Biodec09 3(2)

Total Page:16

File Type:pdf, Size:1020Kb

Biodec09 3(2) © Prof. T.C. Narenderan Trust for Animal Taxonomy Biosystematica http://www.tcntrust.org/journal.php ISSN: 0973-7871(online) ISSN: 0973-9955 (print) A Review of Extant Subfamilies, Tribes and Ant Genera in India THRESIAMMA VARGHESE Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India. ABSTRACT. More than a century old monograph” Fauna of British India, including Ceylon and Burma – Hymenoptera – 2. Ants and Cuckoo-Wasps” by Bingham is still the guiding source for anybody who initiates taxonomic studies of Indian ants. However, over a century period, there are lots of changes in the status of many names, at the subfamily, tribe, genus and species levels, largely owing to several revision studies in many groups of the family Formicidae. In the recent past, across the world there are several remarkable endeavours in identifying the major clades of ants and to understand the relationships among them. In this review, the author has looked at some of those changes, which are pertaining to Indian fauna and the results are summarised below. Out of 5 subfamilies of the family Formicidae, mentioned in Bingham, 4 of them have valid status, while one of them is now known under a different name. Of the 79 genera mentioned, 53 of them are currently known to be present in India and retains the same name and valid status. Further, as per a recent approximation of ant species in India estimates 633 species of ants coming under 82 genera distributed across 13 subfamilies. KEYWORDS. Ants, Formicidae, subfamily, tribe, genera, and species. Introduction More than a century old, the precious book “Fauna of provided an extensive review on the current status of British India” on ant taxonomy by C.T. Bingham (1903) ant systematics. Recently, one more subfamily, is surely the beginning point for each and every person, Martialinae is added to the family Formicidae and who gets interested in taxonomy of the Indian ants. More proposed to be the sister lineage to all extant ants ever, it is still the guiding light for the beginners in ant (Rabeling et al., 2008). taxonomy. More over, revisions of majority of subfamilies, But over the years, the developments occurred in genera and species groups have been carried out by ant systematics across the globe, with the aid of various various people across the globe. The main revisions are tools and techniques in biology, ecology, behaviour and by Brown (1952, 1954, 1958, 1959, 1960 & 1975), Bolton phylogeny are excitingly remarkable. With the help of (1974, 1976, 1977, 1986, 1994, 1995 & 2003), Shattuck refined morphological characters, molecular, ecological (1992), Ward (1990 & 2001), Wilson (2003), and LaPolla and behavioural data, along with information from new (2004). The book “The Ants” by Holldobler and Wilson fossils, the ant phylogeny is better understood now than (1990) has compiled all known information on the biology ever before in the history of ant taxonomy and of ants till then known. systematics. Some of the recent molecular phylogenetic The best taxonomic achievement among all studies carried out by Ward & Brady (2003), Saux et developments is that identification keys for all subfamilies al., (2004), Brady et al., (2006), Moreau et al., (2006), and genera are available in English (Bolton,1994). In Ouellette et al., (2006), and other studies claim that addition, world class catalogue on ants of the world is “Formicoid clade” is the largest clade comprising 14 of also made available by Bolton (1995). An outstanding, the 20 extant ant subfamilies (Ward, 2007). He has single piece of publication, which provides information Corresponding author: [email protected] Biosystematica, 2009, 3(2): 81-89 81 82 THRESIAMMA VARGHESE about the diagnosis and status of all known extinct and The web page developed and maintained by the extant subfamilies, tribes, and genera of ants across the California Academy of Sciences is a marvellous world is the synopsis and classification of the family reference place for ant genera of the world. The antbase Formicidae by Bolton (2003). also provides links to many useful databases, like primary As a result of many such studies, there are quite taxonomic publications, Formis bibliography, distribution a lot of changes in the classification and scientific names database, Integrated Taxonomic Information System, of many ant species across the globe. Subsequently, the Hymenoptera Name Server etc. In addition, Global status of many subfamilies, tribes, genera and species Biodiversity Information Facility (GBIF-http:// names of ants in India also have changed; there are www.gbif.org, Date of access- 05/11/09) and Global many synonyms, new combinations,new revivals etc. Taxonomic Initiative (GTI-http://www.cbd.int/gti, Date of access-05/11/09) coordinate the efforts of various Since these changes have happened and have national museums and universities, and provide