<<

USER REQUIREMENTS FOR A COPERNICUS POLAR OBSERVING SYSTEM PHASE 3 REPORT - TOWARDS OPERATIONAL PRODUCTS AND SERVICES

DEFIS Contact information Directorate-General for Defence Industry and Space

How to cite this report: Nordbeck O., Duchossois G., Kohlhammer G., Andersson E., Diehl T., Dinessen F., Eriksson P., Flett D., Garric G., Gros J-C., Jacq F., Molch K., Nagler T., Nicolas J., Strobl P. (2021) User Requirements for a Copernicus Polar Observing System– Phase 3 Report - Towards Operational Products and Services. ISBN: 978-92-76-34378-3 DOI 10.2889/90647 HV-NC-29-144-EN-N.

Luxembourg: Publications Office of the , 2021 © European Union, 2021 Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders.

All images unless otherwise stated © European Union 2021 EUROPEAN COMMISSION DIRECTORATE-GENERAL DEFENCE INDUSTRY AND SPACE

USER REQUIREMENTS FOR A COPERNICUS POLAR OBSERVING SYSTEM PHASE 3 REPORT - TOWARDS OPERATIONAL PRODUCTS AND SERVICES

EN 2021 4 POLAR EXPERT GROUP III REPORT • 2021 on space-based and in-situ observing assets, that on space-based andin-situobservingassets, that Copernicus Polar ObservingSystem,based both also laidthegroundworkfor defininganoperational communities intheArctic are understood.Ithas only ensuredthattherequirements oftheuser tribution totheCopernicus programme.Ithasnot work, inparticular, hasmadeanimportantcon lar regions.TheCopernicusPolarExpertGroup’s data andvalue-addedservicesrelatedtothepo- ried outvariousinitiativestocaptureEOneedsfor Over thelastfew years,theCommissionhas car- their activities. iterated theirneedfor reliablesolutionstosupport of somecrucialthird-partymissions,andhavere- significant concernregardingthelackofcontinuity downstream andresearchsectorshaveexpressed for operationalservices.Indeed,manyusersinthe a best-effort approachandnotsufficientlyreliable However, thiswayofoperatingismainly basedon lites viainternationaldataexchangeagreements. the Sentinels,essentiallyexploitingresearchsatel- on third-partysatellitemissionstocomplement Nevertheless, Copernicusremainspartiallyreliant actionable information by theCopernicusServices. eas. Thisisthentranslatedintoabroadrangeof large amountsofdataover mostofthepolarar- known as the Sentinels, which measure and acquire Copernicus currentlyhaseightoperationalsatellites, increasingly ice-freeduringsummer. industry withtheNorthernSeaRoutebecoming new opportunitiesarebeingcreatedfor theshipping journeys for theirmigratingherds.Atthesametime, For example indigenous people need to plan safe populations arebeingfacedwithnewchallenges. environmental changesintheArcticisclear. Arctic information tounderstandbothlongandshort-term global temperatures,theimportanceofEOdataand With Arcticairtemperaturesrisingtwiceasfast uous changestoourenvironment. policy makers tohelpthemunderstandthecontin- Copernicus Servicesandtailoredtotheneedsof The outputinformation ischannelledthroughthe space technologiesandworld-leadingexpertise. communities worldwide,basedonstate-of-the-art servation (EO)spacedataandinformation touser Copernicus isaworldleaderinproviding EarthOb- FOREWORD - change. Andimportantly, itplacestheEUand is bestsuitedtosupportthefightagainstclimate announcement of the European Green Deal and reaffirmed atthehighestpoliticallevelwith importance ofthePolarRegionsinEuropewas for asustainableArctic”ofNovember 2019).The the EuropeanUnion’s conclusions(“Spacesolutions Policy for the Arctic” 2016) and in the Council of EU’s ArcticPolicy(“AnintegratedEuropeanUnion support thefightagainstclimatechangein political priorities.Irefer tothecallfor theEUto Antarctica andGreenland.TheyalsoservetheEU’s standing the impact of change in the Arctic, enhanced EO capabilities are crucial for under The currentCopernicuspolaractivitiesandplanned taken laterin2021. decision onwhichmissionswillbeselected could haveaclearaddedvaluefor theArctic.The sessing sixnewsatellitemissions,ofwhichthree missions relevant to the Arctic. ESA is currently as- This has also helped define potential new European spacesectorattheheartofthisfight. cisions ofCopernicus. is highlyvaluablefor upcomingprogrammatic de- operational CopernicusPolarObservingSystemand vides anoverview ofkey elementsfor along-term the Copernicusentrustedentities.Thismaterialpro orated basedonusefulintelligencegatheredfrom The findingsinthisreportaretimelyandwellelab- the worldandindeedfor life asweknow it. and havefar-reachingimplicationsfor allofEurope, vation oftheenvironmentintheseremoteregions, of fundamentalimportancetoimprove theobser- the EUtosupportscientificendeavours,whichare communities inthepolarregions.Itwillalsohelp deliver space services thatmeetthe needs of user its spaceprogramme,takes allnecessarystepsto therefore clearfor ensuringthattheEU,through pillar “AstrongerEuropeintheworld”.Thecaseis Commission Work Programmeunderthethematic address of2020,andwasspelledoutinthe2021 ated inPresidentvonderLeyen’s StateoftheUnion Council. The Arctic Policy’s relevance was also reiter the EuropeanClimatePact adoptedin2020by the Matthias Petschke - - - 5 POLAR EXPERT GROUP III REPORT • 2021 6 POLAR EXPERT GROUP III REPORT • 2021 sustainable Arctic in theCouncilconclusionson“Spacesolutionsfor a quences of this evolution is highlighted as a priority 2021. Theassessmentofthesocio-economicconse- out intheEUSpaceProgrammeenteringintoforce in and Antarctica),isahighpriorityfor theEU,asspelled ment andpolarregionsingeneral(includingGreenland Monitoring therapidchangesofArcticenviron- requirements for spaceassetsandapplications. the Commissionto regularly assess the needs and with evolvinguserneeds,wasastrongincentivefor high globalandEUinterestfor theArctic,combined key operationalservicesfor thepolarregions.This Observationmissions,servesandencompasses complemented by Europeanandotherthird-party operational Sentinelssatellitesinorbitand The , with today eight and forecasting. services and for climate- and environmental modelling environment, as basis, both, for reliable operational continuous observationsofthissensitiveandharsh servations areessentialtoolstocollectandprovide It isunanimouslyrecognisedthatspace-basedob the Polarregions. the needfor anintegratedEuropeanUnionPolicyfor highlights thegeopoliticaldimensionofArcticand recently, intheEuropeanGreenDealwhichfurther 1 REPORT POLAR EXPERT GROUP (PEG) III SUMMARY EXECUTIVE Atmospheric Monitoring Service. service; CEMSCopernicus EmergencyMonitoringservice;CAMS: Copernicus CLMS: CopernicusLand MonitoringService;CMS:CopernicusMaritime cus ClimateChangeService CMEMS: CopernicusMarineEnvironementMonitoring Service;C3S:Coperni- 1 ” from November 2019 and, more ” fromNovember 2019and,more - Aperture Radar (SP-InSAR). Out of the three types of Aperture Radar(SP-InSAR).Outofthethreetypes Altimeter andaSinglePass Interferometric Synthetic Radiometer (PMR),anadvancedSARinterferometric instrumentation includedaPassive Microwave so as tomeet the user requirements. This microwave observations, tobestcomplementtheexistingSentinels providing day-and-nightandnearall- The secondreport water, snow andpermafrost. surface temperature, surface albedo, surface fresh floating ice,glaciers,capsandicesheets,sealevel, critical variablestobeobservedinpolarareasnamely and EUMETSAT in PEG II. The first report services andwascomplementedby stafffromESA national operationalagenciesandofCopernicus The first PEGwascomposedofrepresentatives for aPolarmissionanditsobservationpriorities. of a Polar ExpertGroup (PEG) todefinerequirements In 2017,theEuropeanCommissionsetuptworounds 3 https://op.europa.eu/en/publication-detail/-/publication/25ed00e2-946f-11e 2 ESA foreseen totake placeinthesecondhalfof2021. based on a joint decision between the Commission and the existingSentinels.TheHPCMsaresubjecttochange including threemicrowave oneswhichwouldcomplement planned for the 2030s. Six HPCMs have been identified 2028 timeframepriortotheNextGenerationofSentinels Expansion Missions,withplannedlaunchinthe2026- High PriorityCandidateMissions(HPCM),alsocalled in ordertomeetemergingneedsofusers,additional the CopernicusSpaceComponent(CSC),concludedthat, and EUMETSAT, allthreeworkingontheevolutionof Consultations betweentheEuropeanCommission,ESA requirements for thepriorityvariables. as themostpromisingsolutiontomeetobservation instrumentation, theimagingPMRwasrecommended priority, afurthersetofmicrowave instrumentation, POLAR EXPERT GROUP I AND II COMPONENT AND PLANS COPERNICUS SPACE EVOLUTION OF THE 8-8bc1-01aa75ed71a1/language-en search fb3-946b-11e8-8bc1-01aa75ed71a1/language-en/format-PDF/source- https://op.europa.eu/en/publication-detail/-/publication/3682b- 3 of the PEG recommended, as a ofthePEGrecommended,asa 2 identified the identified the ­‑ 7 6 5 Ibid 4 https://artes.esa.int/sites/default/files/ESSB-HB-E-002-Issue1%2821Au- Generation. such asthird-partymissions and/orSentinelsNext gaps andhow topotentiallyfillthesewithotherdata CIMR, CRISTAL andROSE-Lmissions,butalsoon existing Sentinels(mainlySentinel-1,-3)andthe on thecomplementarityandsynergiesbetween polar regions.Thereviewandanalysesfocused also for operational monitoring of the changes in the night andnear-all-weatherobservationcapabilities Space Componentwillcontinuetorelyonday-and- capability. TheassumptionisthattheCopernicus day-and-night andnearall-weather es for datafrommicrowave instrumentation as welltherequirementsofCopernicusservic requirements ofthepreviousPolarExpertGroups The scopeofthePEGIIIwastofollow-up onthe January 2021. throughout theperiodofJulytoDecember2020/ iterations betweenthePolarExpertGroupmembers European Readiness).Thisreportistheresultofsix Environmental monitoringfor PolarLatitudesand and amajorH2020on-goingproject,KEPLER(Key Canadian experts supported by ESA, EUMETSAT, EEA (with theso-calledPEGIII)withEuropeanand In 2020, DG DEFIS decided to pursue the PEG activities Documents (MRDs)usedfor theseindustrialactivities. European Commission,provided MissionRequirement sion AdvisoryGroup)weresetupand,togetherwiththe these industrial activities, groups ofexternal experts (Mis opment andmanufacturingby end2021.To support a key decisionmilestonetoproceedthefulldevel are stillinprogress(PreliminaryDesignReview ments ReviewandSystemRequirements ESA, wereinitiatedin2018-19 (Preliminary Require as mostrelevant: To monitorpolarregionsthreeHPCMswereidentified Since then, detailed definition industrial studies, led by Since then,detaileddefinitionindustrialstudies,led by POLAR EXPERT GROUP III • • • using Passive instruments. Near-all-weather: the precipitationrateimpactseffective measurements and inthatcase,these arealsodescribed Some oftherequirements mightbepartiallyfulfilled by usingother sensors gust2013%29.pdf RS-) mission . (ROSE-L) the Radar Observing System for at L-band Altimeter (CRISTAL) mission the CopernicusPolarIceandSnow Topography mission ; the CopernicusImagingMicrowave Radiometer(CIMR) ; 7 observation observation 5 6 4 ) with ) with , with , with ) and ) and - - - - instruments havenarrower swathsandinneed ROSE-L andSentinel-1.ThetwoC- andL-band SAR at amuchlower horizontal resolutioncomparedto pan-polar coverage on a daily/sub-daily basis, but Furthermore, CIMRwithawideswathcanprovide capability (100%dutycycle)ofCIMRandCRISTAL. ROSE-L asopposedtothecontinuousoperation frequencies for SAR instruments on-board S-1 and duty cyclesandgeographicalcoverage/revisit differences are resulting from the limited fulfil all PEG observation requirements. Important evident that there is nosingle mission that can requirement compliance per mission madeit three microwave HPCMs.Thismappingofthe were comparedtothespecificationsof data latency. The observation requirements repeat frequency, accuracy(oruncertainty)and of geographical coverage, horizontal resolution, observation requirements were expressed in terms from allCopernicusservices(exceptCAMS an updatedlistofPEGobservationrequirements describing theexistingCopernicusproductsaswell The generationofdetailedanduptodatetables 9 8 with instrumentsallowing multi-frequencies a response tothe PEGIIreport goes further continuous provision ofthesedata.CIMRas C3S and CLMS) and it is important to ensure used by theCopernicusServices (mainly CMEMS, (equivalent toCIMRandCRISTAL) wereextensively In 2020,third-partyPMR-andaltimeterdata period 2021-2027,andthebeyond2027. year 2020asabaselinefollowed by thetime Generation Sentinels)neededover timewiththe (Sentinels, third-party missions, HPCMs and Next- compared withthecombinationsofinstruments variables addressedby PEGIIIweretherefore for monitoringthepolarregions.Thegeophysical instrument requirementsaretherefore important existing Sentinels.Thesynergiesandcross complementarity tooneanotherandwiththe their uniqueness,butmoreimportantly The strengthsofthePolarHPCMarenotonly by thegroundtracklocationandchoiceoforbit. is providing continuousmonitoring,butrestricted extension of acquisition surface coverage. CRISTAL frequent acquisitionofthesametargetsand of observationplanningandtrade-offbetween GHz), W-band(89GHz). C-band (6.9GHz),X-band(10.6 GHz),Ku-band(18.7Ka-band(36.5 focus isonthemicrowave instrumentation. of geophysicalvariables addressedby thePEGrequirementsas main atmospheric compositionthattheservicerequires falloutsidetherange with relevancetotheEUArcticPolicy, thevarious satelliteobservationsof Although CAMSplaysanimportantroleinproducing value-addedproducts 8 ). The 9

