Raman Spectroscopic Study of the Molybdate Mineral Szenicsite and Comparison with Other Paragenetically Related Molybdate Minerals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Standard X-Ray Diffraction Powder Patterns
NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. -
Oxygenic Bismuth Minerals in the NE Part of the Karkonosze Pluton (West Sudetes, SW Poland)
Acta Geologica Polonica, Vol. 68 (2018), No. 4, pp. 537–554 DOI: 10.1515/agp-2018-0016 Oxygenic bismuth minerals in the NE part of the Karkonosze pluton (West Sudetes, SW Poland) ANDRZEJ KOZŁOWSKI and WITOLD MATYSZCZAK* Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warszawa, Poland. *E-mail: [email protected] ABSTRACT: Kozłowski, A. and Matyszczak, W. 2018. Oxygenic bismuth minerals in the NE part of the Karkonosze pluton (West Sudetes, SW Poland). Acta Geologica Polonica, 68 (4), 537–554. Warszawa. The study presents fifteen oxygen-bearing secondary minerals of bismuth from the north-eastern part of the Variscan Karkonosze granitoid pluton in the northern zone of the Bohemian massif. The minerals were inves- tigated by optical, electron microprobe, classic chemical, XRD, IR absorption and fluid inclusion methods. The late, very low temperature epithermal solutions most probably caused formation of sillénite, kusachiite, bismoclite, bismutite, beyerite, kettnerite, pucherite, schumacherite, namibite and eulytite. Solutions dominated by supergene (meteoric) waters were the parents for bismite, russellite, koechlinite, ximengite and walpurgite. The paper also contains information on early research on the investigated minerals. Key words: Karkonosze granitoid pluton; Bismuth minerals; Secondary minerals; Oxidation; Vein; Pegmatite. FOREWORD joined by WM as the co-author, interested like him in further investigations of the Karkonosze pluton (see The paper presents an investigation of several ox- e.g., Matyszczak 2018). ygen-bearing minerals of bismuth, which were found in the Karkonosze granitoid, collected during field work by AK in 1976–1990. Most of the minerals were INTRODUCTION not known until the present either from the Polish part of the Karkonosze pluton, or from the area of The systematic scientific investigation of the Poland. -
Geological Notes on the Miami-Inspiration Mine E
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/13 Geological Notes on the Miami-Inspiration Mine E. F. Reed and W. W. Simmons, 1962, pp. 153-157 in: Mogollon Rim Region (East-Central Arizona), Weber, R. H.; Peirce, H. W.; [eds.], New Mexico Geological Society 13th Annual Fall Field Conference Guidebook, 175 p. This is one of many related papers that were included in the 1962 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. -
Abraplata Resource Corp. Technical Report on the Diablillos Project, Salta Province, Argentina
ABRAPLATA RESOURCE CORP. TECHNICAL REPORT ON THE DIABLILLOS PROJECT, SALTA PROVINCE, ARGENTINA NI 43-101 Report Qualified Persons: David W. Rennie, P.Eng. Scott Ladd, P.Eng. Ian Weir, P.Eng. Gerry Neeling, FAusIMM April 16, 2018 RPA 55 University Ave. Suite 501 I Toronto, ON, Canada M5J 2H7 IT + 1 (416) 947 0907 www.rpacan.com Report Control Form Document Title Technical Report on the Diablillos Project, Salta Province, Argentina Client Name & Address AbraPlata Resource Corp. Esmeralda 920, Suite 2906 C1007ADL Buenos Aires Argentina Document Reference Status & FINAL Project # 2841 Issue No. Version Issue Date April 16, 2018 Lead Author Scott Ladd (Signed) Peer Reviewer William Roscoe (Signed) Glen Ehasoo (Signed) Project Manager Approval Scott Ladd (Signed) Project Director Approval Jason Cox (Signed) Report Distribution Name No. of Copies Client RPA Filing 1 (project box) Roscoe Postle Associates Inc. 55 