data on been happening at an exhilarating rate, all over the world species all over the world in an effort to trim down the over many years and carried out by various people in taxonomic impediment. In Asian countries, the database different parts of the world, all information is naturally on ant taxonomy and ecology is the antbase (http:// scattered and is not easily accessible to a beginner; though www.antbase.net/, Date of access-05/11/09). In addition most of the information is available online and become to this, another international network for Asian more or less transparent. myrmecologists for the improvement of ant taxonomy However, through modern approaches of and ecology is ANeT (http://homepage.mac.com/dorylus/ enormously passionate groups of people, and institutions, jorney.html, Date of access-05/11/09). This excellent the whole field of taxonomy and systematics is gaining initiative publishes a scientific journal “Asian significant momentum. More over, they are trying hard Myrmecology”. to bring most of the available information on biology, However, the main problem one faces, when one ecology, behaviour, taxonomy and systematics of ants look at ant genera and species in India is that the status to everyone through internet and other means. One of of many names given in Bingham (1903) have such ultimate attempts is the “ E-type initiative” recently undergone some changes. In this review, the author has began at the Museum of Comparative Zoology at looked at some of those changes and have summarised Harvard University, with the aim of putting detailed them below with the hope that this information is useful pictures of many ant species on Earth on the internet, to the beginners, especially for those who do not have which will be accessible to ant researchers all over the easy access to internet facility. world (http://insects.oeb.harvard.edu/etypes/about.htm, Date of access-05/11/09). As a result, many of the The following is an abstract of the major changes, problems existing in ant taxonomy, because of the which took place at the subfamily and genus level inaccessibility of many type specimens and the data taxonomy of ants in India, over a century. Since the associated with them, will eventually fade away. author aims this publication, on the whole, at the amateur ant taxonomists, it isn’t represented here in a strict As a result of many such unfailing efforts, at taxonomic pattern, but rather in a general form. A present, there are many useful websites, which are of synonymic synopsis of the Bingham’s species list is extreme use to any ant taxonomist. Some of the excellent available at http://ces.iisc.ernet.in/thresi/ web based identification resources freely available are AntWeb (www.antweb.org, Date of access-05/11/09), Results and Discussions Antbase (www.antbase.org, Date of access-05/11/09), As a result of various studies based on Australian Ants online (www.ento.csiro.au/science/ants, morphology, molecular data, along with information from Date of access-05/11/09). The Antweb and another fossils, the evolution of ants and their characters, database on Japanese ants are the first image databases relationships between various subfamilies, tribes and on ants. They provide good quality detailed photographs genera and species are better understood now and of ants showing taxonomic features, which enables subsequently they are reclassified and reorganized in species identification, without physically accessing the the present form (Bolton, 2003, Bolton et al., 2006). type specimens. Since most of the images are taken An extensive review of the work relevant to with high resolution microscopes and processed using the Indian fauna is presented in the manuscript auto montage software, the images are spectacular and (Varghese, in press). When one looks at the scenario in the details are shown to finer details. India, there isn’t much development in ant taxonomy Biosystematica, 2009, 3(2) Review of Extant Subfamilies, Tribes and Ant Genera in India 83 over the last hundred years. Hence there is nothing much The major changes at the genus level are the to look beyond the fauna volume by Bingham (1903). following. Two genera, Dorylus and Aenictus retain their This book provides descriptions and identification keys name. Under the subfamily Ponerinae, the Lioponera for ants up to species level, which still remains as the Mayr, Syscia Roger, and Ooceraea Roger, are major guiding source for the Indian ant taxonomists. synonymised under the genus Cerapachys Smith The fauna volume included the species of Sri (Brown, 1973 & 1975; Kempf, 1972). As mentioned Lanka and Burma also. Now the present author earlier, the genus Cerapachys is placed in the subfamily considers the fauna of political India only, mainly to make Cerapachyinae, not in the subfamily Ponerinae as it simple and to facilitate convenience for the Indian classified in the Bingham’s book (Wheeler, 1902, Bolton, audience.
