Geological Notes on the Miami-Inspiration Mine E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Petrology and Mineralogy of the "Old Workings Area," El Salvador, Chile
Scholars' Mine Masters Theses Student Theses and Dissertations 1965 Petrology and mineralogy of the "Old Workings Area," El Salvador, Chile Bertis James Vander Schaaff Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Geology Commons Department: Recommended Citation Vander Schaaff, Bertis James, "Petrology and mineralogy of the "Old Workings Area," El Salvador, Chile" (1965). Masters Theses. 5240. https://scholarsmine.mst.edu/masters_theses/5240 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. > I - ! ! PETROlOGY AND MINERAlOGY OF THE "OLD WJRKINGS AREA," EL SALVADOR, CHILE I o BY BERTIS J~ANDER SCHAAFF 'i~I A THESIS submitted to the faculty of THE UNIVERSITY OF MISSOURI AT ROLLA in partial fulfillment of the requirements for the Degree of .MASTER OF SCIENCE IN GEOlOGY Rolla, Missouri 1965 Approved by Q - 71.._. }j ,.;4-dJ_ /J. 7~ _(advisor) ~/Y51A~v ... TABLE OF CONTENTS Page ABSTRACT •••••••••••• . i LIST OF FIGURES •••• . ii LIST OF PLATES •••••••• . .. iii I. INTRODUCTION •••••••••••••••••• . 1 A. Purpose of Investigation •• . 1 B. location and Size of Area. 1 c. Topography •••••••••••••• . 3 D. Climate and Vegetation •• . 4 E. Culture .•••••.•..••.•••.••.•..• . 5 F. Field and Laboratory Procedure. 7 G. Acknowledgements ••••••••• . 9 II. GENERAL GEOLOGIC SETTING •••• . .. .. 10 A. Previous Investigations ••••• . 10 B. Petrology and Age Relations. 11 c. Structure ••••••••••••••••• . .. 12 III. PORPHYRY-TYPE ORE DEPOSITS •••••••••••••••••••• 15 A. Mineralogy •••••• . 15 B. -
New Mineral Names*,†
American Mineralogist, Volume 106, pages 1186–1191, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1 and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 10 new species, including huenite, laverovite, pandoraite-Ba, pandoraite- Ca, and six new species of pyrochlore supergroup: cesiokenomicrolite, hydrokenopyrochlore, hydroxyplumbo- pyrochlore, kenoplumbomicrolite, oxybismutomicrolite, and oxycalciomicrolite. Huenite* hkl)]: 6.786 (25; 100), 5.372 (25, 101), 3.810 (51; 110), 2.974 (100; 112), P. Vignola, N. Rotiroti, G.D. Gatta, A. Risplendente, F. Hatert, D. Bersani, 2.702 (41; 202), 2.497 (38; 210), 2.203 (24; 300), 1.712 (60; 312), 1.450 (37; 314). The crystal structure was solved by direct methods and refined and V. Mattioli (2019) Huenite, Cu4Mo3O12(OH)2, a new copper- molybdenum oxy-hydroxide mineral from the San Samuel Mine, to R1 = 3.4% using the synchrotron light source. Huenite is trigonal, 3 Carrera Pinto, Cachiyuyo de Llampos district, Copiapó Province, P31/c, a = 7.653(5), c = 9.411(6) Å, V = 477.4 Å , Z = 2. The structure Atacama Region, Chile. Canadian Mineralogist, 57(4), 467–474. is based on clusters of Mo3O12(OH) and Cu4O16(OH)2 units. Three edge- sharing Mo octahedra form the Mo3O12(OH) unit, and four edge-sharing Cu-octahedra form the Cu4O16(OH)2 units of a “U” shape, which are in Huenite (IMA 2015-122), ideally Cu4Mo3O12(OH)2, trigonal, is a new mineral discovered on lindgrenite specimens from the San Samuel turn share edges to form a sheet of Cu octahedra parallel to (001). -
STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials. -
New Mineral Names*,†