University Avenue, Suite 501 Toronto, ON M5J 2H7 Canada Tel: +1 416 947 0907 Fax: +1 416 947 0395 [email protected] www.rpacan.com FORWARD-LOOKING INFORMATION This report contains forward-looking statements. All statements, other than statements of historical fact regarding AbraPlata Resource Corp. or Diablillos Project, are forward-looking statements. The words "believe", "expect", "anticipate", "contemplate", "target", "plan", "intend", "project", "continue", "budget", "estimate", "potential", "may", "will", "can", "could" and similar expressions identify forward-looking statements. In particular, this report contains forward-looking statements with respect to cash flow forecasts, projected capital, operating and exploration expenditure, targeted cost reductions, mine life and production rates, potential mineralization and metal or mineral recoveries, and information pertaining to potential improvements to financial and operating performance and mine life at the Diablillos Project that may result from expansion projects or other initiatives. -
Petrology and Mineralogy of the "Old Workings Area," El Salvador, Chile
Scholars' Mine Masters Theses Student Theses and Dissertations 1965 Petrology and mineralogy of the "Old Workings Area," El Salvador, Chile Bertis James Vander Schaaff Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Geology Commons Department: Recommended Citation Vander Schaaff, Bertis James, "Petrology and mineralogy of the "Old Workings Area," El Salvador, Chile" (1965). Masters Theses. 5240. https://scholarsmine.mst.edu/masters_theses/5240 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. > I - ! ! PETROlOGY AND MINERAlOGY OF THE "OLD WJRKINGS AREA," EL SALVADOR, CHILE I o BY BERTIS J~ANDER SCHAAFF 'i~I A THESIS submitted to the faculty of THE UNIVERSITY OF MISSOURI AT ROLLA in partial fulfillment of the requirements for the Degree of .MASTER OF SCIENCE IN GEOlOGY Rolla, Missouri 1965 Approved by Q - 71.._. }j ,.;4-dJ_ /J. 7~ _(advisor) ~/Y51A~v ... TABLE OF CONTENTS Page ABSTRACT •••••••••••• . i LIST OF FIGURES •••• . ii LIST OF PLATES •••••••• . .. iii I. INTRODUCTION •••••••••••••••••• . 1 A. Purpose of Investigation •• . 1 B. location and Size of Area. 1 c. Topography •••••••••••••• . 3 D. Climate and Vegetation •• . 4 E. Culture .•••••.•..••.•••.••.•..• . 5 F. Field and Laboratory Procedure. 7 G. Acknowledgements ••••••••• . 9 II. GENERAL GEOLOGIC SETTING •••• . .. .. 10 A. Previous Investigations ••••• . 10 B. Petrology and Age Relations. 11 c. Structure ••••••••••••••••• . .. 12 III. PORPHYRY-TYPE ORE DEPOSITS •••••••••••••••••••• 15 A. Mineralogy •••••• . 15 B. -
New Mineral Names*,†
American Mineralogist, Volume 106, pages 1186–1191, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1 and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 10 new species, including huenite, laverovite, pandoraite-Ba, pandoraite- Ca, and six new species of pyrochlore supergroup: cesiokenomicrolite, hydrokenopyrochlore, hydroxyplumbo- pyrochlore, kenoplumbomicrolite, oxybismutomicrolite, and oxycalciomicrolite. Huenite* hkl)]: 6.786 (25; 100), 5.372 (25, 101), 3.810 (51; 110), 2.974 (100; 112), P. Vignola, N. Rotiroti, G.D. Gatta, A. Risplendente, F. Hatert, D. Bersani, 2.702 (41; 202), 2.497 (38; 210), 2.203 (24; 300), 1.712 (60; 312), 1.450 (37; 314). The crystal structure was solved by direct methods and refined and V. Mattioli (2019) Huenite, Cu4Mo3O12(OH)2, a new copper- molybdenum oxy-hydroxide mineral from the San Samuel Mine, to R1 = 3.4% using the synchrotron light source. Huenite is trigonal, 3 Carrera Pinto, Cachiyuyo de Llampos district, Copiapó Province, P31/c, a = 7.653(5), c = 9.411(6) Å, V = 477.4 Å , Z = 2. The structure Atacama Region, Chile. Canadian Mineralogist, 57(4), 467–474. is based on clusters of Mo3O12(OH) and Cu4O16(OH)2 units. Three edge- sharing Mo octahedra form the Mo3O12(OH) unit, and four edge-sharing Cu-octahedra form the Cu4O16(OH)2 units of a “U” shape, which are in Huenite (IMA 2015-122), ideally Cu4Mo3O12(OH)2, trigonal, is a new mineral discovered on lindgrenite specimens from the San Samuel turn share edges to form a sheet of Cu octahedra parallel to (001). -