Recommended publications
  • Ants in French Polynesia and the Pacific: Species Distributions and Conservation Concerns
    Ants in French Polynesia and the Pacific: species distributions and conservation concerns Paul Krushelnycky Dept of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, Hawaii Hervé Jourdan Centre de Biologie et de Gestion des Populations, INRA/IRD, Nouméa, New Caledonia The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) Photos © Alex Wild The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) • Involved in many important ecosystem processes: predator/prey relationships herbivory seed dispersal soil turning mutualisms Photos © Alex Wild The importance of ants • Important in shaping evolution of biotic communities and ecosystems Photos © Alex Wild Ants in the Pacific • Pacific archipelagoes the most remote in the world • Implications for understanding ant biogeography (patterns of dispersal, species/area relationships, community assembly) • Evolution of faunas with depauperate ant communities • Consequent effects of ant introductions Hypoponera zwaluwenburgi Ants in the Amblyopone zwaluwenburgi Pacific – current picture Ponera bableti Indigenous ants in the Pacific? Approx. 30 - 37 species have been labeled “wide-ranging Pacific natives”: Adelomyrmex hirsutus Ponera incerta Anochetus graeffei Ponera loi Camponotus chloroticus Ponera swezeyi Camponotus navigator Ponera tenuis Camponotus rufifrons
    [Show full text]
  • Paratrechina Longicornis (A) PEST INFORMATION
    Paratrechina longicornis Harris, R.; Abbott, K. (A) PEST INFORMATION A1. Classification Family: Formicidae h Subfamily: Formicinae c Tribe: Lasiini esear e R Genus: Paratrechina t , Landcar Species: longicornis of d T har Ric A2. Common names Crazy ant (Smith 1965), long-horned ant, hairy ant (Naumann 1993), higenaga-ameiro-ari (www36), slender crazy ant (Deyrup et al. 2000). A3. Original name Formica longicornis Latreille A4. Synonyms or changes in combination or taxonomy Paratrechina currens Motschoulsky, Formica gracilescens Nylander, Formica vagans Jerdon, Prenolepis longicornis (Latreille) Current subspecies: nominal plus Paratrechina longicornis var. hagemanni Forel A5. General description (worker) Identification Size: monomorphic workers about 2.3–3 mm long. Colour: head, thorax, petiole, and gaster are dark brown to blackish; the body often has faint bluish iridescence. Surface sculpture: head and body mostly with inconspicuous sculpture; appearing smooth and shining. INVASIVE ANT RISK ASSESSMENT Paratrechina longicornis Whole body has longish setae. Appears quite hairy. Hairs are light in colour grey to whitish. General description: antennae and legs extraordinarily long. Antenna slender, 12-segmented, without a club; scape at least 1.5 times as long as head including closed mandibles. Eyes large, maximum diameter 0.3 times head length; elliptical, strongly convex; placed close to the posterior border of the head. Head elongate; mandibles narrow, each with 5 teeth. Clypeus without longitudinal carinae. Alitrunk slender, dorsum almost straight from anterior portion of pronotum to propodeal dorsum. Metanotal groove slightly incised. Propodeum without spines, posterodorsal border rounded; propodeal spiracles distinct. One node (petiole) present, wedge-shaped, with a broad base, and inclined forward. Dorsal surface of head, alitrunk and gaster with long, coarse, suberect to erect greyish or whitish setae.
    [Show full text]
  • Bugs R All FINAL Apr 2014 R
    ISSN 2230 ! 7052 Newsletter of the $WIU4#NNInvertebrate Conservation & Information Network of South Asia (ICINSA) No. 21, April 2014 Photo: Aniruddha & Vishal Vishal Aniruddha & Photo: Contents Pages !"#$%&'(')*$+",-$.%+"/0"1-)2"3%%4&%,"')"5)*)*"67*$*47'"8*(#-,"/0"6*)2*&/$%"9)'.%$,'4+"3+"!"#$%%&'()#*"#+,'-.%/)#0"#1,'-23)#*"# 4'5'/,'6('-#'67#1"8"#9'-2:;<:('-'## # #"""## """## """# """## """## """## """# """######### ########=>? :%;"<%=/$>"/0"!"#"$%&'#(' '()*(+&',&-('.?'=/"@A@@"B8/&%/#4%$*C"D%)%3$'/)'>*%C"8)/>*&/)')'E"0$/("F)>'*";5#@"#$"#A%B7%#C#D"#E'."""""GHI J>/)*4*"BF),%=4*E"0*-)*"/0"K*$*>//$L"M*))-$L"M%$*&*L"N/-47"F)>'*";5#@26'5'6#!"#8'2-O""""## """## """# """## """### ###"""""PH@Q <%=/$>"/0"&/)2H7/$)%>"2$*,,7/##%$L"0*%12-2,2*3$4".(-%,252*"N4/&&L"@RSR"BJ$47/#4%$*C"D%T2/)''>*%E"0$/("U*7*$*,74$*L"F)>'*L" ;'47"*>>'V/)*&">'*2)/,V="=7*$*=4%$,";5#F"#4"#9G.2)#H"!"#D,'I'6%##'67#1"*"#H'2(I'7 """## """## """# """## """## ########@@H@W :/4%"/)"47%"X$,4",'27V)2"/0"5%$>/)Y,"5-(#')2"!)4L"6"*$&1-"#42'.'"5#"#2*L"5%$>/)"@S@I"BZ+(%)/#4%$*L"[/$('='>*%L"?/)%$')*%E" ')"M*$)*&*"6'$>"N*)=4-*$+L"<*'2*>"1',4$'=4L"U*7*$*,74$*L"F)>'*";5#J62-<77,'#$,':G-2('-##C#@2/,'.#0'/'. ## """## """######################@\H@G ['$,4"$%=/$>"/0"#7/4/4*]',"')"47%"U'&%V)*%L"^+=*%)'>*%";5#J"8"#02KK'#'67#*"#*5:GG6 """ """## """## """## """"""""@I 1'.%$,'4+"*)>",%*,/)*&"/==-$$%)=%"/0"3-_%$`'%,"*4"5';*a'"9)'.%$,'4+"8*(#-,L"b;*&'/$L"U*>7+*"?$*>%,7" ;5#82.'7-2#$'/B<&L'#'67#0"#4"#0'G """## """## """# """## """## """## """ """## """## """## """#"""""""""""""""""""""@PH"WQ 6'/&/2+"/0"47%"(/47"7&#"-"'#*%".43*#",""8$*(%$"B^%#'>/#4%$*C"^*,'/=*(#'>*%E"/)"F)>'*)"6*>*("D$%%.0&*8%-"5%".,"#"$$"
    [Show full text]
  • Early Behavioral and Molecular Events Leading to Caste Switching in the Ant Harpegnathos
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Early behavioral and molecular events leading to caste switching in the ant Harpegnathos Comzit Opachaloemphan,1,5 Giacomo Mancini,2,5 Nikos Konstantinides,2,5 Apurva Parikh,2 Jakub Mlejnek,2 Hua Yan,1,3,4 Danny Reinberg,1,3,6 and Claude Desplan2,6 1Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA; 2Department of Biology, New York University, New York, New York 10003, USA; 3Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA Ant societies show a division of labor in which a queen is in charge of reproduction while nonreproductive workers maintain the colony. In Harpegnathos saltator, workers retain reproductive ability, inhibited by the queen phero- mones. Following the queen loss, the colony undergoes social unrest with an antennal dueling tournament. Most workers quickly abandon the tournament while a few workers continue the dueling for months and become gamergates (pseudoqueens). However, the temporal dynamics of the social behavior and molecular mechanisms underlining the caste transition and social dominance remain unclear. By tracking behaviors, we show that the gamergate fate is accurately determined 3 d after initiation of the tournament. To identify genetic factors responsible for this commitment, we compared transcriptomes of different tissues between dueling and nondueling workers. We found that juvenile hormone is globally repressed, whereas ecdysone biosynthesis in the ovary is increased in gamergates. We show that molecular changes in the brain serve as earliest caste predictors compared with other tissues.