American Mineralogist, Volume 106, pages 1186–1191, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1 and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 10 new species, including huenite, laverovite, pandoraite-Ba, pandoraite- Ca, and six new species of pyrochlore supergroup: cesiokenomicrolite, hydrokenopyrochlore, hydroxyplumbo- pyrochlore, kenoplumbomicrolite, oxybismutomicrolite, and oxycalciomicrolite. Huenite* hkl)]: 6.786 (25; 100), 5.372 (25, 101), 3.810 (51; 110), 2.974 (100; 112), P. Vignola, N. Rotiroti, G.D. Gatta, A. Risplendente, F. Hatert, D. Bersani, 2.702 (41; 202), 2.497 (38; 210), 2.203 (24; 300), 1.712 (60; 312), 1.450 (37; 314). The crystal structure was solved by direct methods and refined and V. Mattioli (2019) Huenite, Cu4Mo3O12(OH)2, a new copper- molybdenum oxy-hydroxide mineral from the San Samuel Mine, to R1 = 3.4% using the synchrotron light source. Huenite is trigonal, 3 Carrera Pinto, Cachiyuyo de Llampos district, Copiapó Province, P31/c, a = 7.653(5), c = 9.411(6) Å, V = 477.4 Å , Z = 2. The structure Atacama Region, Chile. Canadian Mineralogist, 57(4), 467–474. is based on clusters of Mo3O12(OH) and Cu4O16(OH)2 units. Three edge- sharing Mo octahedra form the Mo3O12(OH) unit, and four edge-sharing Cu-octahedra form the Cu4O16(OH)2 units of a “U” shape, which are in Huenite (IMA 2015-122), ideally Cu4Mo3O12(OH)2, trigonal, is a new mineral discovered on lindgrenite specimens from the San Samuel turn share edges to form a sheet of Cu octahedra parallel to (001). -
A Specific Gravity Index for Minerats
A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951). -
Markascherite, Cu3(Moo4)(OH)4, a New Mineral Species Polymorphic with Szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A
American Mineralogist, Volume 97, pages 197–202, 2012 Markascherite, Cu3(MoO4)(OH)4, a new mineral species polymorphic with szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A. H. YANG,* R.A. JENKINS, R.M. THOMPSON, R.T. DOWNS, S.H. EVANS, AND E.M. BLOCH Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721, U.S.A. ABSTRACT A new mineral species, markascherite (IMA2010-051), ideally Cu3(MoO4)(OH)4, has been found at Copper Creek, Pinal County, Arizona, U.S.A. The mineral is of secondary origin and is associated with brochantite, antlerite, lindgrenite, wulfenite, natrojarosite, and chalcanthite. Markascherite crys- tals are bladed (elongated along the b axis), up to 0.50 × 0.10 × 0.05 mm. The dominant forms are {001}, {100}, and {010}. Twinning is found with the twofold twin axis along [101]. The mineral is green, transparent with green streak and vitreous luster. It is brittle and has a Mohs hardness of 3.5~4; cleavage is perfect on {100} and no parting was observed. The calculated density is 4.216 g/cm3. Optically, markascherite is biaxial (–), with nα >1.8, nβ > 1.8, and nγ >1.8. The dispersion is strong (r > v). It is insoluble in water, acetone, or hydrochloric acid. An electron microprobe analysis yielded an empirical formula Cu2.89(Mo1.04O4)(OH)4. Markascherite, polymorphic with szenicsite, is monoclinic, with space group P21/m and unit-cell parameters a = 9.9904(6), b = 5.9934(4), c = 5.5255(4) Å, β = 97.428(4)°, and V = 328.04(4) Å3. -
10878366.Pdf
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queensland University of Technology ePrints Archive COVER SHEET This is the author version of article published as: Frost, Ray L. and Bouzaid, Jocelyn and Butler, Ian S. (2007) Raman spectroscopic study of the molybdate mineral szenicsite and compared with other paragenetically related molybdate minerals. Spectyroscopy Letters 40(4):pp. 603-614. Copyright 2007 Taylor & Francis Accessed from http://eprints.qut.edu.au Raman spectroscopic study of the molybdate mineral szenicsite and compared with other paragenetically related molybdate minerals Ray L. Frost•a, Jocelyn Bouzaid a and Ian S. Butler b a Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. a Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6. Abstract: The molybdate-bearing mineral szenicsite, Cu3(MoO4)(OH)4, has been studied by Raman and infrared spectroscopy. A comparison of the Raman spectra is made with those of the closely related molybdate-bearing minerals, wulfenite, powellite, lindgrenite and iriginite, which show common paragenesis. The Raman spectrum of szenicsite displays an intense, -1 sharp band at 898 cm , attributed to the ν1 symmetric stretching vibration of the MoO4 units. The position of this particular band may be compared with the values of 871 cm-1 for wulfenite and scheelite, and 879 cm-1 for powellite. Two Raman bands are observed -1 at 827 and 801 cm for szenicsite, which are assigned to the ν3(Eg) vibrational mode of -1 the molybdate anion. -
Minerals of Arizona Report
MINERALS OF ARIZONA by Frederic W. Galbraith and Daniel J. Brennan THE ARIZONA BUREAU OF MINES Price One Dollar Free to Residents of Arizona Bulletin 181 1970 THE UNIVERSITY OF ARIZONA TUCSON TABLE OF CONT'ENTS EIements .___ 1 FOREWORD Sulfides ._______________________ 9 As a service about mineral matters in Arizona, the Arizona Bureau Sulfosalts ._. .___ __ 22 of Mines, University of Arizona, is pleased to reprint the long-standing booklet on MINERALS OF ARIZONA. This basic journal was issued originally in 1941, under the authorship of Dr. Frederic W. Galbraith, as Simple Oxides .. 26 a bulletin of the Arizona Bureau of Mines. It has moved through several editions and, in some later printings, it was authored jointly by Dr. Gal Oxides Containing Uranium, Thorium, Zirconium .. .... 34 braith and Dr. Daniel J. Brennan. It now is being released in its Fourth Edition as Bulletin 181, Arizona Bureau of Mines. Hydroxides .. .. 35 The comprehensive coverage of mineral information contained in the bulletin should serve to give notable and continuing benefits to laymen as well as to professional scientists of Arizona. Multiple Oxides 37 J. D. Forrester, Director Arizona Bureau of Mines Multiple Oxides Containing Columbium, February 2, 1970 Tantaum, Titanium .. .. .. 40 Halides .. .. __ ____ _________ __ __ 41 Carbonates, Nitrates, Borates .. .... .. 45 Sulfates, Chromates, Tellurites .. .. .. __ .._.. __ 57 Phosphates, Arsenates, Vanadates, Antimonates .._ 68 First Edition (Bulletin 149) July 1, 1941 Vanadium Oxysalts ...... .......... 76 Second Edition, Revised (Bulletin 153) April, 1947 Third Edition, Revised 1959; Second Printing 1966 Fourth Edition (Bulletin 181) February, 1970 Tungstates, Molybdates.. _. .. .. .. 79 Silicates ... -
Markascherite, Cu3(Moo4)(OH)4, a New Mineral Species Polymorphic with Szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A
American Mineralogist, Volume 97, pages 197–202, 2012 Markascherite, Cu3(MoO4)(OH)4, a new mineral species polymorphic with szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A. H. YANG,* R.A. JENKINS, R.M. THOMPSON, R.T. DOWNS, S.H. EVANS, AND E.M. BLOCH Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721, U.S.A. ABSTRACT A new mineral species, markascherite (IMA2010-051), ideally Cu3(MoO4)(OH)4, has been found at Copper Creek, Pinal County, Arizona, U.S.A. The mineral is of secondary origin and is associated with brochantite, antlerite, lindgrenite, wulfenite, natrojarosite, and chalcanthite. Markascherite crys- tals are bladed (elongated along the b axis), up to 0.50 × 0.10 × 0.05 mm. The dominant forms are {001}, {100}, and {010}. Twinning is found with the twofold twin axis along [101]. The mineral is green, transparent with green streak and vitreous luster. It is brittle and has a Mohs hardness of 3.5~4; cleavage is perfect on {100} and no parting was observed. The calculated density is 4.216 g/cm3. Optically, markascherite is biaxial (–), with nα >1.8, nβ > 1.8, and nγ >1.8. The dispersion is strong (r > v). It is insoluble in water, acetone, or hydrochloric acid. An electron microprobe analysis yielded an empirical formula Cu2.89(Mo1.04O4)(OH)4. Markascherite, polymorphic with szenicsite, is monoclinic, with space group P21/m and unit-cell parameters a = 9.9904(6), b = 5.9934(4), c = 5.5255(4) Å, β = 97.428(4)°, and V = 328.04(4) Å3. -
