Lottia Pelta Class: Gastropoda, Prosbranchia Order: Archeogastropoda, Patellacea the Shield, Or Helmet Limpet Family: Lottidae

Total Page:16

File Type:pdf, Size:1020Kb

Lottia Pelta Class: Gastropoda, Prosbranchia Order: Archeogastropoda, Patellacea the Shield, Or Helmet Limpet Family: Lottidae Phylum: Mollusca Lottia pelta Class: Gastropoda, Prosbranchia Order: Archeogastropoda, Patellacea The shield, or helmet limpet Family: Lottidae Taxonomy: A major systematic revision of may be helpful in maintaining a seal around the northeastern Pacific limpet fauna was the edge of their feet on irregular surfaces undertaken by MacLean in 1966. Notoacmea (Smith 1991). was at first considered a subgenus and then Young: Some subadults (over 6 mm) with later a full genus (MacLean 1969). Collisella dark brown exterior, lustrous, smooth and with was synonymized with Lottia, and later fine radial sculpture, living on alga Egregia. Notoacmea was replaced with Tectura Interior light brown to gray, with postapical (Lindberg 2007). The current practice in The brown spot. (Lottia insessa, of which subadult Light and Smith Manual is to use only pelta is similar, is dark brown inside.) Acmaea and Lottia to describe Pacific Northwest species (Lindberg 2007). Possible Misidentifications Many species of limpets of the family Description Acmaeidae occur on our coast, but only about Size: 25mm (Brusca and Brusca 1978); can four are found in estuarine conditions. Lottia reach 40 mm farther north (Kozloff 1974b scutum (=Notoacmaea), which, like Lottia Yanes and Tyler 2009); illustrated specimen, pelta, have a horseshoe-shaped muscle scar 32.5 mm. on the shell interior, joined by a thin curved Color: Extremely variable dependent on line, and various coloration, but not pink- substrata (Sorensen and Lindberg 1991); rayed or white. These two genera differ in that called the brown and white shield limpet by L. pelta has a pair of uncini or teeth on the Ricketts (Ricketts and Calvin 1971); gray, radula (not figured), while L. scutum does not. slightly raised ribs with white, sometimes L. scutum also has significantly longer green, between them; some specimens cephalic tentacles (5.5mm) than Lottia without ribs, but with a checkered or striped (3.7mm) (Bros 1986) and are usually not as pattern. Slightly hooked apex eroded. heavily ribbed as Lottia species (Keen 1971). Shell Shape: Elevated, height usually greater Lottia scutum is also found only occasionally 1 than /3 length (Carlton and Roth1975); in bays, is thick shelled, and rather flat with surface with fine regular ribbing, anterior coarse lines quite like those of L. pelta. It has space straight or very slightly concave; apex a subcentral apex and a low elevation and is subcentral, very slightly directed anteriorly (fig often filmed with algae. 2); posterior slope slightly convex, nearly Lottia digitalis, the common fingered straight (Kozloff 1974a). Margin slightly limpet, differs from L. pelta in having an apex scalloped with contour intervals 1.11 mm on a very close to or even overhanging the anterior 3 cm individual, and when oriented anteriorly margin, which forms a strong hook; its upstream exhibits 40% reduction in drag at anterior slope is concave. This species has 1.6 m/s water velocity (Denny 1989). Exhibits strong raised ribs and a moderately scalloped several ecophenotypes or “morphs” based on edge; its rough ribs may show only on the its substrata and diet (Sorensen and Lindberg posterior slope. It occurs higher in the tidal 1991). May be fouled with a sabellid (Kuris range than does L. pelta. and Culver 1999). Lottia strigatella, once thought to be a Interior: Blue gray to white, with subapical hybrid of Lottia digitalis and L. pelta, has been brown spot (fig 3), and horseshoe-shaped found just inside Coos Bay. Like L. digitalis, it muscle scar joined by a thin, faint line (fig. 3) has a hooked apex near the anterior margin, (Keen and Coan 1974). Uses suction to and a slightly concave anterior slope. It is attach to substratum, as well as a glue that Knorek, Z. 2015. Lottia pelta. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12906 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] a bay dwelling form of Lottia limatula, L. I. thereafter (Hadfield and Strathmann 1996). moerchii, has a higher elevation than the Active throughout year; spawns at sea usual form of that species. It has buff and temperatures of 48.5°-60°F (Fritchman 1962). dark mottling, or greenish brown with white Growth Rate: Probably grows faster than C. bands; its ribs are imbricated (set like tiles); its digitalis, to 30 mm in 3 years (Abbott and edges are serrated. It has not been found as Haderlie 1980). far north as Oregon. Longevity: Lottia persona is also found in bays. It is Food: They consume a variety of microscopic large, nocturnal and smooth. It has an and large algae, but especially common erect anterior hooked apex and is dark brown with algae (Abbott and Haderlie 1980); was shown white checked edges. to eat more of the red algae Mazzaella in Lottia pelta young can resemble the limpet shaded, warm conditions (Menge et al. 2002); Lottia insessa which lives only on the marine significantly reduce the crust thickness of alga Egregia. N. insessa adults are brown, coralline algae Lithophyllum impressum translucent and smooth. (See Young, above). (Steneck et al. 1991). Predators: Seastars: Pisaster ochraceus, for Ecological Information which it has developed an escape mechanism Range: Aleutian Islands to Punto Santo (Margolin 1964); few (2.4%) drilled by Tomas, Baja California (Ricketts and Calvin Nucella, to which L. pelta may be resistant at 1971). a certain size (14mm in elevation, 25 mm in Local Distribution: Coos Bay, South Slough length; Yanes and Tyler, 2009); black oyster and Cape Arago. catcher (Haematopus bachmani), whom has Habitat: On rocks (locally), also with various difficulty in visually predating L. pelta morphs algae (e.g. Laminaria, Egregia; Abbott and that match their substrate (Sorensen and Haderlie 1980) and in mussel beds (Carlton Lindberg 1991); experimental caged and Roth 1975); eurytopic; South Slough: on protection against bird depredation did not floats, under rocks. result in increased L. pelta abundance Salinity: Collected at 30. (Wootton, 1992); one laboratory feeding trial Tidal Level: Just below L. digitalis and N. reported 57% mortality due to predation by persona (Puget Sound) at 0.15 to 1.8 m (Tyler cancrid crabs (Tyler et al. 2014). et al. 2014); on rocks usually uncovered by Behavior: A small percentage exhibit homing the tide. On outer coast, upper-mid to lower behavior (Abbott and Haderlie 1980); do not mid-intertidal (Brusca and Brusca 1978). feed at all high tides and will only move and Associates: Lottia digitalis; in feed when submerged or wet by waves mussel/barnacle aggregations on pilings. With (Abbott and Haderlie. 1980). algae Egregia, Postelsia, Laminaria, and Endocladia. Bibliography Weight: 1. ABBOTT and HADERLIE. 1980. Abundance: Not common in bays; relatively Prosobranchia: Marine Snails. In: common on outer coast (Brusca and Brusca Intertidal invertebrates of California. R. 1978). H. Morris, D. P. Abbott, and E. C. Haderlie. Stanford University Press, Life History Information Stanford, California. Reproduction: Separate sexes; eggs rose 2. BROS, W. E. 1986. Mortality of the colored (Hadfield and Strathmann 1996) with limpets, Collisella pelta (Rathke) and sperm shed into sea. In lab, ova developed Notoacmea scutum (Rathke), as a into trochophore larvae 24 hours post-spawn, function of predation from the seastar, and after 3-4 days are capable of retracting Pisaster ochraceous (Brandt). Bulletin into their post-torsional shells; many settled of Marine Science. 39(1): 92-101. after 8 days and metamorphosed after 28 3. BRUSCA, G. J., and R. C. BRUSCA. (Hadfield and Strathmann 1996). Estimated 1978. A naturalist's seashore guide. pelagic period of 6-7 days in situ with a 3+ Mad River Press, Arcata, CA. week-long settlement phase following 4. CARLTON, J. T., and B. ROTH. 1975. Knorek, Z. 2015. Lottia pelta. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. Phylum Mollusca: Shelled Gastropods, Oregon. J. T. Carlton (ed.). University p. 467-514. In: Light's manual; of California Press, Berkeley. intertidal invertebrates of the central 14. MACLEAN, J.H. 1966. West California coast. S. F. Light, R. I. American prosobranch Gastropoda: Smith, and J. T. Carlton (eds.). super families Patellacea, University of California Press, Pleurotomariacea, Fissurellacea. Berkeley. Ph.D. Dissertation, Biology, Stanford 5. DENNY, M. W. 1989. A limpet shell University. shape that reduces drag: laboratory 15. MACLEAN, J.H. 1966. Marine shells demonstration of a hydrodynamic of southern California. Los Angeles mechanism and an exploration of its County Museum of Natural History, effectiveness in nature. Canadian Science Series 24, Zoology 11. Journal of Zoolgy. 