    [Show full text]
  • Composition of Canopy Ants (Hymenoptera: Formicidae) at Ton Nga Chang Wildlife Sanctuary, Songkhla Province, Thailand
    ORIGINAL ARTICLE Composition of canopy ants (Hymenoptera: Formicidae) at Ton Nga Chang Wildlife Sanctuary, Songkhla Province, Thailand Suparoek Watanasit1, Surachai Tongjerm2 and Decha Wiwatwitaya3 Abstract Watanasit, S., Tongjerm, S. and Wiwatwitaya, D. Composition of canopy ants (Hymenoptera: Formicidae) at Ton Nga Chang Wildlife Sanctuary, Songkhla Province, Thailand Songklanakarin J. Sci. Technol., Dec. 2005, 27(Suppl. 3) : 665-673 Canopy ants were examined in terms of a number of species and species composition between in high and low disturbance sites of lowland tropical rainforest at Ton Nga Chang Wildlife Sanctuary, Songkhla province, Thailand, from November 2001 to November 2002. A permanent plot of 100x100 m2 was set up and divided into 100 sub-units (10x10m2) on each study site. Pyrethroid fogging was two monthly applied to collect ants on three trees at random in a permanent plot. A total of 118 morphospecies in 29 genera belonging to six subfamilies were identified. The Formicinae subfamily found the highest species numbers (64 species) followed by Myrmicinae (32 species), Pseudomyrmecinae (10 species), Ponerinae (6 species), Dolichoderinae (5 species) and Aenictinae (1 species). Myrmicinae and Ponerinae showed a significant difference of mean species number between sites (P<0.05) while Formicinae and Myrmicinae also showed a significant difference of mean species number between months (P<0.05). However, there were no interactions between sites and months in any subfamily. Key words : ants, canopy, species composition, distrubance, Songkhla, Thailand 1M.Sc.(Zoology), Assoc. Prof. 2M.Sc. Student in Biology, Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 Thailand. 3D.Agr., Department of Forest Biology, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok 10900 Thailand.
    [Show full text]
  • Notes on Ants (Hymenoptera: Formicidae) from Gambia (Western Africa)
    ANNALS OF THE UPPER SILESIAN MUSEUM IN BYTOM ENTOMOLOGY Vol. 26 (online 010): 1–13 ISSN 0867-1966, eISSN 2544-039X (online) Bytom, 08.05.2018 LECH BOROWIEC1, SEBASTIAN SALATA2 Notes on ants (Hymenoptera: Formicidae) from Gambia (Western Africa) http://doi.org/10.5281/zenodo.1243767 1 Department of Biodiversity and Evolutionary Taxonomy, University of Wrocław, Przybyszewskiego 65, 51-148 Wrocław, Poland e-mail: [email protected], [email protected] Abstract: A list of 35 ant species or morphospecies collected in Gambia is presented, 9 of them are recorded for the first time from the country:Camponotus cf. vividus, Crematogaster cf. aegyptiaca, Dorylus nigricans burmeisteri SHUCKARD, 1840, Lepisiota canescens (EMERY, 1897), Monomorium cf. opacum, Monomorium cf. salomonis, Nylanderia jaegerskioeldi (MAYR, 1904), Technomyrmex pallipes (SMITH, 1876), and Trichomyrmex abyssinicus (FOREL, 1894). A checklist of 82 ant species recorded from Gambia is given. Key words: ants, faunistics, Gambia, new country records. INTRODUCTION Ants fauna of Gambia (West Africa) is poorly known. Literature data, AntWeb and other Internet resources recorded only 59 species from this country. For comparison from Senegal, which surrounds three sides of Gambia, 89 species have been recorded so far. Both of these records seem poor when compared with 654 species known from the whole western Africa (SHUCKARD 1840, ANDRÉ 1889, EMERY 1892, MENOZZI 1926, SANTSCHI 1939, LUSH 2007, ANTWIKI 2017, ANTWEB 2017, DIAMÉ et al. 2017, TAYLOR 2018). Most records from Gambia come from general web checklists of species. Unfortunately, they lack locality data, date of sampling, collector name, coordinates of the locality and notes on habitats.
    [Show full text]
  • 1 KEY to the DESERT ANTS of CALIFORNIA. James Des Lauriers
    KEY TO THE DESERT ANTS OF CALIFORNIA. James des Lauriers Dept Biology, Chaffey College, Alta Loma, CA [email protected] 15 Apr 2011 Snelling and George (1979) surveyed the Mojave and Colorado Deserts including the southern ends of the Owen’s Valley and Death Valley. They excluded the Pinyon/Juniper woodlands and higher elevation plant communities. I have included the same geographical region but also the ants that occur at higher elevations in the desert mountains including the Chuckwalla, Granites, Providence, New York and Clark ranges. Snelling, R and C. George, 1979. The Taxonomy, Distribution and Ecology of California Desert Ants. Report to Calif. Desert Plan Program. Bureau of Land Mgmt. Their keys are substantially modified in the light of more recent literature. Some of the keys include species whose ranges are not known to extend into the deserts. Names of species known to occur in the Mojave or Colorado deserts are colored red. I would appreciate being informed if you find errors or can suggest changes or additions. Key to the Subfamilies. WORKERS AND FEMALES. 1a. Petiole two-segmented. ……………………………………………………………………………………………………………………………………………..2 b. Petiole one-segmented. ……………………………………………………………………………………………………………………………………..………..4 2a. Frontal carinae narrow, not expanded laterally, antennal sockets fully exposed in frontal view. ……………………………….3 b. Frontal carinae expanded laterally, antennal sockets partially or fully covered in frontal view. …………… Myrmicinae, p 4 3a. Eye very large and covering much of side of head, consisting of hundreds of ommatidia; thorax of female with flight sclerites. ………………………………………………………………………………………………………………………………….…. Pseudomyrmecinae, p 2 b. Eye absent or vestigial and consist of a single ommatidium; thorax of female without flight sclerites.
    [Show full text]
  • The Ant Genus Carebarawestwood in the Arabian Peninsula
    A peer-reviewed open-access journal ZooKeys The357: 67–83 ant genus(2013)Carebara Westwood in the Arabian Peninsula (Hymenoptera, Formicidae) 67 doi: 10.3897/zookeys.357.5946 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research The ant genus Carebara Westwood in the Arabian Peninsula (Hymenoptera, Formicidae) Mostafa R. Sharaf1,†, Abdulrahman S. Aldawood1,‡ 1 Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, PO Box 2460, Kingdom of Saudi Arabia † http://zoobank.org/E2A42091-0680-4A5F-A28A-2AA4D2111BF3 ‡ http://zoobank.org/477070A0-365F-4374-A48D-1C62F6BC15D1 Corresponding author: Mostafa R. Sharaf ([email protected]) Academic editor: Brian Fisher | Received 9 July 2013 | Accepted 21 November 2013 | Published 2 December 2013 http://zoobank.org/8A85CE8B-BCC7-424E-92FA-18B5D1E40788 Citation: Sharaf MR, Aldawood AS (2013) The ant genus Carebara Westwood in the Arabian Peninsula (Hymenoptera, Formicidae). ZooKeys 357: 67–83. doi: 10.3897/zookeys.357.5946 Abstract The ant genus Carebara of the Arabian Peninsula is revised. Carebara abuhurayri Sharaf & Aldawood, 2011 is synonymized under Carebara arabica Collingwood & van Harten, 2001. Carebara arabica is redescribed and a Neotype is fixed based on a specimen collected from southwestern Kingdom of Saudi Arabia. A new species, C. fayrouzae sp. n. is described from Saudi Arabia based on queens, major and minor workers. Keys to major and minor workers of the two Arabian Carebara species are given. Keywords Saudi Arabia, Palearctic region, Myrmicinae, key, taxonomy, new species Copyright M.R. Sharaf, A.S. Aldawood. This is an open access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Ecological Partitioning and Invasive Ants (Hymenoptera: Formicidae) in a Tropical Rain Forest Ant Community from Fiji1
    Ecological Partitioning and Invasive Ants (Hymenoptera: Formicidae) in a Tropical Rain Forest Ant Community from Fiji1 Darren Ward2 Abstract: Determining composition and structure of ant communities may help understand how niche opportunities become available for invasive ant species and ultimately how communities are invaded. This study examined composition and structure of an ant community from a tropical rain forest in Fiji, specifically looking at spatial partitioning and presence of invasive ant species. A total of 27 species was collected, including five invasive species. Spatial partitioning be- tween arboreal (foliage beating) and litter (quadrat) samples was evident with a relatively low species overlap and a different composition of ant genera. Com- position and abundance of ants was also significantly different between litter and arboreal microhabitats at baits, but not at different bait types (oil, sugar, tuna). In terms of invasive ant species, there was no difference in number of invasive species between canopy and litter. However, the most common species, Paratre- china vaga, was significantly less abundant and less frequently collected in the canopy. In arboreal samples, invasive species were significantly smaller than en- demic species, which may have provided an opportunity for invasive species to become established. However, taxonomic disharmony (missing elements in the fauna) could also play an important role in success of invasive ant species across the Pacific region. Invasive ants represent a serious threat to biodiversity in Fiji and on many other Pacific islands. A greater understanding of habitat suscepti- bility and mechanisms for invasion may help mitigate their impacts. Explaining and predicting the success of 1999, Holway et al.
    [Show full text]
  • Download PDF File
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 30: 27-52 doi: 10.25849/myrmecol.news_030:027 16 January 2020 Original Article Unveiling the morphology of the Oriental rare monotypic ant genus Opamyrma Yamane, Bui & Eguchi, 2008 (Hymeno ptera: Formicidae: Leptanillinae) and its evolutionary implications, with first descriptions of the male, larva, tentorium, and sting apparatus Aiki Yamada, Dai D. Nguyen, & Katsuyuki Eguchi Abstract The monotypic genus Opamyrma Yamane, Bui & Eguchi, 2008 (Hymeno ptera, Formicidae, Leptanillinae) is an ex- tremely rare relictual lineage of apparently subterranean ants, so far known only from a few specimens of the worker and queen from Ha Tinh in Vietnam and Hainan in China. The phylogenetic position of the genus had been uncertain until recent molecular phylogenetic studies strongly supported the genus to be the most basal lineage in the cryptic subterranean subfamily Leptanillinae. In the present study, we examine the morphology of the worker, queen, male, and larva of the only species in the genus, Opamyrma hungvuong Yamane, Bui & Eguchi, 2008, based on colonies newly collected from Guangxi in China and Son La in Vietnam, and provide descriptions and illustrations of the male, larva, and some body parts of the worker and queen (including mouthparts, tentorium, and sting apparatus) for the first time. The novel morphological data, particularly from the male, larva, and sting apparatus, support the current phylogenetic position of the genus as the most basal leptanilline lineage. Moreover, we suggest that the loss of lancet valves in the fully functional sting apparatus with accompanying shift of the venom ejecting mechanism may be a non-homoplastic synapomorphy for the Leptanillinae within the Formicidae.
    [Show full text]
  • Poneromorfas Do Brasil Miolo.Indd
    10 - Citogenética e evolução do cariótipo em formigas poneromorfas Cléa S. F. Mariano Igor S. Santos Janisete Gomes da Silva Marco Antonio Costa Silvia das Graças Pompolo SciELO Books / SciELO Livros / SciELO Libros MARIANO, CSF., et al. Citogenética e evolução do cariótipo em formigas poneromorfas. In: DELABIE, JHC., et al., orgs. As formigas poneromorfas do Brasil [online]. Ilhéus, BA: Editus, 2015, pp. 103-125. ISBN 978-85-7455-441-9. Available from SciELO Books <http://books.scielo.org>. All the contents of this work, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 International license. Todo o conteúdo deste trabalho, exceto quando houver ressalva, é publicado sob a licença Creative Commons Atribição 4.0. Todo el contenido de esta obra, excepto donde se indique lo contrario, está bajo licencia de la licencia Creative Commons Reconocimento 4.0. 10 Citogenética e evolução do cariótipo em formigas poneromorfas Cléa S.F. Mariano, Igor S. Santos, Janisete Gomes da Silva, Marco Antonio Costa, Silvia das Graças Pompolo Resumo A expansão dos estudos citogenéticos a cromossomos de todas as subfamílias e aquela partir do século XIX permitiu que informações que apresenta mais informações a respeito de ca- acerca do número e composição dos cromosso- riótipos é também a mais diversa em número de mos fossem aplicadas em estudos evolutivos, ta- espécies: Ponerinae Lepeletier de Saint Fargeau, xonômicos e na medicina humana. Em insetos, 1835. Apenas nessa subfamília observamos carió- são conhecidos os cariótipos em diversas ordens tipos com número cromossômico variando entre onde diversos padrões cariotípicos podem ser ob- 2n=8 a 120, gêneros com cariótipos estáveis, pa- servados.
    [Show full text]
  • Hymenoptera: Formicidae)
    ASIAN MYRMECOLOGY Volume 8, 17 – 48, 2016 ISSN 1985-1944 © Weeyawat Jaitrong, Benoit Guénard, Evan P. Economo, DOI: 10.20362/am.008019 Nopparat Buddhakala and Seiki Yamane A checklist of known ant species of Laos (Hymenoptera: Formicidae) Weeyawat Jaitrong1, Benoit Guénard2, Evan P. Economo3, Nopparat Buddhakala4 and Seiki Yamane5* 1 Thailand Natural History Museum, National Science Museum, Technopolis, Khlong 5, Khlong Luang, Pathum Thani, 12120 Thailand E-mail: [email protected] 2 School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China 3 Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan 4 Biology Divisions, Faculty of Science and Technology, Rajamangala Univer- sity of Technology Tanyaburi, Pathum Thani 12120 Thailand E-mail: [email protected] 5 Kagoshima University Museum, Korimoto 1-21-30, Kagoshima-shi, 890-0065 Japan *Corresponding author’s email: [email protected] ABSTRACT. Laos is one of the most undersampled areas for ant biodiversity. We begin to address this knowledge gap by presenting the first checklist of Laotian ants. The list is based on a literature review and on specimens col- lected from several localities in Laos. In total, 123 species with three additional subspecies in 47 genera belonging to nine subfamilies are listed, including 62 species recorded for the first time in the country. Comparisons with neighboring countries suggest that this list is still very incomplete. The provincial distribu- tion of ants within Laos also show that most species recorded are from Vien- tiane Province, the central part of Laos while the majority of other provinces have received very little, if any, ant sampling.
    [Show full text]