Raman Spectroscopic Study of the Molybdate Mineral Szenicsite and Comparison with Other Paragenetically Related Molybdate Minerals
This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Raymond, Bouzaid, Jocelyne,& Butler, Ian (2007) Raman Spectroscopic Study of the Molybdate Mineral Szenicsite and Comparison with Other Paragenetically Related Molybdate Minerals. Spectroscopy Letters, 40(4), pp. 603-614. This file was downloaded from: https://eprints.qut.edu.au/8029/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1080/00387010701301220 COVER SHEET This is the author version of article published as: Frost, Ray L. and Bouzaid, Jocelyn and Butler, Ian S. -
AFMS Mineral List 2003
American Federation Of Mineralogical Societies AFMS Mineral Classification List New Edition Updated for 2003 AFMS Publications Committee B. Jay Bowman, Chair 1 Internet version of Mineral Classification List. This document may only be downloaded at: http://www.amfed.org/rules/ Introduction to the Mineral Classification List The AFMS Rules Committee voted to eliminate the listing in the Rulebook of references for mineral names except for the AFMS Mineral Classification List. Exhibitors are encouraged to use the AFMS List when exhibiting in the B Division (Minerals). If the mineral they are exhibiting is not on the AFMS List they should note on the Mineral list they present to the judging chairman which reference they did use for the information on their label. The Regional Rules Chairs have been asked to submit names to be added to the list which will be updated with addendum’s each year. In a few years the list should represent most of the minerals generally exhibited out of the 4200+ now recognized by the IMA. This list follows the Glossary of Mineral species which is the IMA approved names for minerals. When the Official name of the mineral includes diacritical mark, they are underlined to indicate they are the IMA approved name. Where usage of old names has been in use for years they have been included, but with the approved spelling underlined following it. The older spelling will be accepted for the present so exhibitors will not have to correct there present label. This list may not contain all mineral species being exhibited. Exhibitors are encouraged to submit names to be added to the list to the Rules committee. -
This File Was Downloaded From
This is the author’s version of a work that was submitted/accepted for pub- lication in the following source: Frost, Ray L., Duong, Loc,& Weier, Matt L. (2004) Raman microscopy of the molybdate minerals koechlinite, iriginite and lindgrenite. Neues Jahrbuch fuer Mineralogie. Abhandlungen, 180(3), pp. 245-260. This file was downloaded from: http://eprints.qut.edu.au/23725/ c Copyright 2004 E Schweizerbart’sche Verlagsbuchhandlung Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: http://dx.doi.org/10.1127/0077-7757/2004/0180-0245 Raman microscopy of the molybdate minerals koechlinite, iriginite and lindgrenite Ray L. Frost•, Loc Duong and Matt Weier Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. Abstract: A series of molybdate bearing minerals including wulfenite, powellite, lindgrenite and iriginite have been analysed by Raman microscopy. These minerals are closely related and often have related paragenesis. Raman microscopy enables the selection of individual crystals of these minerals for spectroscopic analysis even though several of the minerals can be found in the same matrix because of the pargenetic relationships between the minerals. The molybdenum bearing minerals lindgrenite, iriginite and koechlinite were studied by scanning electron microscopy and compositionally analysed by EDX methods using an electron probe before Raman spectroscopic analyses. The Raman spectra are assigned according to factor group analysis and related to the structure of the minerals.