Circular of the Bureau of Standards No. 539 Volume 5: Standard X-Ray
: :;.ta^4aya9 . Bl.ig NBS CIRCULAR 539 VOLUME V Reference taken Standard X-ray Diffraction Powder Patterns UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Standard X-ray Diffraction Powder Patterns The four previously issued volumes in this series are avail- able from the Superintendent of Documents, U. S. Govern- ment Printing Office, Washington 25, D. C., as follows: NBS Circular 539, Volume I, Standard X-ray Diffraction Powder Patterns (Data for 54 inorganic substances) NBS Circular 539, Volume II, Standard X-ray Diffraction Powder Patterns (Data for 30 inorganic substances) NBS Circular 539, Volume III, Standard X-ray Diffraction Powder Patterns (Data for 34 inorganic substances) NBS Circular 539, Volume IV, Standard X-ray Diffraction Powder Patterns (Data for 42 inorganic substances) The price of each volume is 45 cents. Send orders with remittance to: Superintendent of Documents, Government Printing Office, Washington 25, D. C. UNITED STATES DEPARTMENT OF COMMERCE • Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director Standard X-ray Diffraction Powder Patterns Howard E. Swanson, Nancy T. Gilfrich, and George M. Ugrinic National Bureau of Standards Circular 539 Volume V, Issued October 21, 1955 For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Price 45 cents CONTENTS Page Page Introduction 1 Standard X-ray powder patterns—Continued Standard X-ray powder patterns: Lead titanate, PbTi0 3 39 Ammonium chloroplatinate, (NH 4 ) 2 PtCl 6 3 Magnesium tin, Mg 2 Sn 41 Ammonium chlorostannate, (NH 4 ) 2 SnCl 6 4 Magnesium titanate (geikielite), MgTi0 3 43 Ammonium fluosilicate (cryptohalite), Manganese (II) oxide, (manganosite) MnO._ 45 (NH 4 ) 2 SiF6 5 Molybdenum disulfide (molybdenite), MoS 2 _. -
Tungsten Minerals and Deposits
DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 652 4"^ TUNGSTEN MINERALS AND DEPOSITS BY FRANK L. HESS WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY CONTENTS. Page. Introduction.............................................................. , 7 Inquiries concerning tungsten......................................... 7 Survey publications on tungsten........................................ 7 Scope of this report.................................................... 9 Technical terms...................................................... 9 Tungsten................................................................. H Characteristics and properties........................................... n Uses................................................................. 15 Forms in which tungsten is found...................................... 18 Tungsten minerals........................................................ 19 Chemical and physical features......................................... 19 The wolframites...................................................... 21 Composition...................................................... 21 Ferberite......................................................... 22 Physical features.............................................. 22 Minerals of similar appearance................................. -
Design Rules for Discovering 2D Materials from 3D Crystals
