A Taxonomic Backbone for the Global Synthesis of Species Diversity in the Angiosperm Order Caryophyllales

Total Page:16

File Type:pdf, Size:1020Kb

A Taxonomic Backbone for the Global Synthesis of Species Diversity in the Angiosperm Order Caryophyllales Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales Hernández-Ledesma, Patricia; Berendsohn, Walter G; Borsch, Thomas; Mering, Sabine Von; Akhani, Hossein; Arias, Salvador; Castañeda-Noa, Idelfonso; Eggli, Urs; Eriksson, Roger; Flores-Olvera, Hilda; Fuentes-Bazán, Susy; Kadereit, Gudrun; Klak, Cornelia; Korotkova, Nadja; Nyffeler, Reto; Ocampo, Gilberto; Ochoterena, Helga; Oxelman, Bengt; Rabeler, Richard K; Sanchez, Adriana; Schlumpberger, Boris O; Uotila, Pertti Abstract: The Caryophyllales constitute a major lineage of flowering plants with approximately 12500 species in 39 families. A taxonomic backbone at the genus level is provided that reflects the current state of knowledge and accepts 749 genera for the order. A detailed review of the literature of the past two decades shows that enormous progress has been made in understanding overall phylogenetic relationships in Caryophyllales. The process of re-circumscribing families in order to be monophyletic appears to be largely complete and has led to the recognition of eight new families (Anacampserotaceae, Kewaceae, Limeaceae, Lophiocarpaceae, Macarthuriaceae, Microteaceae, Montiaceae and Talinaceae), while the phylogenetic evaluation of generic concepts is still well underway. As a result of this, the number of genera has increased by more than ten percent in comparison to the last complete treatments in the Families and genera of vascular plants” series. A checklist with all currently accepted genus names in Caryophyllales, as well as nomenclatural references, type names and synonymy is presented. Notes indicate how extensively the respective genera have been studied in a phylogenetic context. The most diverse families at the generic level are Cactaceae and Aizoaceae, but 28 families comprise only one to six genera. This synopsis represents a first step towards the aim of creating a global synthesis of the species diversity in the angiosperm order Caryophyllales integrating the work of numerous specialists around the world. DOI: https://doi.org/10.3372/wi.45.45301 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-122159 Journal Article Published Version Originally published at: Hernández-Ledesma, Patricia; Berendsohn, Walter G; Borsch, Thomas; Mering, Sabine Von; Akhani, Hossein; Arias, Salvador; Castañeda-Noa, Idelfonso; Eggli, Urs; Eriksson, Roger; Flores-Olvera, Hilda; Fuentes-Bazán, Susy; Kadereit, Gudrun; Klak, Cornelia; Korotkova, Nadja; Nyffeler, Reto; Ocampo, Gilberto; Ochoterena, Helga; Oxelman, Bengt; Rabeler, Richard K; Sanchez, Adriana; Schlumpberger, Boris O; Uotila, Pertti (2015). A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Willdenowia, 45(3):281-383. DOI: https://doi.org/10.3372/wi.45.45301 A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales Author(s): Patricia Hernández-Ledesma, Walter G. Berendsohn, Thomas Borsch, Sabine Von Mering, Hossein Akhani, Salvador Arias, Idelfonso Castañeda-Noa, Urs Eggli, Roger Eriksson, Hilda Flores- Olvera, Susy Fuentes-Bazán, Gudrun Kadereit, Cornelia Klak, Nadja Korotkova, Reto Nyffeler, Gilberto Ocampo, Helga Ochoterena, Bengt Oxelman, Richard K. Rabeler Adriana Sanchez, Boris O. Schlumpberger & Pertti Uotila Source: Willdenowia, 45(3):281-383. Published By: Botanic Garden and Botanical Museum Berlin (BGBM) DOI: http://dx.doi.org/10.3372/wi.45.45301 URL: http://www.bioone.org/doi/full/10.3372/wi.45.45301 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Willdenowia 45 – 2015 281 Patricia Hernández-Ledesma1,2, WaLter G. BerendsoHn1, Thomas BorscH1,3, saBine von merinG1, Hossein akHani4, saLvador arias5, ideLfonso castañeda-noa6, Urs Eggli7, ­RoGer eriksson8, HiLda Flores-Olvera9, Susy Fuentes-Bazán1, GUdrUn kadereit10, corneLia Klak11, nadja korotkova1,3, reto nyffeLer12, Gilberto ocamPo13, Helga ocHoterena9, BenGt oxeLman8, ricHard k. raBeLer14, adriana sancHez15, Boris o. schlumpberGer16 & Pertti UotiLa17 A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales Abstract Hernández-Ledesma P., Berendsohn W. G., Borsch th., mering s. von, akhani H., arias s., castañeda-noa i., eggli U., eriksson r., flores-olvera H., fuentes-Bazán s., kadereit G., klak c., korotkova n., nyffeler r., ocampo G., ochoterena H., oxelman B., rabeler r. k., sanchez a., schlumpberger B. o. & Uotila P.: a taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. – Willdenowia 45: 281 – 383. 2015. – version of record first published online on 11 september 2015 ahead of inclusion in december 2015 issue; issn 1868-6397; © 2015 BGBm Berlin. doi: http://dx.doi.org/10.3372/wi.45.45301 the Caryophyllales constitute a major lineage of flowering plants with approximately 12 500 species in 39 families. a taxonomic backbone at the genus level is provided that reflects the current state of knowledge and accepts 749 genera for the order. a detailed review of the literature of the past two decades shows that enormous progress has been made in understanding overall phylogenetic relationships in Caryophyllales. the process of re-circumscribing families in order to be monophyletic appears to be largely complete and has led to the recognition of eight new fami- lies (Anacampserotaceae, Kewaceae, Limeaceae, Lophiocarpaceae, Macarthuriaceae, Microteaceae, Montiaceae and Talinaceae), while the phylogenetic evaluation of generic concepts is still well underway. as a result of this, the number of genera has increased by more than ten percent in comparison to the last complete treatments in the “fami- lies and genera of vascular plants” series. a checklist with all currently accepted genus names in Caryophyllales, as well as nomenclatural references, type names and synonymy is presented. notes indicate how extensively the respec- tive genera have been studied in a phylogenetic context. the most diverse families at the generic level are Cactaceae and Aizoaceae, but 28 families comprise only one to six genera. this synopsis represents a first step towards the aim of creating a global synthesis of the species diversity in the angiosperm order Caryophyllales integrating the work of numerous specialists around the world. additional key words: flowering plants, Caryophyllales network, checklist, phylogeny, taxon concept, genus, World flora online, edit Platform for cybertaxonomy General e-mail address for correspondence: [email protected] 1 Botanic Garden and Botanical museum Berlin (BGBm), freie Universität Berlin, königin-Luise-str. 6 – 8, 14195 Berlin, Germany. 2 Current address: Laboratorio de Genética molecular y ecología evolutiva, facultad de ciencias naturales, Universidad autóno- ma de Querétaro, campus aeropuerto, Querétaro, Qto. 76140, mexico. 3 Institut für Biologie, systematische Botanik und Pflanzengeographie, freie Universität Berlin, altensteinstr. 6, 14195 Berlin, Germany. 4 Department of Plant sciences, school of Biology, college of science, University of tehran, P.o. Box 14155-6455, tehran, iran. 5 Jardín Botánico, instituto de Biología, Universidad nacional autónomo de méxico (UNAM), circuito exterior s.n., ciudad Universitaria, ap. postal 70-614, méxico d.f. 04510, mexico. 6 Jardín Botánico de villa clara, Universidad central “marta abreu” de Las villas, facultad de ciencias agropecuarias, carretera de camajuaní km 5½, santa clara, cuba. 7 Sukkulenten-sammlung zürich, mythenquai 88, cH-8002 zürich, switzerland. 8 Department of Biological and environmental sciences, University of Gothenburg, Box 461, se-40530 Göteborg, sweden. 9 Departamento de Botánica, instituto de Biología, Universidad nacional autónoma de méxico (UNAM), circuito exterior s.n., ciudad Universitaria, ap. postal 70-614, méxico d.f. 04510, mexico. (addresses continued on next page) 282 Hernández-Ledesma & al.: a taxonomic backbone for Caryophyllales Introduction of: the instituto de Biología, Universidad nacional au- tónoma de méxico – UNAM (mexico); the instituto de Background Botánica darwinion (argentina); and the Botanic Gar- recent years have yielded a wealth of new informatics den and Botanical museum Berlin – BGBm (Germany). tools and infrastructures to facilitate working with taxo- the BGBm is committed to support the coordination of nomic data. searching and accessing the necessary lit- the initiative and will provide the biodiversity informat-
Recommended publications
  • Caryophyllales 2018 Instituto De Biología, UNAM September 17-23
    Caryophyllales 2018 Instituto de Biología, UNAM September 17-23 LOCAL ORGANIZERS Hilda Flores-Olvera, Salvador Arias and Helga Ochoterena, IBUNAM ORGANIZING COMMITTEE Walter G. Berendsohn and Sabine von Mering, BGBM, Berlin, Germany Patricia Hernández-Ledesma, INECOL-Unidad Pátzcuaro, México Gilberto Ocampo, Universidad Autónoma de Aguascalientes, México Ivonne Sánchez del Pino, CICY, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México SCIENTIFIC COMMITTEE Thomas Borsch, BGBM, Germany Fernando O. Zuloaga, Instituto de Botánica Darwinion, Argentina Victor Sánchez Cordero, IBUNAM, México Cornelia Klak, Bolus Herbarium, Department of Biological Sciences, University of Cape Town, South Africa Hossein Akhani, Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Iran Alexander P. Sukhorukov, Moscow State University, Russia Michael J. Moore, Oberlin College, USA Compilation: Helga Ochoterena / Graphic Design: Julio C. Montero, Diana Martínez GENERAL PROGRAM . 4 MONDAY Monday’s Program . 7 Monday’s Abstracts . 9 TUESDAY Tuesday ‘s Program . 16 Tuesday’s Abstracts . 19 WEDNESDAY Wednesday’s Program . 32 Wednesday’s Abstracs . 35 POSTERS Posters’ Abstracts . 47 WORKSHOPS Workshop 1 . 61 Workshop 2 . 62 PARTICIPANTS . 63 GENERAL INFORMATION . 66 4 Caryophyllales 2018 Caryophyllales General program Monday 17 Tuesday 18 Wednesday 19 Thursday 20 Friday 21 Saturday 22 Sunday 23 Workshop 1 Workshop 2 9:00-10:00 Key note talks Walter G. Michael J. Moore, Berendsohn, Sabine Ya Yang, Diego F. Registration
    [Show full text]
  • Phylogeny of Acanthophyllum S.L. Revisited: an Update on Generic Concept and Sectional Classification Atefeh Pirani,1,2 Hamid Moazzeni,2 Shahin Zarre,3 Richard K
    Pirani & al. • Phylogeny of Acanthophyllum s.l. revisited TAXON 69 (3) • June 2020: 500–514 SYSTEMATICS AND PHYLOGENY Phylogeny of Acanthophyllum s.l. revisited: An update on generic concept and sectional classification Atefeh Pirani,1,2 Hamid Moazzeni,2 Shahin Zarre,3 Richard K. Rabeler,4 Bengt Oxelman,5 Alexander V. Pavlenko6 & Andriy Kovalchuk7,8 1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran 2 Herbarium FUMH, Department of Botany, Research Center for Plant Sciences, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran 3 Department of Plant Biology, Center of Excellence in Phylogeny of Living Organisms, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran 4 University of Michigan Herbarium – EEB, 3600 Varsity Drive, Ann Arbor, Michigan 48108-2228, U.S.A. 5 Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden 6 Institute of Biology and Medicinal Plants, Academy of Sciences of Turkmenistan, Ashgabat, Turkmenistan 7 Department of Forest Sciences, P.O. Box 27, University of Helsinki, 00014 Helsinki, Finland 8 Present address: VTT Technical Research Centre of Finland Ltd, Tietotie 2, 02044 Espoo, Finland Address for correspondence: Atefeh Pirani, [email protected] DOI https://doi.org/10.1002/tax.12241 Abstract The generic boundary of the broadly defined Acanthophyllum s.l., the third-largest genus of the tribe Caryophylleae (Caryophyllaceae), has been a subject of taxonomic confusion. Acanthophyllum s.l. now includes five minor genera previously rec- ognized as independent. Among these small genera, the inclusion of Allochrusa, Ochotonophila, and Scleranthopsis within Acantho- phyllum s.l.
    [Show full text]
  • Untangling Phylogenetic Patterns and Taxonomic Confusion in Tribe Caryophylleae (Caryophyllaceae) with Special Focus on Generic
    TAXON 67 (1) • February 2018: 83–112 Madhani & al. • Phylogeny and taxonomy of Caryophylleae (Caryophyllaceae) Untangling phylogenetic patterns and taxonomic confusion in tribe Caryophylleae (Caryophyllaceae) with special focus on generic boundaries Hossein Madhani,1 Richard Rabeler,2 Atefeh Pirani,3 Bengt Oxelman,4 Guenther Heubl5 & Shahin Zarre1 1 Department of Plant Science, Center of Excellence in Phylogeny of Living Organisms, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran 2 University of Michigan Herbarium-EEB, 3600 Varsity Drive, Ann Arbor, Michigan 48108-2228, U.S.A. 3 Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran 4 Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden 5 Biodiversity Research – Systematic Botany, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, Germany; and GeoBio Center LMU Author for correspondence: Shahin Zarre, [email protected] DOI https://doi.org/10.12705/671.6 Abstract Assigning correct names to taxa is a challenging goal in the taxonomy of many groups within the Caryophyllaceae. This challenge is most serious in tribe Caryophylleae since the supposed genera seem to be highly artificial, and the available morphological evidence cannot effectively be used for delimitation and exact determination of taxa. The main goal of the present study was to re-assess the monophyly of the genera currently recognized in this tribe using molecular phylogenetic data. We used the sequences of nuclear ribosomal internal transcribed spacer (ITS) and the chloroplast gene rps16 for 135 and 94 accessions, respectively, representing all 16 genera currently recognized in the tribe Caryophylleae, with a rich sampling of Gypsophila as one of the most heterogeneous groups in the tribe.
    [Show full text]
  • Acanthocereus Tetragonus SCORE: 16.0 RATING: High Risk (L.) Hummelinck
    TAXON: Acanthocereus tetragonus SCORE: 16.0 RATING: High Risk (L.) Hummelinck Taxon: Acanthocereus tetragonus (L.) Hummelinck Family: Cactaceae Common Name(s): barbed-wire cactus Synonym(s): Acanthocereus occidentalis Britton & Rose chaco Acanthocereus pentagonus (L.) Britton & Rose sword-pear Acanthocereus pitajaya sensu Croizat triangle cactus Cactus pentagonus L. Cactus tetragonus L. Assessor: Chuck Chimera Status: Assessor Approved End Date: 1 Nov 2018 WRA Score: 16.0 Designation: H(HPWRA) Rating: High Risk Keywords: Spiny, Agricultural Weed, Environmental Weed, Dense Thickets, Bird-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y
    [Show full text]
  • APPENDIX D Biological Technical Report
    APPENDIX D Biological Technical Report CarMax Auto Superstore EIR BIOLOGICAL TECHNICAL REPORT PROPOSED CARMAX AUTO SUPERSTORE PROJECT CITY OF OCEANSIDE, SAN DIEGO COUNTY, CALIFORNIA Prepared for: EnviroApplications, Inc. 2831 Camino del Rio South, Suite 214 San Diego, California 92108 Contact: Megan Hill 619-291-3636 Prepared by: 4629 Cass Street, #192 San Diego, California 92109 Contact: Melissa Busby 858-334-9507 September 29, 2020 Revised March 23, 2021 Biological Technical Report CarMax Auto Superstore TABLE OF CONTENTS EXECUTIVE SUMMARY ................................................................................................ 3 SECTION 1.0 – INTRODUCTION ................................................................................... 6 1.1 Proposed Project Location .................................................................................... 6 1.2 Proposed Project Description ............................................................................... 6 SECTION 2.0 – METHODS AND SURVEY LIMITATIONS ............................................ 8 2.1 Background Research .......................................................................................... 8 2.2 General Biological Resources Survey .................................................................. 8 2.3 Jurisdictional Delineation ...................................................................................... 9 2.3.1 U.S. Army Corps of Engineers Jurisdiction .................................................... 9 2.3.2 Regional Water Quality
    [Show full text]
  • Dry Forest Trees of Madagascar
    The Red List of Dry Forest Trees of Madagascar Emily Beech, Malin Rivers, Sylvie Andriambololonera, Faranirina Lantoarisoa, Helene Ralimanana, Solofo Rakotoarisoa, Aro Vonjy Ramarosandratana, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet & Vololoniaina Jeannoda Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2020 Botanic Gardens Conservation International ISBN-10: 978-1-905164-75-2 ISBN-13: 978-1-905164-75-2 Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Beech, E., Rivers, M., Andriambololonera, S., Lantoarisoa, F., Ralimanana, H., Rakotoarisoa, S., Ramarosandratana, A.V., Barstow, M., Davies, K., Hills, BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) R., Marfleet, K. and Jeannoda, V. (2020). Red List of is the world’s largest plant conservation network, comprising more than Dry Forest Trees of Madagascar. BGCI. Richmond, UK. 500 botanic gardens in over 100 countries, and provides the secretariat to AUTHORS the IUCN/SSC Global Tree Specialist Group. BGCI was established in 1987 Sylvie Andriambololonera and and is a registered charity with offices in the UK, US, China and Kenya. Faranirina Lantoarisoa: Missouri Botanical Garden Madagascar Program Helene Ralimanana and Solofo Rakotoarisoa: Kew Madagascar Conservation Centre Aro Vonjy Ramarosandratana: University of Antananarivo (Plant Biology and Ecology Department) THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of the Species Survival Commission’s network of over 7,000 Emily Beech, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet and Malin Rivers: BGCI volunteers working to stop the loss of plants, animals and their habitats.
    [Show full text]
  • Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
    EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems.
    [Show full text]
  • Spiny Forest Heterogeneity: Implications for Regeneration and Its Detection
    Spiny Forest Heterogeneity: Implications for Regeneration and its Detection Catherine Reuter Advisor: Jules Ramangalahy Academic Director: Jim Hansen Spring 2009 1 Acknowledgements I would like to thank Barry Ferguson for helping me originate the idea for this project and for innumerable resources from compasses to aerial maps. I would also like to thank Christian, translator and invaluable field assistant, without whose innovative thinking and possibly photographic memory this project would not of succeeded. 2 Table of Contents Section Page 88 Acknowledgements ________________________________________________ 2 Abstract __________________________________________________________ 4 Introduction _______________________________________________________ 5 Methods __________________________________________________________ 7 Results ___________________________________________________________ 12 Discussion ________________________________________________________ 17 Conclusion ________________________________________________________ 26 Appendix 1: Comprehensive Species List ________________________________ 27 Appendix 2: FTM 1954 Map of Forest Cover _____________________________ 30 Sources Cited _______________________________________________________ 31 3 ABSTRACT This study sought to verify claims made in a recently published paper by Thomas Elmqvist that certain portions of Madagascar’s spiny forest are rapidly regenerating. The study took place in the forest around the village of Manavy located in Central Antandroy, where historical and current
    [Show full text]
  • Phylogenetic Placement and Generic Re-Circumscriptions of The
    TAXON 65 (2) • April 2016: 249–261 Powell & al. • Generic recircumscription in Schlechteranthus Phylogenetic placement and generic re-circumscriptions of the multilocular genera Arenifera, Octopoma and Schlechteranthus (Aizoaceae: Ruschieae): Evidence from anatomical, morphological and plastid DNA data Robyn F. Powell,1,2 James S. Boatwright,1 Cornelia Klak3 & Anthony R. Magee2,4 1 Department of Biodiversity & Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, South Africa 2 Compton Herbarium, South African National Biodiversity Institute, Private Bag X7, Claremont 7735, Cape Town, South Africa 3 Bolus Herbarium, Department of Biological Sciences, University of Cape Town, 7701, Rondebosch, South Africa 4 Department of Botany & Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa Author for correspondence: Robyn Powell, [email protected] ORCID RFP, http://orcid.org/0000-0001-7361-3164 DOI http://dx.doi.org/10.12705/652.3 Abstract Ruschieae is the largest tribe in the highly speciose subfamily Ruschioideae (Aizoaceae). A generic-level phylogeny for the tribe was recently produced, providing new insights into relationships between the taxa. Octopoma and Arenifera are woody shrubs with multilocular capsules and are distributed across the Succulent Karoo. Octopoma was shown to be polyphyletic in the tribal phylogeny, but comprehensive sampling is required to confirm its polyphyly. Arenifera has not previously been sampled and therefore its phylogenetic placement in the tribe is uncertain. In this study, phylogenetic sampling for nine plastid regions (atpB-rbcL, matK, psbJ-petA, rpl16, rps16, trnD-trnT, trnL-F, trnQUUG-rps16, trnS-trnG) was expanded to include all species of Octopoma and Arenifera, to assess phylogenetic placement and relationships of these genera.
    [Show full text]
  • Architecture Végétative Et Structures Inflorescentielles Chez Les Didiereaceae De Madagascar
    Beitr. Biol. Pflanzen 61, 381 - 400 Architecture végétative et structures inflorescentielles chez les Didiereaceae de Madagascar Par GEORGESCREMERS * et YVES SELL* * (Avec 7 figures) Reçu le 21 Novembre 1985 Zusammenf assuiig Der vegetative Aufbau der Didiereaceen erscheint als sehr mannigfaltig, da sich die 8 untersuchten Arten, 4 Modellen (denen von CORNER,von LEEUWENBERG,von KORmA, und von CHAMPAGNAT)zuordnen lassen, während die komplexe Organisation zweier weiterer Arten nicht einem der zur Zeit beschriebenen Modelle zugeordnet werden konnte. Andererseits ist bei den durch Kurztriebe hervorgebrachten Infloreszenzstrukturen der Thyrsus die fundamentale Blüheinheit. Dieser ist geschlossen (monotel, 4 Arten) oder offen (polytel oder trunkat-monotel? 2 Arten); seine Aggregation in eine dolden- artige, mehr oder weniger bliitenarme Infloreszenz wird bei 5 Arten beobachtet. Das sukzessive Aufblühen, von den ruhenden, ganz an der Basis der Kurztriebe gelegenen Knospen bedingt, wurde bei 7 Arten festgestellt. Abstract The vegetative organization of Didiereaceae seems highly diverse, since of the 8 species studied, 4 models (those of CORNER,LEEUWENBERG, KORIBA and CHAMPAGNAT) were identified, but the complex organization of 2 did not correspond to any of the models so far described. As regards the inflorescence structures established by the short shoots, thyrse is the main flowering unit. It can be either definite (monotelic, 4 species) or indefinite (polytelic or truncate-monotelic?, 2 species), and in 5 species it forms an ombel-like cluster more or less poor in flowers. Gradual flowering, due to rest buds at the very bases of the short shoots, is encountered in 7 species. * Centre ORSTOM, BP 165, 93 323 Cayenne; Guyane Francaise. ** Institut de Botanique, 28 rue Goethe, 67 O00 Strasbourg.
    [Show full text]
  • Cactaceae) with Special Emphasis on the Genus Mammillaria Charles A
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2003 Phylogenetic studies of Tribe Cacteae (Cactaceae) with special emphasis on the genus Mammillaria Charles A. Butterworth Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons, and the Genetics Commons Recommended Citation Butterworth, Charles A., "Phylogenetic studies of Tribe Cacteae (Cactaceae) with special emphasis on the genus Mammillaria " (2003). Retrospective Theses and Dissertations. 565. https://lib.dr.iastate.edu/rtd/565 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Flora and Vegetation of the Mohawk Dunes, Arizona, Felger, Richard Stephen
    FLORA AND VEGETATION OF THE MOHAWK DUNES, ARIZONA Richard Stephen Felger Dale Scott Turner Michael F. Wilson Drylands Institute The Nature Conservancy Drylands Institute 2509 North Campbell, #405 1510 E. Fort Lowell 2509 North Campbell, #405 Tucson, AZ 85719, U.S.A. Tucson, AZ 85719, U.S.A. Tucson, AZ 85719, U.S.A. [email protected] ABSTRACT One-hundred twenty-two species of seed plants, representing 95 genera and 35 families are docu- mented for the 7,700 ha Mohawk Dune Field and its immediate surroundings, located in Yuma County, Arizona, USA. Three major habitats were studied: dunes, adjacent sand flats, and playa. The dunes (including interdune swales) support 78 species, of which 13 do not occur on the adjacent non-dune habitats. The adjacent non-dune habitats (sand flats and playa) support 109 species, of which 43 were not found on the dunes. The total flora has 81 annual species, or 66% of the flora. The dune flora has 63 annual (ephemeral) species, or 81% of the flora—one of the highest percentages of annuals among any regional flora. Of these dune annuals, 53 species (84%) develop during the cool season. No plant taxon is endemic to the Mohawk region. There are 8 dune, or sand adapted, endemics— Cryptantha ganderi, Dimorphocarpa pinnatifida, Dicoria canescens, Ditaxis serrata, Pleuraphis rigida, Psorothamnus emoryi, Stephanomeria schottii, Tiquilia plicata—all of which are found on nearby dune systems. Two of them (C. ganderi and S. schottii) are of limited distribution, especially in the USA, and have G2 Global Heritage Status Rank. There are four non-native species in the dune flora (Brassica tournefortii, Mollugo cerviana, Sonchus asper, Schismus arabicus), but only Brassica and Schismus seem to pose serious threats to the dune ecosystem at this time.
    [Show full text]