67: 2098-2106. 16. MENGE, B. A., A. M. OLSON, and E. 6. FRITCHMAN, H. K. 1962. A study of P. DAHLHOFF. 2002. Environmental the reproductive cycles in the stress, bottom-up effects, and California Acmaeidae (Gastropoda). community dynamics: Integrating The Veliger. 4:134-140. molecular-physiological and ecological 7. HADFIELD, M. G. and M. F. approaches. Integrative and STRATHMANN. 1996. Variability, Comparative Biology. 42: 892-908. flexibility and plasticity in life histories 17. RICKETTS, E. F., and J. CALVIN. of marine invertebrates. Oceanologica 1971. Between Pacific tides. Stanford Acta. 19: 323-334. University Press, Stanford, California. 8. KEEN, A. M. 1971. Sea shells of 18. SMITH, A. M. 1991. The role of tropical west America; marine suction in the adhesion of limpets. mollusks from Baja California to Peru. Journal of Experimental Biology.
Recommended publications
  • Black Oystercatcher Diet and Provisioning 2014 Annual Report
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Black Oystercatcher Chick Diet and Provisioning 2014 Annual Report Natural Resource Data Series NPS/KEFJ/NRDS—2015/749 ON THIS PAGE Nest camera captures a black oystercatcher provisioning chick on Natoa Island. Photograph Courtesy: NPS/Kenai Fjords National Park ON THE COVER Black oystercatchers at nest in Aialik Bay, Kenai Fjords National Park Photograph by: NPS/Katie Thoresen Black Oystercatcher Diet and Provisioning 2014 Annual Report Natural Resource Data Series NPS/KEFJ/NRDS—2015/749 Sam Stark1, Brian Robinson2 and Laura M. Phillips1 1National Park Service Kenai Fjords National Park PO Box 1727 Seward, AK 99664 2 University of Alaska, Fairbanks Department of Biology and Wildlife PO Box 756100 Fairbanks, AK 99775 January 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Appendix 1 Table A1
    OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S.
    [Show full text]
  • Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
    Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs.
    [Show full text]
  • Download Download
    Appendix C: An Analysis of Three Shellfish Assemblages from Tsʼishaa, Site DfSi-16 (204T), Benson Island, Pacific Rim National Park Reserve of Canada by Ian D. Sumpter Cultural Resource Services, Western Canada Service Centre, Parks Canada Agency, Victoria, B.C. Introduction column sampling, plus a second shell data collect- ing method, hand-collection/screen sampling, were This report describes and analyzes marine shellfish used to recover seven shellfish data sets for investi- recovered from three archaeological excavation gating the siteʼs invertebrate materials. The analysis units at the Tseshaht village of Tsʼishaa (DfSi-16). reported here focuses on three column assemblages The mollusc materials were collected from two collected by the researcher during the 1999 (Unit different areas investigated in 1999 and 2001. The S14–16/W25–27) and 2001 (Units S56–57/W50– source areas are located within the village proper 52, S62–64/W62–64) excavations only. and on an elevated landform positioned behind the village. The two areas contain stratified cultural Procedures and Methods of Quantification and deposits dating to the late and middle Holocene Identification periods, respectively. With an emphasis on mollusc species identifica- The primary purpose of collecting and examining tion and quantification, this preliminary analysis the Tsʼishaa shellfish remains was to sample, iden- examines discarded shellfood remains that were tify, and quantify the marine invertebrate species collected and processed by the site occupants for each major stratigraphic layer. Sets of quantita- for approximately 5,000 years. The data, when tive information were compiled through out the reviewed together with the recovered vertebrate analysis in order to accomplish these objectives.
    [Show full text]
  • JMS 70 1 031-041 Eyh003 FINAL
    PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north­ eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo­ logical events and the fossil record to determine a reference date.
    [Show full text]
  • Xoimi AMERICAN COXCIIOLOGY
    S31ITnS0NIAN MISCEllANEOUS COLLECTIOXS. BIBLIOGIIAPHY XOimi AMERICAN COXCIIOLOGY TREVIOUS TO THE YEAR 18G0. PREPARED FOR THE SMITHSONIAN INSTITUTION BY . W. G. BINNEY. PART II. FOKEIGN AUTHORS. WASHINGTON: SMITHSONIAN INSTITUTION. JUNE, 1864. : ADYERTISEMENT, The first part of the Bibliography of American Conchology, prepared for the Smithsonian Institution by Mr. Binuey, was published in March, 1863, and embraced the references to de- scriptions of shells by American authors. The second part of the same work is herewith presented to the public, and relates to species of North American shells referred to by European authors. In foreign works binomial authors alone have been quoted, and no species mentioned which is not referred to North America or some specified locality of it. The third part (in an advanced stage of preparation) will in- clude the General Index of Authors, the Index of Generic and Specific names, and a History of American Conchology, together with any additional references belonging to Part I and II, that may be met with. JOSEPH HENRY, Secretary S. I. Washington, June, 1864. (" ) PHILADELPHIA COLLINS, PRINTER. CO]^TENTS. Advertisement ii 4 PART II.—FOREIGN AUTHORS. Titles of Works and Articles published by Foreign Authors . 1 Appendix II to Part I, Section A 271 Appendix III to Part I, Section C 281 287 Appendix IV .......... • Index of Authors in Part II 295 Errata ' 306 (iii ) PART II. FOEEIGN AUTHORS. ( V ) BIBLIOGRxVPHY NOETH AMERICAN CONCHOLOGY. PART II. Pllipps.—A Voyage towards the North Pole, &c. : by CON- STANTiNE John Phipps. Loudou, ITTJc. Pa. BIBLIOGRAPHY OF [part II. FaliricillS.—Fauna Grcenlandica—systematice sistens ani- malia GrcEulandite occidentalis liactenus iudagata, &c., secun dum proprias observatioues Othonis Fabricii.
    [Show full text]
  • Joseph Heller a Natural History Illustrator: Tuvia Kurz
    Joseph Heller Sea Snails A natural history Illustrator: Tuvia Kurz Sea Snails Joseph Heller Sea Snails A natural history Illustrator: Tuvia Kurz Joseph Heller Evolution, Systematics and Ecology The Hebrew University of Jerusalem Jerusalem , Israel ISBN 978-3-319-15451-0 ISBN 978-3-319-15452-7 (eBook) DOI 10.1007/978-3-319-15452-7 Library of Congress Control Number: 2015941284 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Contents Part I A Background 1 What Is a Mollusc? ................................................................................
    [Show full text]
  • Seashore Beaty Box #007) Adaptations Lesson Plan and Specimen Information
    Table of Contents (Seashore Beaty Box #007) Adaptations lesson plan and specimen information ..................................................................... 27 Welcome to the Seashore Beaty Box (007)! .................................................................................. 28 Theme ................................................................................................................................................... 28 How can I integrate the Beaty Box into my curriculum? .......................................................... 28 Curriculum Links to the Adaptations Lesson Plan ......................................................................... 29 Science Curriculum (K-9) ................................................................................................................ 29 Science Curriculum (10-12 Drafts 2017) ...................................................................................... 30 Photos: Unpacking Your Beaty Box .................................................................................................... 31 Tray 1: ..................................................................................................................................................... 31 Tray 2: .................................................................................................................................................... 31 Tray 3: ..................................................................................................................................................
    [Show full text]
  • The Behavioral Ecology and Territoriality of the Owl Limpet, Lottia Gigantea
    THE BEHAVIORAL ECOLOGY AND TERRITORIALITY OF THE OWL LIMPET, LOTTIA GIGANTEA by STEPHANIE LYNN SCHROEDER A DISSERTATION Presented to the Department of Biology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy March 2011 DISSERTATION APPROVAL PAGE Student: Stephanie Lynn Schroeder Title: The Behavioral Ecology and Territoriality of the Owl Limpet, Lottia gigantea This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Biology by: Barbara (“Bitty”) Roy Chairperson Alan Shanks Advisor Craig Young Member Mark Hixon Member Frances White Outside Member and Richard Linton Vice President for Research and Graduate Studies/Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded March 2011 ii © 2011 Stephanie Lynn Schroeder iii DISSERTATION ABSTRACT Stephanie Lynn Schroeder Doctor of Philosophy Department of Biology March 2011 Title: The Behavioral Ecology and Territoriality of the Owl Limpet, Lottia gigantea Approved: _______________________________________________ Dr. Alan Shanks Territoriality, defined as an animal or group of animals defending an area, is thought to have evolved as a means to acquire limited resources such as food, nest sites, or mates. Most studies of territoriality have focused on vertebrates, which have large territories and even larger home ranges. While there are many models used to examine territories and territorial interactions, testing the models is limited by the logistics of working with the typical model organisms, vertebrates, and their large territories. An ideal organism for the experimental examination of territoriality would exhibit clear territorial behavior in the field and laboratory, would be easy to maintain in the laboratory, defend a small territory, and have movements and social interactions that were easily followed.
    [Show full text]
  • BMC Biology Biomed Central
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by GEO-LEOe-docs BMC Biology BioMed Central Research article Open Access A rapidly evolving secretome builds and patterns a sea shell Daniel J Jackson1,2, Carmel McDougall1,4, Kathryn Green1, Fiona Simpson3, Gert Wörheide2 and Bernard M Degnan*1 Address: 1School of Integrative Biology, University of Queensland, Brisbane Qld 4072, Australia, 2Department of Geobiology, Geoscience Centre, University of Göttingen, Goldschmidtstr.3, 37077 Göttingen, Germany, 3Institute of Molecular Biosciences, University of Queensland, Brisbane Qld 4072, Australia and 4Department of Zoology, University of Oxford, Tinbergen Bldg., South Parks Road, Oxford OX1 3PS, UK Email: Daniel J Jackson - [email protected]; Carmel McDougall - [email protected]; Kathryn Green - [email protected]; Fiona Simpson - [email protected]; Gert Wörheide - [email protected] goettingen.de; Bernard M Degnan* - [email protected] * Corresponding author Published: 22 November 2006 Received: 27 July 2006 Accepted: 22 November 2006 BMC Biology 2006, 4:40 doi:10.1186/1741-7007-4-40 This article is available from: http://www.biomedcentral.com/1741-7007/4/40 © 2006 Jackson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals.
    [Show full text]
  • Malacofauna Marina Del Parque Nacional “Los Caimanes”, Villa Clara, Cuba
    Tesis de Diploma Malacofauna Marina del Parque Nacional “Los Caimanes”, Villa Clara, Cuba. Autora: Liliana Olga Quesada Pérez Junio, 2011 Universidad Central “Marta Abreu” de Las Villas Facultad Ciencias Agropecuaria TESIS DE DIPLOMA Malacofauna marina del Parque Nacional “Los Caimanes”, Villa Clara, Cuba. Autora: Liliana Olga Quesada Pérez Tutor: M. C. Ángel Quirós Espinosa Investigador Auxiliar y Profesor Auxiliar [email protected] Centro de Estudios y Servicios Ambientales, CITMA-Villa Clara Carretera Central 716, Santa Clara Consultante: Dr.C. José Espinosa Sáez Investigador Titular Instituto de Oceanología Junio, 2011 Pensamiento “La diferencia entre una mala observación y una buena, es que la primera es errónea y la segunda es incompleta.” Van Hise Dedicatoria Dedicatoria: A mis padres, a Yandy y a mi familia: por las innumerables razones que me dan para vivir, y por ser fuente de inspiración para mis metas. Agradecimientos Agradecimientos: Muchos son los que de alguna forma contribuyeron a la realización de este trabajo, todos saben cuánto les agradezco: Primero quiero agradecer a mis padres, que aunque no estén presentes sé que de una forma u otra siempre estuvieron allí para darme todo su amor y apoyo. A mi familia en general: a mi abuela, hermano, a mis tíos por toda su ayuda y comprensión. A Yandy y a su familia que han estado allí frente a mis dificultades. Agradecer a mi tutor el M.Sc. Ángel Quirós, a mi consultante el Dr.C. José Espinosa y a la Dra.C. María Elena, por su dedicación para el logro de esta tesis. A mis compañeros de grupo por estos cinco años que hemos compartidos juntos, que para mí fueron inolvidables.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]