Design Rules for Discovering 2D Materials from 3D Crystals by Eleanor Lyons Brightbill Collaborators: Tyler W. Farnsworth, Adam H. Woomer, Patrick C. O'Brien, Kaci L. Kuntz Senior Honors Thesis Chemistry University of North Carolina at Chapel Hill April 7th, 2016 Approved: ___________________________ Dr Scott Warren, Thesis Advisor Dr Wei You, Reader Dr. Todd Austell, Reader Abstract Two-dimensional (2D) materials are championed as potential components for novel technologies due to the extreme change in properties that often accompanies a transition from the bulk to a quantum-confined state. While the incredible properties of existing 2D materials have been investigated for numerous applications, the current library of stable 2D materials is limited to a relatively small number of material systems, and attempts to identify novel 2D materials have found only a small subset of potential 2D material precursors. Here I present a rigorous, yet simple, set of criteria to identify 3D crystals that may be exfoliated into stable 2D sheets and apply these criteria to a database of naturally occurring layered minerals. These design rules harness two fundamental properties of crystals—Mohs hardness and melting point—to enable a rapid and effective approach to identify candidates for exfoliation. It is shown that, in layered systems, Mohs hardness is a predictor of inter-layer (out-of-plane) bond strength while melting point is a measure of intra-layer (in-plane) bond strength. This concept is demonstrated by using liquid exfoliation to produce novel 2D materials from layered minerals that have a Mohs hardness less than 3, with relative success of exfoliation (such as yield and flake size) dependent on melting point. -
A New Mineral from Su Senargiu (CA), Sardinia, Italy, and a Second Occurrence from Kingsgate, New England, Australia
American Mineralogist, Volume 96, pages 268–273, 2011 6+ 5+ Gelosaite, BiMo(2–5x)Mo6xO7(OH)·H2O (0 ≤ x ≤ 0.4), a new mineral from Su Senargiu (CA), Sardinia, Italy, and a second occurrence from Kingsgate, New England, Australia PAOLO ORLANDI ,1 FRANCESCO DEMARTIN ,2,* MARCO PASERO ,1 PETER LEVERETT ,3 PETER A. WILLIAMS ,3 AND DAVID E. HIBBS 4 1Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy 2Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università degli Studi di Milano, Via G. Venezian 21, I-20133 Milano, Italy 3School of Natural Sciences, University of Western Sydney, Locked Bag 1797, Penrith South DC, New South Wales 1797, Australia 4School of Pharmacy, University of Sydney, New South Wales 2006, Australia ABSTRACT 6+ 5+ Gelosaite, BiMo(2–5x)Mo6xO7(OH)·H2O (0 ≤ x ≤ 0.4), occurs at the type locality in quartz veins hosted by granitic rocks at Su Senargiu, near Sarroch, Sardegna, Italy. The name is in memory of Mario Gelosa (1947–2006) who first found the mineral. The mineral also occurs in the oxidized zones of the Old 25 and Wolfram pipes at Kingsgate, New South Wales, Australia. Both the mineral and its name have been approved by the IMA CNMNC (IMA 2009-022). Gelosaite occurs as yel- low, yellowish green, and pale blue, prismatic crystals with a white streak. It is transparent with an adamantine luster, non-fluorescent, brittle, and has a conchoidal fracture. Mohs hardness is ~3. The mineral is monoclinic, space group P21/n, with a = 5.8505(4), b = 9.0421(6), c = 13.917(1) Å, β = 100.42(1)°, V = 724.1(1) Å3, Z = 4 (yellow Su Senargiu crystal); a = 5.8570(5), b = 9.0517(8), c = 13.992(1) Å, β = 100.44(1)°, V = 729.5(1) Å3, Z = 4 (pale blue Su Senargiu crystal); a = 5.837(3), b = 9.040(5), c = 13.904(7) Å, β = 100.64(1)°, V = 721.0(6) Å3, Z = 4 (blue Kingsgate crystal). -
Minerals Found in Michigan Listed by County
Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee, -
STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials.