the shoot. Periderm development Introduction and confluent areoles preclude photosynthesis of Most cacti (Cactaceae) are peculiar plants, cephalia, which therefore lack or mostly lack even for angiosperms, with highly succulent stomata. There is almost always a discrete tran - stems, numerous highly lignified leaves aka sition from photosynthetic vegetative tissues to a spines, lack of functional photosynthetic leaves, non-photosynthetic flower-bearing cephalium, CAM photosynthesis, huge sunken shoot apical both of which arise from the same shoot apical meristems, and fantastic stem architectures meristem.
    [Show full text]
  • Pdf 989.19 K
    رﺳﺘﻨﻴﻬﺎ Rostaniha 18(2): 142–149 (2017) (1396) 142 -149 :(2)18 Prometheum rechingeri, a new report from Iran Received: 22.07.2017 / Accepted: 11.10.2017 Mohammad Amini Rad : Research Assistant Prof., Department of Botany, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran ([email protected]) Urs Eggli: Researcher, Wissenschaftlicher Mitarbeiter, Sukkulenten-Sammlung Zürich/Grün Stadt Zürich, Mythenquai 88, CH-8002 Zürich, Switzerland Abbas Gholipour: Associate Prof., Department of Biology, Payame Noor University, Tehran, Iran Abstract In the course of the study of collected specimens from West Azerbaijan province (NW Iran), Prometheum rechingeri (Crassulaceae) is reported for the first time from Iran. Based on recent phylogenetic and morphological studies in Crassulaceae family, genus Prometheum was considered as independent genus. So far, two species viz. P. pilosum (under Sedum pilosum), and P. sempervivoides (under S. sempervivoides) has been reported from Iran. These two species and the new report are specific to mountains regions and they mostly occur at elevation above 2000 m.s.l. in the northwest of Iran (West and East Azerbaijan provinces). A short discussion on the taxonomic history of the genus Prometheum and the relative species, description, distribution, illustration, ecology and a key for existing three Iranian species is provided. Keywords: Alpine, Crassulaceae, diversity, floristic, Rosularia Prometheum rechingeri، ﮔﺰارﺷﻲ ﺟﺪﻳﺪ ﺑﺮاي ﻓﻠﻮر اﻳﺮان درﻳﺎﻓﺖ: 31/04/1396 / ﭘﺬﻳﺮش: 1396/07/19 ﻣﺤﻤﺪ اﻣﻴﻨ ﻲراد: اﺳﺘﺎدﻳﺎر ﭘﮋوﻫﺶ، ﺑﺨﺶ ﺗﺤﻘﻴﻘﺎت ﮔﻴﺎهﺷﻨﺎﺳﻲ، ﻣﺆﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﺟﻨﮕﻞ ﻫﺎ و ﻣﺮاﺗﻊ ﻛﺸﻮر، ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﺞ ﻛﺸﺎورزي، ﺗﻬﺮان، اﻳﺮان ([email protected] ) ) اورس اﮔﻠﻲ: ﻣﺤﻘﻖ، زورﻳﺦ، ﺳﻮﻳﻴﺲ ﻋﺒﺎس ﻗﻠ ﻲﭘﻮر: داﻧﺸﻴﺎر ﮔﺮوه زﻳﺴﺖﺷﻨﺎﺳﻲ، داﻧﺸﮕﺎه ﭘﻴﺎم ﻧﻮر، ﺗﻬﺮان، اﻳﺮان ﺧﻼﺻﻪ ROSTANIHA ﺗﻴﺮه ﮔﻞ ﻧﺎز (Crassulaceae)، داراي 33 ﺗﺎ 34 ﺟﻨﺲ و 1440 ﺗﺎ 1500 ﮔﻮﻧﻪ در دﻧﻴﺎ ﻣﻲ ﺑﺎﺷﺪ ﻛﻪ اﻛﺜﺮ ﮔﻴﺎﻫﺎن اﻳﻦ ﺗﻴﺮه ﮔﻮﺷﺘﻲ ﻣ ﻲﺑﺎﺷﻨﺪ (Eggli et al.
    [Show full text]
  • Bradleya 31/2013 Pages 142-149
    Bradleya 31/2013 pages 142-149 Coleocephalocereus purpureus has a cephalium; Micrantho - cereus streckeri has a pseudocephalium (Cereeae, Cactoideae, Cactaceae) Root Gorelick Department of Biology, School of Mathematics & Statistics, and Institute of Interdisciplinary Studies Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 Canada. (email: [email protected]). Photographs by the author Summary : The putatively closely related cactus Introduction genera of Coleocephalocereus , Micranthocereus , Cactaceae (cacti) in the tribe Cactoideae have Cereus , Monvillea , and Stetsonia have a wide a wide range of reproductive anatomies ranging range in specialization of reproductive portions of from cephalia to pseudocephalia to forms where the shoot, from cephalium to pseudocephalium to reproductive and vegetative structures are indis - no specialization. After briefly summarizing the tinguishable (Buxbaum, 1964, 1975; Mauseth, shifting uses of the terms ‘cephalium’ and ‘pseudo - 2006). cephalium’, I provide gross morphological evi - For instance, Melocactus Link & Otto, Disco - dence that Coleocephalocereus purpureus has a cactus Pfeiffer, and Espostoa Britton & Rose have true cephalium that is formed of a continuous true cephalia in which the flowering parts are not swath of bristles and hairs, with its underlying photosynthetic because every epidermal cell con - thick cortex of parenchyma replaced by a narrow tains a modified leaf that is a hair, bristle, or layer of cork. By contrast, Micranthocereus streck - spine, with no stomata amongst the epidermal eri has a pseudocephalium composed of nothing cells (Mauseth, 2006). Furthermore, there are more than larger hairier areoles in which the un - changes to the internal anatomy of cephalia, derlying epidermis is still photosynthetic and the where the underlying cortex is not a wide swath of underlying cortex is still a thick layer of highly succulent parenchyma, but instead a thin parenchyma without any noticeable cork.
    [Show full text]
  • Willdenowia Annals of the Botanic Garden and Botanical Museum Berlin-Dahlem
    Willdenowia Annals of the Botanic Garden and Botanical Museum Berlin-Dahlem JOACHIM W. KADEREIT1*, DIRK C. ALBACH2, FRIEDRICH EHRENDORFER3, MERCÈ GALBANY-CASALS4, NÚRIA GARCIA-JACAS5, BERIT GEHRKE1, GUDRUN KADEREIT6,1, NORBERT KILIAN7, JOHANNES T. KLEIN1, MARCUS A. KOCH8, MATTHIAS KROPF9, CHRISTOPH OBERPRIELER10, MICHAEL D. PIRIE1,11, CHRISTIANE M. RITZ12, MARTIN RÖSER13, KRZYSZTOF SPALIK14, ALFONSO SUSANNA5, MAXIMILIAN WEIGEND15, ERIK WELK16, KARSTEN WESCHE12,17, LI-BING ZHANG18 & MARKUS S. DILLENBERGER1 Which changes are needed to render all genera of the German lora monophyletic? Version of record irst published online on 24 March 2016 ahead of inclusion in April 2016 issue. Abstract: The use of DNA sequence data in plant systematics has brought us closer than ever to formulating well- founded hypotheses about phylogenetic relationships, and phylogenetic research keeps on revealing that plant genera as traditionally circumscribed often are not monophyletic. Here, we assess the monophyly of all genera of vascular plants found in Germany. Using a survey of the phylogenetic literature, we discuss which classiications would be consistent with the phylogenetic relationships found and could be followed, provided monophyly is accepted as the primary criterion for circumscribing taxa. We indicate whether and which names are available when changes in ge- neric assignment are made (but do not present a comprehensive review of the nomenclatural aspects of such names). Among the 840 genera examined, we identiied c. 140 where data quality is suiciently high to conclude that they are not monophyletic, and an additional c. 20 where monophyly is questionable but where data quality is not yet suicient to reach convincing conclusions. While it is still iercely debated how a phylogenetic tree should be trans- lated into a classiication, our results could serve as a guide to the likely consequences of systematic research for the taxonomy of the German lora and the loras of neighbouring countries.
    [Show full text]
  • Some Major Families and Genera of Succulent Plants
    SOME MAJOR FAMILIES AND GENERA OF SUCCULENT PLANTS Including Natural Distribution, Growth Form, and Popularity as Container Plants Daniel L. Mahr There are 50-60 plant families that contain at least one species of succulent plant. By far the largest families are the Cactaceae (cactus family) and Aizoaceae (also known as the Mesembryanthemaceae, the ice plant family), each of which contains about 2000 species; together they total about 40% of all succulent plants. In addition to these two families there are 6-8 more that are commonly grown by home gardeners and succulent plant enthusiasts. The following list is in alphabetic order. The most popular genera for container culture are indicated by bold type. Taxonomic groupings are changed occasionally as new research information becomes available. But old names that have been in common usage are not easily cast aside. Significant name changes noted in parentheses ( ) are listed at the end of the table. Family Major Genera Natural Distribution Growth Form Agavaceae (1) Agave, Yucca New World; mostly Stemmed and stemless Century plant and U.S., Mexico, and rosette-forming leaf Spanish dagger Caribbean. succulents. Some family yuccas to tree size. Many are too big for container culture, but there are some nice small and miniature agaves. Aizoaceae (2) Argyroderma, Cheiridopsis, Mostly South Africa Highly succulent leaves. Iceplant, split-rock, Conophytum, Dactylopis, Many of these stay very mesemb family Faucaria, Fenestraria, small, with clumps up to Frithia, Glottiphyllum, a few inches. Lapidaria, Lithops, Nananthus, Pleisopilos, Titanopsis, others Delosperma; several other Africa Shrubs or ground- shrubby genera covers. Some marginally hardy. Mestoklema, Mostly South Africa Leaf, stem, and root Trichodiadema, succulents.
    [Show full text]