7 POLAR EXPERT GROUP III REPORT • 2021 8 POLAR EXPERT GROUP III REPORT • 2021 C- andL-band SARfor preciseseaicemapping. Ice Servicestofurtherexplorethepotentialsofcombining Copernicus asawhole,butthere is astronginterestfrom it iscurrentlyuncleartowhatdegreethiswillstrengthen generation ofnewproducts).Thisisatanearlystageand the potentialimprovement ofcurrentproductsandthe potentially improving CopernicusServices(identifying SAR alsoincombinationwithSentinel-1C-band SARfor with Sentinel-1.ThePEGidentifiedcapabilitiesof L-band of theCopernicusServicestotesttheseincombination Copernicus Services,butthereisanexpressedinterest 2020, asoperationaldatawerenotavailablefor the gaps will impact the following Copernicus products: addressed aspotentialgapsfor thefuture.These andtheuncertaintyofdataavailabilityis data party missionstocover theprovision ofthese Copernicus currentlyreliesondatafromthird- integrated intheworkofCopernicusServices. Data fromCIMRandCRISTAL willbeeasily years) currently used by the Copernicus Services. launched in 2018 with a design lifetime of three 2010) andNASAICESat-2mission(laseraltimeter ESA CryoSat-2mission(radaraltimeterlaunchedin variables. CRISTAL ensuresthecontinuityof can contribute to the highest number of PEG III user requirements,asdefinedinPEGIandII, Expansion Missionsthataddressesthepriority the microwave mission among the Sentinel Active Passive (SMAP).CIMRisconsequently Ocean Salinity (SMOS) and NASA Soil Moisture as currentlyprovided by ESASoilMoistureand (AMSR), but alsoincludingadditional L-band data as Advanced Microwave Scanning Radiometer L-band SARmissionswerenotusedby theservicesin • • • Altimeter (north of 81.5 North/south of 81.5 South): Altimeter (north of 81.5 North/south of 81.5 South): 2028). projected lifetime to2028(noconfirmedplansbeyond surface elevationchange sea icethickness(>0.5meter),levelanomaly, meter), seasurfacesalinity, soilmoisture PMR (L-band): Thin sea ice (sea ice thickness < 0.5 up AMSR-3 is planned to be launched in 2023 with a up AMSR-3isplannedtobelaunchedin2023witha PMR frequencies covered by AMSR-2 and the follow- ; ; and confirmed the need to improve the present situation and confirmedtheneedtoimprove thepresentsituation platforms intheArctic.Thisreviewidentifiedcurrentgaps KEPLER project,ofthestatusinsitudatacollection A review, withthesupportofEEAandon-going and 2,disseminationmechanisms,operationplanning). 1 mission-specific elements(e.g.,processorsuptolevel develop andintegratetheassociatedneworenhanced accommodate theadditionalExpansionmissionsand data groundsegmentarchitecturewillbeableto The confirmationthattheESAmulti-missionpayload the CanadianRadarsatconstellation. The complementarySARcoverage couldbeprovided by collocated SARobservationsbetweenS-1andROSE-L. areas (e.g.ArcticOcean,Greenland)andpossibilityfor provide asub-dailycoverage ofrequiredgeographical the 3Expansion missions. Such a scenario would (equally spacedat0°,120°and240°)togetherwith operating onthesameorbit,adequatelyphased configurationscenarioinvolving3SentinelS-1 simulations ofmissioncombinations,apreferred The identification,through numerouscomputer in 2021. in 2021. terms ofreference for PolarTask Forceactivities for thefutureactivitiespartiallyincluded inthe The reportspelledalsoouttenrecommendations ments (NRTandQRT)oftheusers. the stringentdatadeliveryandlatencyrequire communications inpolarregionsordertomeet should therefore be paid to the situation oftele- and nottothegroundstation.Furtherattention it isimportanttoconsiderthetimeusers ing latencyinthesparselypopulatedpolarregions, As addressedby theKEPLERproject, whenaddress between polarresearchgroups. by establishingaclosercooperationandcoordination by increasingthenumber and qualityof platforms and - - RECOMMENDATIONS PEG III MAIN • • • • • • • • • • • • lbl context ; global Ensure theinternationalcooperationneedfor this mandatory for thedevelopmentofnewproducts, Ensure continuityofunderlyingscientificresearch Explore andexpandtheroleofindustryand,more additional productsrequiredby usersandnot of existingproducts;supportthegeneration Support improvements andofqualityaccuracy innovative polarproducts improve existingpolarproductsandgeneratenew synergy withexistingandforthcoming Sentinelsto Further develop the use of Expansion missions in data ; Altimeter Microwave Radiometer data as well as Radar products. Thisisparticularlyimportantfor Passive continuously improve Copernicusservicesand situ observationsasessentialpre-requisiteto based (Sentinels,Expansionmissions)andin Ensure thelong-termcontinuityofspace- requirements (NRT/QRT)ofuser. to meetthestringentdata delivery andlatency of telecommunicationsinpolar regionsinorder Further attention should be paid to the situation through identificationofassociatedfundingsources of advancedassimilationtechniquesandmodelling and services(ITindustry, AIsector) (tailored micro/nanosatellitesdevelopedby SMEs) procurement and operation of space systems generally, ofprivatesectorfor thedevelopment, companies ; activities inparticularwiththeprivatesectorand Continue and further expand user’s consultation different missionstoachievethefullbenefit Copernicus Servicescombiningthedatafrom Ensure the development ofsynergy-productswithin intermediate andend-users of appropriateproductsmeetingrequirements and in situobservationsover servicesuptodelivery and optimising the “complete chain” from space integrated Polarmonitoringsystemconsidering Further continue to develop anend-to-end ) operatingintheArctic Japan, China,Korea,Canada,USA, organisations (e.g. recommended with European and non-European International cooperation and coordination are strongly accessibility andquality(e.g.formats, standards) the in-situ observations in order to improve data Establish anefficientdatamanagementsystem for today ; achievable ; ; ; ; ; ; ; 9 POLAR EXPERT GROUP III REPORT • 2021 10 10 POLAR EXPERT GROUP III REPORT • 2021 an Commission. tion arethesoleresponsibilityofauthorsanddo not necessarily reflecttheviewsofEurope - for anyusewhichmightbemadeofthefollowing information. Theviewsexpressedinthispublica- Neither theEuropeanCommissionnoranypersonacting on behalfoftheCommissionisresponsible The reportisaproductbasedonimportantcontributionsfrom: Rossana Cervini,Administrativeassistant Thomas DiehlandPeterStroblScientificofficers Monitoring Service(CMEMS)andCopernicusSpaceComponent(CSC). Desk officers fortheCopernicusClimateChangeService(C3S),MarineEnvironment Ola Nordbeck,ErikAndersson,Jean-ChristopheGros,Fabienne Jacq,KatrinMolch Julien Nicolas,ReanalysisScientistfor theCopernicusClimateChangeServiceatECMWF, UnitedKingdom Thomas Nagler,ManagingDirector, ENVEOEnvironmental EarthObservation,Austria Gunther Kohlhammer,Consultant,CopernicusBüroBayern/DigitalisierungRaumfahrt,Germany Gilles Garric,Manager, CopernicusMarineEnvironment MonitoringService(CMEMS)MercatorOcean, Dean Flett., Manager, AppliedScienceat CanadianIceService.Ottawa,Ontario,Canada Patrick Eriksson,Productmanager, Finnish MeteorologicalInstitute(FMI),Finland Frode Dinessen,Projectmanager, NorwegianMeteorological Institute,Norway Guy Duchossois,ExpertGroupRapporteur/FormerESAEarthObservationsatellitesMissionManager, France DIRECTORATE-GENERAL (DG) JOINT RESEARCH CENTRE (JRC) DIRECTORATE-GENERAL FOR DEFENCE INDUSTRY AND SPACE (DEFIS) EUROPEAN COMMISSION ACKNOWLEDGMENTS – TECHNICAL CONTRIBUTIONS TECHNICAL COORDINATION COMPOSITION OF THE EXPERT GROUP LEGAL NOTICE PARTICIPANT LIST • • • • • Copernicus Services Copernicus in-situcomponent EUMETSAT ESA (ESRINandESTEC) KEPLER Project

1. INTRODUCTION 1.7 Horizon2020KeplerProject. 1.6 Satelliteassettimeline...... 1.5 CopernicusHPCMactivities...... 1.4 SpaceInfrastructure...... 1.3 CopernicusServices...... 1.2  1.1 EU ARCTIC AND 2.  1.8 Thescopeofthisreport...... 3.  2.7  2.6  2.5  2.4 Complementarityandsynergies. 2.3 In-situdata...... 2.2  2.1 ServiceRequirements 7.  6.5 CEMSstatusandevolution. 6.4 CMSstatusandevolution. 6.3 C3SStatusandEvolution. 6.2 CLMSstatusandevolution. 6.1 CMEMSStatusandEvolution. 6.  5.4  5.3  5.2  5.1  5.  4.3  4.2 ResultsofESAsimulations...... 4.1 OrbitPhasing/CrossInstrumentRequirements...... 4.  3.6 Recommendations...... 3.5  3.4  3.3  3.2  3.1  Annex 4.In-situ observations inCMEMS...... Annex 3.Summary table...... Annex 2.RequirementsandSpace Assets...... Annex 1.CopernicusProductinventory ...... 8. GLOSSARY 7.3  7.2  7.1  EXECUTIVE SUMMARY FOREWORD PARTICIPANT LIST TABLE OF CONTENT ANNEXES TABLE OF CONTENT PEG III USER REQUIREMENTS POLAR IN-SITU OBSERVATIONS FINDINGS AND RECOMMENDATIONS STATUS AND EVOLUTION OF COPERNICUS POLAR SERVICES OVERALL OPERATIONS CONSIDERATIONS ORBIT PHASING/CROSS INSTRUMENT OPERATION SCENARIOS AND MERITS Copernicus Polaractivitiesinrecentyears...... Earth Observationrequirements-summary Copernicus HPCMconsiderations. Remaining gaps...... Requirements for SpacebasedEarthObservation(EO)systems...... Ground Segment&OperationsSummary...... Evolution oftheOperationsApproach...... Technical andprogrammaticconsiderations...... Overall GroundSegmentConcept...... Views ofPEGexpertsonthecross-instrumentanalysis...... Antarctica (refEU-PolarNetWhitepaperonEuropeanPolarinfrastructureaccessandinteroperability...... “Citizen Science”approachandNewTechnologies...... Support toCopernicusSpaceSensorCalibrationandProductValidation ...... Polar In-situobservationsinsupporttoCopernicusServices...... Role andimportanceofpolarin-situobservations...... PEG IIISummaryFindings and Recommendations...... Copernicus, amajorEuropeancontributiontopolarregionmonitoring ...... EU PolicyandStrategyfor ClimateChange actions...... 105 11 10 16 15 24 46 59 53 62 68 75 83 20 20 18 18 17 22 22 39 38 34 28 24 43 34 66 63 61 60 60 59 56 56 53 51 51 50 48 47 46 65 64 62 96 90 83 69 69 68 5 6 11 11 POLAR EXPERT GROUP III REPORT • 2021 12 12 POLAR EXPERT GROUP III REPORT • 2021 NISAR NG MSG MRD MFC METOP MAG LSTM KEPLER PROJECT JRC IV INTAROS INSTAC IOC HPCM HLOP GMES GL EU-POLARNET EUMETNET EUMETSAT ESA ERAS EMODNET EMSA EEA ECV ECMWF DINSAR DIAS CTD COP 21 CRISTAL CO2M CIMR CHIME CSC CMS CLMS CEMS CMEMS C3S CAMS CDR BGC AVHRR ALOS-PALSAR-2 ATSR AATSR LIST OF ACRONYMS

BioGeoChemical

NASA-ISRO Synthetic ApertureRadar(L+S-band SAR) Next Generation (ofSentinels) Mission RequirementDocument Joint ResearchCentre In SituThematicAssemblyCentre(ofCMEMS) Copernicus HighPriorityCandidateMission High LevelOperationPlan Global Monitoringfor EnvironmentandSecurity European organisationfor theexploitationofMeteorologicalsatellites European MarineObservationandDataNetwork European EnvironmentAgency Essential ClimateVariable Conductivity, Temperature, Depthsensor 21st Conference ofParties heldinParis in2015 Copernicus SpaceComponent Copernicus LandMonitoringService Copernicus EmergencyMonitoringService Copernicus MarineEnvironmentMonitoringService Advanced Very HighResolutionRadiometer(ofNOAA) Advanced LandObservingSatellite-LBandSAR(ofJAXA) Advanced AlongTrack ScanningRadiometer SecondGeneration Monitoring andForecasting Centre Meteorological Operational Satellite-SecondGeneration Mission AdvisoryGroup Land SurfaceTemperature MonitoringMission Key Environmentalmonitoringfor PolarLatitudes andEuropeanReadiness Ice Velocity Integrated ArcticObservationSystem Intergovernmental OceanographicCommission Grounding Line(icesheet) European Networkfor Polarresearch Grouping of31EuropeanNationalMeteorologicalServices European SpaceAgency C3S Reanalysis(ofECMWF) European MaritimeSafety Agency European Centrefor MediumrangeWeather Forecasts Differential Interferometry SAR Copernicus DataandInformation AccessSystem Copernicus polaRIceandSnow Topography ALtimeter Copernicus CO2MonitoringMission Copernicus ImagingMicrowave Radiometer Copernicus HyperspectralImagingMission Copernicus MaritimeService Copernicus ClimateChangeService Copernicus AtmosphericMonitoringService Climate DataRecord Along Track ScanningRadiometer

WMO TPM TERRASAR-X VIIRS TAC SWOT SWE SWH SP-INSAR SMOS SSM/I SMMR SRAL S3-OLCI SLSTR SIRAL SIT SITY SIE SID SIC SEVIRI SEA DATA NET SAR SAF ROSE-L RCM QRT PMR PDGS OSI SAF NRT NILU

German Earth-observationsatellite(X-bandSAR) Visible InfraredImagingRadiometer Thematic AssemblyCentre Single passSARInterferometry Scanning Multi-channelMicrowave Radiometer S-3 Sentinel-SeaandLandSurfaceTemperature Radiometer Sea IceTemperature Sea IceType Sea IceDrift Distributed MarineObservationDataInfrastructure Near RealTime World MeteorologicalOrganisation third-party mission Surface Water OceanTopography mission Snow Water Equivalent Significant Wave Height Soil MoistureandOceanSurfaceSalinitymission(ofESA) Special SensorMicrowave/Imager S-3 SentinelKu-BandradarAltimeter S-3 Sentinel-OceanandLandColourInstrument SAR Interferometer RadarAltimeter Sea IceExtent Sea IceConcentration Spinning EnhancedVisible andInfra-RedImager Synthetic ApertureRadar Satellite ApplicationFacility (ofEumetsat) Copernicus RadarObservingSystemfor EuropeatL-band Radarsat ConstellationMission Quasi RealTime Passive Microwave Radiometer Payload DataGroundSegment Ocean andSeaIceSatelliteApplicationFacility (ofEumetsat) Norwegian Institutefor AirResearch 13 13 POLAR EXPERT GROUP III REPORT • 2021 14 14 POLAR EXPERT GROUP III REPORT • 2021 FULL REPORT Working Group Arctic ShippingStatusReport,April2020,Council’s ProtectionoftheArcticMarineEnvironment from 6.51millionnauticalmilesin2013to9.52019.” Polar Codeareagrewby 25percent.Thetotaldistancesailedby shipsinthisareagrewby 75percent, “Notably, duringthesix-year periodbetween 2013and2019,the number of shipsentering the Arctic Sea icecover for October2020,ClimateBulletin,CopernicusChangeService 48 consecutive monthsofbelow average extent.” the NorthernSeaRoute.Meanwhile,Antarcticsawasecondmonthofabove average extents,following 1979. October2020wasthefourth consecutive monthwithice-freeorclosetoconditions along “The Arcticsawitslowest average Octoberseaiceextentsincesatellite measurements beganin 2 ArcticCouncil(2020) 1 CopernicusClimateChangeService(2020) 1. INTRODUCTION 2 . 1 .

15 15 POLAR EXPERT GROUP III REPORT • 2021 16 16 POLAR EXPERT GROUP III REPORT • 2021 monitoring impactoftheEUArcticPolicy. TheSpaceStrategy evidence ofchangefromEarthObservationisfundamentaltothedevelopment,implementationand es in the Arctic due to a changing climate. Given the remote and challenging conditions in the Arctic, of spaceassetsandEarthObservationtocollectanevidencebasethemonitoringrapidchang- and GovSatcom, DG-JRC carried out a study in 2019 opments). InordertobetterunderstandtheexistingandpotentialsynergiesbetweenCopernicus,Galileo connectivity, EarthObservationandNavigationintheArctic(seeFigure 1illustratingthemutualdevel- time theEUArcticPolicyacknowledges theimportanceofspaceassetsasawhole,for communication Space Programmeacknowledge theimportanceofArcticandpolarregionsfor theEU.At thesame of the Space Programme. of theSpaceProgramme. the future.Inaddition,studyhighlightedsomepossiblesynergiesacrossdifferent components the userneedsfor improved infrastructureandplatforms acrosstheEUSpaceProgrammetodayandin 7 https://data.consilium.europa.eu/doc/document/ST-13996-2019-INIT/en/pdf 6 5 4 3 socially andenvironmentally sustainablegrowth inthisarea. space assets as enabler in the Arctic, not only combatting , but also ensuring economically, on "Spacesolutionsfor asustainableArctic with user-drivenapplications,servicesandequipment. This wasalsohighlightedintheCouncilconclusions continue to allow new services for the Arctic region, benefiting from the integration of space technologies sion tocontinuouslyassessneedsandrequirementsfor spaceassetsandapplications.Thisapproachwill The highinterestfor theArctic,combinedwith evolvinguserneeds,isastrongincentivefor theCommis- out asapriority. Thisfollows thelineofEUArcticPolicyfrom2016 In theregulationfor theEUSpaceProgramme,enteringintoforce in2021,Polarmonitoringisspelled of itsactivitiesandachievements. under civilcontrol,whichbuildsontheexistingnationalandEuropeancapacitiesensurescontinuity to meettheobjectivesofUnion'sstrategy. Itisacivil,user-drivenandpolicy-drivenprogramme Copernicus is theEU's Earth Observation and monitoring programme and constitutes a key contribution

Figure 1.ArcticpolicyandSpacedevelopments intheEuropeanUnion 1.1 EU ARCTIC AND SPACE POLICY European Commission, (2020),KarenBonifaceetal.“Europe’s Spacecapabilities for thebenefitofArctic” COM(2018) 447final COM(2016) 705final EEAS, JOIN(2016)21final

7 " fromNovember 2019,whichhighlightstheimportanceof 6 . The study highlighted the importance to satisfy . The study highlighted the importance to satisfy 4 for Europeandtheregulation 3 that describes the importance thatdescribestheimportance 5 for theEU mentation tobestcomplementtheexistingSentinels soastomeettheuserrequirements: PEG IIsupportedby ESAandEUMETSAT spaceexpertsrecommendedthefollowing microwave instru- priority variablesaddressedinthePEGIIreportare: smaller numberoftop-operational-priorityobjectivesasbasedontheinputsfromPolarexperts.The could meet all observation requirements of the critical variables. Consequently, the report focuses ona operated togetherwiththecurrentCopernicusSentinels(andContributingMissions),that to relyonasingleCopernicusHighPriorityCandidateMission(HPCMalsocalledHPCMs), fresh water, snow andpermafrost).The secondreportofthePEGindicatesthatitwouldnotbepossible floating ice,glaciers,capsandicesheets,sealevel,surfacetemperature,albedo, and EUMETSAT in PEG II. The first report identifies the critical variables to be observed in polar areas (i.e. of nationaloperationalagenciesandCopernicusserviceswascomplementedby stafffromESA ments for aPolarmissionandobservationpriorities.ThefirstPEGwascomposedofrepresentatives In 2017,theEuropeanCommissionsetuptworoundsofaPolarExpertGroup(PEG)todefinerequire- and theCopernicusServicesaretailoredtobothpolarregions,Arcticspecifically. as a global Earth Observation programme, it is therefore important that the Copernicus Sentinel Missions The impactofclimatechangesintheArcticaswellAntarctichasglobalrepercussions.ForCopernicus Climate Changeandtheimportanceofinternationalcooperationisequallyimportantfor theAntarctic. areas ofthecurrentEUArcticPolicy: time ofpublishingthisreport,therehavenotbeenanyindicationsmajorchangestothethreepriority In parallel,theEUArcticPolicyisbeingrevisedandanupdateexpectedinNovember 2021.Atthe this researchanddevelopment(R&D),asaddressedinsubsequentsectionsofreport. serve EUArcticpoliciesandaddresskey issuesinthearea.ThePolarExpertGroupIIIismakinguseof Horizon EuropeandtheevolutionofCopernicusservicescantherefore beimportantmeanstobetter with possiblealternativesourcesofinformation orsolutions.Researchcarriedoutintheframeworkof regions and providing added value services including the use of all kinds of space capabilities together the importanceofmaintainingacompleteoverview andsystemarchitecturefor monitoring thepolar variables importantfor theservicesbenefittingpeopleinArctic.Councilconclusionsalsostressed that supporttheArcticpolicyrequiresobservingnotonlyOcean,butalsoothergeophysical Better knowledge and understanding of changes in the Arctic and delivery of fit-for-purpose services 1.2  • • • • • its temporal change in order to determine the mass balance of the ice bodies. its temporalchangeinordertodeterminethemassbalance oftheicebodies. Ice sheets, glaciers/ice caps and seasonal snow with the urgent need for monitoring the surface elevation and operational navigationandsafe maritimeoperations insea-iceinfested waters Floating iceandinparticularsea-iceconcentration,themost importantparameterfor theclimateservice,for bistatic follower toSentinel-1. ometric capabilities asdemonstratedwith Tandem-X. Suchcapability couldbeimplemented asapassive A SinglePass Interferometric Synthetic ApertureRadar(SP-InSAR): ASARthatincludes singlepassinterfer- altimetry inpolarregions An advancedSARInterferometric altimeter(SARIn):Afollow-on missiontoCryoSat-2,specialisedinnadir 3. 2. 1. offers atleastdaily revisitsinthepolarregionsisconsideredmandatory channels for seaice concentration(SIC)andseasurfacetemperature (SST) retrievals.Aswathwidththat An ImagingPassive Microwave Multi-frequencyRadiometer(PMR)with~10kmresolutionandfrequency International CooperationonArcticIssues. Sustainable DevelopmentinandaroundtheArctic; Climate ChangeandSafeguarding theArcticEnvironment; COPERNICUS POLAR ACTIVITIES IN RECENT YEARS ;. ; ; ; 17 17 POLAR EXPERT GROUP III REPORT • 2021 18 18 POLAR EXPERT GROUP III REPORT • 2021 the CopernicusServicestoaccessdatafromcommercial ornationalmissions. The Sentinels arecomplemented with Copernicus ContributingMissions(CCMs)making it possible for two tofour unitstobelaunchedinorder provide datacontinuityatleastthroughtothemid-2030s. space-based missions either operational or under development, Sentinels -1 to -6, each series including The CopernicusSpaceComponent(CSC)currentlyconsists ofsixseriesdedicatedEarthObservation Other importantaspectsraisedintheArcticPolicythatarebeingaddressedby theCopernicusServicesare: Dioxide CO2Monitoringmission. greenhouse gasses,andispreparingtomonitorCO2by makinguseoftheplannedCopernicusCarbon mate pollutantssuchasblackcarbonandmethane.CAMSismonitoringtheshort-lived The ArcticPolicyhighlightstheimportanceoflimitingcarbondioxide(CO2)aswellshort-livedcli- in Annex1. Copernicus users.Anoverview ofthecurrentCopernicusinventoryrelevantfor theArcticcan befound The CopernicusServicesareactivefor thepolarregions,providing relevantdataandservices tothe of thefollowing: pernicus SpaceComponent(CSC),presentlyandfor itsfutureevolution.TheCopernicusServicesconsist The CopernicusServicesplayakey roleinformulating theneedsandrequirementstobemetby theCo- solution tomeettheobservationrequirementsfor thepriorityvariables. Out ofthethreetypesinstrumentation,PEGIIrecommendedimagingPMRasmostpromising of thechallengesandthisisanimportantpartplannedevolutionCopernicus. aspects. CoordinationbetweentheCopernicusServicesiscrucialtohaveabetteroverall understanding The diversityofchallengesissignificantintheArcticandsoareinterrelationsbetweenvarious 1.3 COPERNICUS SERVICES 1.4 SPACE INFRASTRUCTURE • • • • • • • • • • • to EUExternalAction). Copernicus Servicefor Securityapplications(Maritime,BoarderSurveillance,CopernicusServiceinSupport Copernicus EmergencyManagementService(CEMS) Copernicus LandMonitoringService(CLMS) Copernicus MarineEnvironmentMonitoringService(CMEMS) Copernicus ClimateChangeService(C3S) Copernicus AtmosphereMonitoringService(CAMS) Accident preventionandenvironmentalcontrolrelatedtooilgasactivities. Enhanced safety atseaandnavigationintheArctic Blue andGreeneconomy Protecting theenvironment Climate changeeffects onthemarineandterrestrialenvironment ; ; ; ; ; ; ; ; ; ; ; 8 http://emits.sso.esa.int/emits-doc/ESTEC/News/ESACopernicusIndustryDaysPresentation.pdf Figure 2.Theevolution oftheSentinelmissions cluding theExpansioncomplement Figure 2 below illustrates the evolution of the Sentinel missions from the present generation to the next one, in- The threeothermissionsmayalsoberelevanttoobserveparametersinthepolarregions: been identifiedasmostrelevanttomonitorpolarregions,namely: on microwave instrumentation, with day-and-night, andnear-all-weather observation capability, have Among these six candidates, and based on PEG II recommendations, three Copernicus HPCMs focused as theyareidentifiednewpotentialcandidateswithplannedlaunches over theperiod2025to2030. Priority Candidate Missions (HPCMs). The six HPCMs are also known as the Sentinel Expansion missions other hand,aimsatrespondingtoemergingandurgentuserneedswiththesocalledCopernicusHigh Sentinels withthepreparationofNextGenerationmissionstobelaunchedin2030sand,on States (seeFigure 2).Thisevolution,ontheonehand,aimsatproviding stabilityandcontinuityofcurrent (CSC) LongTerm Scenario”providing apreliminaryschematicoverview oftheCSCevolutiontoitsMember its Programme Board for Earth Observation “The next phase of Copernicus - Copernicus Space Component and EUMETSAT, havestartedtofocus ontheevolutionofCSC.InSeptember2020,ESApresentedto Consultations between the European Commission and the entrusted entities in charge of the CSC, i.e. ESA satellite withaltimetryonboard,andoneS-5Precursorfor monitoringatmosphericparameters. sensors, twoSentinel-3platforms withbothaltimetryandopticalinstrumentson-boardoneSentinel-6 two Sentinel-1platforms operatingSARsensors,twoSentinel-2platforms withhighresolutionoptical synergetic useofSentinelsandin-situdata.To date,eightSentinelsatelliteshavebeenlaunchedincluding Copernicus operationalservicesinthefieldofenvironmentandsecurity. Theseservicesarebasedonthe The Sentinelsoperatingradar, opticalandaltimetryinstrumentationaredesignedtomeettheneedsof • • • • • • Copernicus HyperspectralImagingMissionfor theEnvironment(CHIME). Copernicus LandSurfaceTemperature Monitoring(LSTM); Copernicus AnthropogenicCO2Monitoring(CO2M); the RadarObservingSystemfor EuropeatL-band (ROSE-L)mission. the CopernicusPolarIceandSnow Topography Altimeter(CRISTAL) mission; the CopernicusImagingMicrowave Radiometer(CIMR)mission; 8 . 19 19 POLAR EXPERT GROUP III REPORT • 2021 20 20 POLAR EXPERT GROUP III REPORT • 2021 and werefollowed by thepreparationofITTs for industrialPhaseB2(PreliminaryDesignReview actors (alsoknown asContributingmissionsorthird-party missions-TPMs). overview includesalsosatellitemissionsfromother institutions(includingresearchmissions)orcommercial of futureSentinelmissionsandtheirtargetdeployment scheduleistherefore subjecttoadjustments.The creasing thequantityandqualityofproductsservices. TheESALTS isupdatedregularly. Thedescription architecture, whichisintendedtomeetexpectationsand needsintermsofstabilityandcontinuitywhile- below. The ESALongTerm Scenario(LTS) includesthemainelementsofCopernicusspacecomponent topography family, aspresentedby ESAintheLong-Term Scenario12(fromSeptember2020),isshown An overview oftheenvisagedCopernicusSpaceComponent deployment schedulefor themicrowave and even furtherexploitationofsynergies. effort for efficientoperationsandintheeventthatthisissuccessfullyachieved,there isahighpotentialfor from eightSentinelstodaytopossibly20sentinelsinorbit10years.Thisexpansionrequiresaconcerted launched intheyearstocome.ThefleetofSentinelsisalsoexpandingandexpectedeventuallyincrease Earth Observation(EO)activitiesareincreasinggloballyandahighnumberofnewEOsatelliteswillbe Requirements Review Requirement Documents(MRDs)usedfor thePhaseA/B1(PreliminaryRequirementsReviewandSystem MAGs, withparticipationoftheEuropeanCommission,supportedESAinissuingrespectiveMission of expertsfromvariousEuropeancountries,butalsoUS,Australia.Japanandothercountries..The For eachofthesixCopernicusHPCMs,ESAestablishedMissionAdvisoryGroups(MAG) mainlycomposed 11 10 Ibid 9 https://artes.esa.int/sites/default/files/ESSB-HB-E-002-Issue1%2821August2013%29.pdf timeline, itisnow possibletoimprove theplanningofoperationsscenariointermsof: Despite thefactthatseveraltechnicaldecisionsstillremaintobetaken, andapossibleevolutioninthe assessment andplanningoftheexploitationcapabilities. the groundsegment,cannow beconsideredwellunderstoodthusallowing amoredetailedfeasibility nical capabilitiesofthespacecomponent,consistingsatelliteplatform, theinstrumentationand into SystemRequirementDocuments(SRDs)for theindustrialcontracts.Therefore, thetarget One shouldnotethatthetechnicalspecifications(MRDs) for theHPCMshavebeensettledandtranslated took placeinthesecondhalfof2020. subsequent developmentactivities.Thenegotiationandawardofcontractstoindustryfor the6HPCMs 1.6 SATELLITE ASSET TIMELINE 1.5 COPERNICUS HPCM ACTIVITIES • • • • The confirmation ofeffective capabilitywillonly beobtainedatthe PreliminaryDesign Review(PDR)oreven CriticalDesignReview (CDR)stage Timeliness ofdataacquisition,transmission togroundandprocessinguplevel1or2 Instrument andinstrument-modeoperations,wherenecessary, withinthelimitsofinstrumentduty cycle contributing missionsfor optimizingthegroundoperations Orbit configuration ofevery Sentinel individuallyand relative to each other and even with respect to other synergy withtheiroperationsplans. It isnow alsopossibletostartdiscussionswithoperatorsofcontributingmissionsachievethe bestpotential 9 ) performed by industry. ThesePhaseA/B1studieswerecompletedinmid-2019 ; ; 11 10 tech- ) and ) and ; ; The ESALTS foresees launchesofCRISTAL-A andCRISTAL-B in2028and2030,respectively. nel-6B NGinthefirsthalfof the2030’s. timeframe. Similarly, totheabove NGfamilies,theESALTS foresees launchesofSentinel-6ANGandSenti- planned tobelaunchedinthefirsthalfof2030’s. Sentinel-6Bisplannedtobelaunchedinthe2025/2026 and duringtheperiod2025-2028,respectively, whileSentinel-3ANGTOPO andSentinel-3BNGTOPO are According totheESALTS (September2020),Sentinel-3CandSentinel-3Dareplannedtobe launchedin2024 consumables). Sentinel-6 MichaelFreilich waslaunchedin2020withanexpectedoperationallifetime of5years (7years were launchedin2016and2018. Sentinel-3 ismulti-instrumentmissionwithSARaltimetry instrumenton-board.Sentinel-3AandSentinel-3B 1.6.2 TOPOGRAPHY FAMILY operations areextendedthrough2020,andpreliminarily, through2023. and isstillproviding imagery. SMAPwaslaunchedin2015withanominalmissiondurationuntil2018,the SMOS waslaunchedin2009withaninitialnominallife timeoftreeyears,however SMOShasbeenextended providing imagery. AMSR-3isplannedtobelaunchedin2023andwithanestimatedlifetime offiveyears. Radiometer. AMSR-2waslaunchedin2014andtheplannedlifetime wasthreeyears,however AMSR-2isstill Ka-band (36,5 GHz) and W-band (89,0 GHz), while SMOS and SMAP are L-band (1,4 GHz) Passive Microwave AMSR isamulti-frequencyradiometercovering theC-band (6,9GHz),X-band(10,6Ku-band(18,7 Scanning Radiometer (AMSR), Soil Moisture and Ocean Salinity, SMOS and Soil Moisture Active Passive (SMAP). Current Third-partyMissionswithPMRinstrumentsusedby theCopernicusServicesareAdvancedMicrowave The ESALTS (September2020)foresees alaunchofCIMR-Ain2029andCIMR-B2031. of 5years.TheNISARhasaprojectedlaunchin2022withbaselinemissiondurationthree SAOCOM 2Aand2Bareplannedfor laterlaunches in2023and2024.AllSAOCOM haveanestimated lifetime constellation iscomposedofSAOCOM 1Alaunchedin2018andSAOCOM 1Bwithaplannedlaunchin2021. time isuntil2024.ALOS-4 isplannedfor 2022andwithanestimatedlifetime ofsevenyears.TheSAOCOM Current Third-partyMissionswithL-band SAR capabilitiesareALOS-2 launched2014andtheestimatedlife- The ESALTS fromSeptember2020foresees alaunchofROSE-LAin2028andB2030. Contributing Missiondata. Constellation Missionlaunchedin2019.Radarsat-2dataismadeavailabletotheCopernicusServicesas Current Third-party Missions with C-band SAR capabilities areRadarsat-2 launched in 2007 and Radarsat NG-B wouldthentake placeinthefirsthalfof2030’s. and Sentinel-1D in 2023 and during the period 2024-2027, respectively. Launches of Sentinel-1NG-Aand Sentinel-1A andSentinel-1Bwerelaunchedin20142016.TheESALTS foresees launchesofSentinel-1C 1.6.1 MICROWAVE FAMILY - EXISTING, PLANNED AND FUTURE PASSIVE MICROWAVE RADIOMETER (PMR) L-BAND SAR C-BAND SAR MISSIONS 21 21 POLAR EXPERT GROUP III REPORT • 2021 22 22 POLAR EXPERT GROUP III REPORT • 2021 near-all-weather the requirementsofCopernicusservicesfor data frommicrowave instrumentation,withday-and-nightand The scopeofthisreportistofollow-up on therequirementsofpreviousPolarExpertGroupsaswell and itsprogrammaticdecisionsintheyearstocome. Polar expertsprovided expertiseintheirvariousfields ofworkaimingatsupportingtheEuropeanCommission July toDecember2020.Thegroupwassupportedby ESA,EUMETSAT, EEAandtheH2020KEPLERproject.The This report is the result of six iterations between the Polar Expert Group members throughout the period of project enabledacomprehensiveassessmentof: 2021. KEPLERisanEUHorizon2020CoordinationandSupportAction(CSA)withabudgetof€2.9M.The and stakeholders in the 2020’s. The KEPLER project, whichstartedon1 January 2019 will run until31 March forecasting thepolarregions.Itsaimistobetterrespondinformation needsofpolarregionend-users Services, todeveloparoadmapfor Copernicustodeliveranimproved Europeancapacityfor monitoringand is amulti-partnerinitiative(15partners),builtaroundtheoperationalEuropeanIceServicesandCopernicus The Horizon2020KEPLER(KeyEnvironmentalmonitoringfor PolarLatitudesandEuropeanReadiness)project life timeof3years,andwithconsumablesfor afive-yearlifetime (ICESat-1wasoperated for 7years). Current Third-partyMissionswithlaseraltimetryinstruments.ICESAT-2 waslaunchedin2018withadesign 2022 andwithdatacollectionplannedtoworknominallyfor threeyears. viding imagery. HaiYang-2A (alsoknown asHY-2A) waslaunchedin2011.SWOT isplannedtobelaunchedin Cryosat-2 waslaunchedin2010andhasachievedthedesignlifetime goaloffiveandahalfyears,stillpro- years, however stillproviding imagery. for threeyears,butextendedwithtwoyears.AltiKa(SARAL)waslaunchedin2013,plannedlifetime of5 Ka(SARAL), Cryosat-2, SWOT. Jason-3 was launched in 2016 and nominal operations were initially planned Current Third-partyMissionswithSARaltimetryinstrumentsrelevantfor thePolarregionsareJason-3,Alti- 12 Next-Generation Sentinels. followed by thetimeperiod2021-2027,beyond2027 includingtheCopernicusHPCMsand The requirements are mapped with corresponding EO space assets over time with the year 2020 as a baseline the changesinpolarregions. ponent willcontinuetorelyonday-and-nightandnear-all-weather observationcapabilitiesfor monitoring other sensorsandinthatcase,thesearealsodescribed. TheassumptionisthattheCopernicusSpaceCom- throughout this report. throughout thisreport. The materialproducedby theKEPLERprojecthasbeenusedinworkofPEGIIIandisreferred to 1.8 THE SCOPE OF THIS REPORT 1.7 HORIZON 2020 KEPLER PROJECT • • • • • • nesr-all-weather: the precipitation rateimpactseffective measurements using Passive Microwave Radiometerinstruments. new andnovel in-situandairborneobservationsensorstechniques; gaps ofin-situobservationsinordertoimprove polarregionsmonitoringandforecasting capabilities; existing productsandneedsfor futureenhancementsbasedonconsultationswithstakeholders; a “Roadmap”for an“end-to-end”operationalsystemfor monitoringtheArcticisbeingdeveloped. improve polarregionsmonitoringandforecasting capabilities research gapsintermsofintegration/assimilationspace-basedandin-situobservationstofillorder research gapsintermsofspace-basedcapabilitiesordertoimprove thepolarregionsmonitoringandforecasting; 12 observationcapability. Someoftheserequirements mightbepartiallyfulfilled by using ; telecommunication systemscoordinatedby GOVSATCOM. to theothercomponentsinEuropeanSpaceProgramme,meaningGalileonavigationsystemand 2021 withamainfocus on the CopernicusServices.TheTask Forcewillalsofurtherelaborateonthelinkages The Polar Expert Group has also proposed objectives to be considered for a future Polar Task Force starting in components arewellorchestratedinordertofulfilthestringentrequirements. space assets(in-situdata).Thegroundsegmentreflectionsarealsohighlightedinordertoensurethatall The reportalsodescribespotentialsynergiesacrosssatellitemissions,gaps,andtheneedsfor non- 23 23 POLAR EXPERT GROUP III REPORT • 2021 24 24 POLAR EXPERT GROUP III REPORT • 2021 13 state provided by Copernicus coreservices’operationalcapacities. products. Currentdownstream applicationsandservicesstronglyrelyonthecontinuityofreference continuity ofthecurrentserviceinordertokeep thesameportfolio andthesamelevelofquality ofits In termsofrequirements,ascoreserviceproviders, Copernicusserviceshavetoensureatleastthe subsidiarity principles. process betweenthetwoisinplace,protectingbusiness developmentandnationalsovereignty and services, andtheintermediaryuserscanbedividedintotwolevelsofservices: The Copernicusend-usersaresupportedby variousintermediaryusersproviding variousvalue-adding evolution oftheCopernicusServices.Themajordriversare: the requirements.Thedriverstothesemodificationsarechangesin policy, outcomeofresearchandthe are considered to remain valid, however over the period 2017-2020 there hasbeenaneed to complement In thePEGIandIIaseriesofrequirementswasdefinedprioritised.Theconclusionstworeports The coreservicesarefundedby Copernicus,while thedownstream servicesarenot.Acleardelineation Services (see Annex 1. “Copernicus inventory”). Services (seeAnnex1.“Copernicusinventory”). ments andSpaceAssets”includingnewgeophysicalvariablesfromtheproductlistofCopernicus The completelistofPolarExpertGroupIIIobservationrequirementscanbefound inAnnex2“Require - 2.1 SERVICE REQUIREMENTS • • • 2.  • • • • • IPCC, 2019:IPCCSpecial ReportontheOceanandCryospherein aChangingClimate,H.-O.Pörtneretal. by Intergovernmental Panel onClimateChange (IPCC) New evidenceofchangesintheSpecialReportonOceanandCryosphereaChangingClimate(SROCC) socially andenvironmentallysustainablegrowth inthearea Policy changeswithEUCouncilConclusionson“Spacesolutionsfor asustainableArctic”ensuringeconomically, product catalogue. product catalogue. may createseparateanalysisproductsthatbothdirectlyand indirectlyfeed intotheCopernicuscoreservices mation products from services to create added-value. Some downstream services(e.g.national ice services) national publicauthoritieswith non-policy oriented needs,whichuseeither Sentinel data orCopernicusinfor- The downstream servicesprovided by externalpartieslike science,industry, internationalorganisations,and for publicadministrationandEUagenciestoimplement,monitorsupportpolicies) The Copernicuscoreservices,arepan-Europeanorglobalgenericservicestoaddressusers’needs(needs related totheArctic Evolution oftheCopernicusServicesasClimateandLandareincorporatingmoreproducts Copernicus Spacesegmentevolution(Sentinelsandthird-partymissions)? Research H2020projectssuchasKEPLER The UNSustainableDevelopmentGoals PEG III USER REQUIREMENTS ; ; ; 13 ; ; ; Reliable accuracy14 and uncertainty15 estimates are almost equally important as the measured quantity; this is particularly valid for the design and implementation of forecasting systems. Observed quantities have to be accompanied by comprehensive uncertainty estimates in order to be correctly interpreted and analysed.

These requirements are phased with future developments of the different core services and consider the gaps identified in the existing core services portfolio (from CMEMS, C3S, CLMS, CEMS, CAMS, CSS-CMS) provided for polar regions.

Space based EO already used in the services and for which continuity is planned in the future Sentinel constellation has a great chance for being implemented with little additional investment. New satellite measurements or improved satellite measurements based on new will need R&D efforts in advance of the satellite mission launch.

Copernicus services monitor the Earth environment, including all polar areas. Even if a dedicated service is not foreseen for Antarctica and its realisation is challenging, space based EO data and information products should have the same quality and reliability in the southern polar regions as in the northern counterpart.

Each service expresses its requirements which are relevant for its own needs. However, there are some commonalities between services in terms not only of observation data (e.g. marine requirements for sea ice, waves and sea level may feed into the monitoring of coastal erosion) but also in terms of physical algorithm development (physical interaction between parameters), techniques (statis- tical approach), product quality estimation (e.g. common or consistent metrics) and service and product calibration and validation (cal/val) approach and tools.

Particular attention will have to be provided in the future to the analysis of service/product cross-fertili- zation aspects in order to improve the overall benefits of Copernicus core services.

This report has not emphasized the potential cross-cutting opportunities across the Copernicus services.

2.1.1 COPERNICUS MARINE ENVIRONMENT MONITORING SERVICE (CMEMS)

CMEMS requires the near real time availability of high-quality satellite and in-situ data with sufficiently dense spatial and temporal sampling. These observations are required to constrain ocean models through data assimilation and to validate them. The quantity, quality and availability of data sets directly impact the quality of ocean analyses and forecasts and associated services. The service offers reprocessed observations data and reanalysis products to track the vital health signs of the ocean and to provide key reference information on the state of the ocean. The service covers a wide spectrum of spatial and temporal scales ranging from high-resolution all-weather capabilities information to large-scale con- tinuous time series for downstream users’ applications. CMEMS is in line with the previous PEG I and II reports and gives top priority for monitoring requirements to floating ice parameters: sea ice extent/ concentration/thickness/type/drift velocity, thin sea-ice distribution, iceberg detection/volume change and drift. The main following geophysical variables are also required: (SST), sea level anomaly, surface current, sea surface salinity (SSS), wave and directional wave spectra, improved geoid, surface wind and ocean colour (OC) which, together with SST and SSS, is essential to monitor and forecast the biogeochemical (BGC) state of the oceans and seas.

14 The closeness of the agreement between the result of a measurement and a true value of the measurand. 15 Non-negative parameter, associated with the result of a measurement, which characterises the dispersion of the values that could reasonably be attributed to the measurand. 26 26 POLAR EXPERT GROUP III REPORT • 2021 17 16 for C3Sthanfor otherCopernicusServicessuchasCMEMS,theC3SreanalysisERA5 sessing the performance of the products. Although near real-time data availability is a lesser requirement algorithms andmethods,aswellaccesstoarchivesofreference datasets(e.g.in-situdata) for as- data and third-party missions, computational resources to enable reprocessing of products with advanced of observationspolarregionswithfullcoverage, fastanddirectaccesstoEOdataarchivesofSentinel To produce ECV data sets, C3S requires the timely availability ofconsistent and continuous time series information over the polarregions,especiallyfor non-orill-observedparameters. weather predictionmodelstoproduceglobalandregionalclimatereanalyses,whichprovide valuable applies dataassimilationtocombineobservationsfromsatellitesandotherinstrumentswithnumerical ocean surface(sea surface temperature, sea level anomaly),aswellsoilmoisture. In addition,C3S type), icesheets(icevelocity, surfaceelevationchange,massbalance),glaciers(outlinesandicevelocity), air temperature,precipitation,parametersfor floatingice(seaconcentration,thickness,edge policy makers andbusinesses.Thecurrentportfolio ofC3Sproductsrelevanttothepolarregionsinclude sessments by thescientific communityandthedevelopmentofmitigationadaptationstrategies by (ECV) productsacrosstheatmospheric,oceanicandterrestrialdomainstosupportclimatechangeas- C3S provides homogeneouslongclimatedatarecordsfor abroadrangeofEssentialClimateVariable 2.1.3  based onreflectiveopticalsensorsandtherefore notcovered inthisreport. CLMS alsoincludesseveralvariablesrelatedtothestateofplants,suchasleafareaindex,whichare algorithms isneeded. data ofSentinelsandCopernicusContributingMissionsfor reprocessingoftheproductswithadvanced processors togeneratetheproducts.Additionally, accesstoEOdataarchiveswithfullmissionlife time near realtimewhichrequiresatimelyavailabilityoftheEOdataandaccessibilityby thegeophysical (wet/dry snow), andgroundmotiondeformation for Europe.Severaloftheservicesarerunningin Several oftheCLMSproductsareprovided atahighresolution,suchassnow extentandcondition Europe orNortherninCLMS. seasonal subsidence, and land surface temperature. Some of these parameters are only provided for regions includelake iceextent,lake waterlevel,snow extentandsnow waterequivalent,soilmoisture, global, European,andlocalscalesathigh,midlow spatialresolution.Parameters relevantfor polar CLMS provides aportfolio ofbio-geophysicalproductsonthestatusandevolutionland surfaceat 2.1.2  ECV productsusedasboundaryconditions(SST, seaiceconcentration). a shortdelay(typicallyoneday)behindrealtimeand therefore requiresthetimelyavailabilityofcertain ECMWF reanalysisavilable touserswithin5days intermediate stepofgenerating SICdata. classification algorithm (astrainingdata),thealgorithmconverts satellitebrightnesstemperaturesdirectly tooceansurfaceclasseswithoutgoing throughthe requirements. However, oneshouldbearinmindthatSIEisnotjustamapping ofSICvaluestooceansurfaceclasses.Althoughdataareusedinthe SIE ice concentration(SIC).Assuch,theclimate requirementsfor SIEarecloselyalignedwiththoseofSIC,whichiswhyithasnotbeen includedinthelistofPEG Sea iceedge(SIE)isagriddedclassification oftheoceansurfaceasonewater, openice,and closedicecorrespondingtodifferent rangesofestimatessea COPERNICUS CLIMATE CHANGE SERVICE (C3S) COPERNICUS LAND MONITORING SERVICE (CLMS) 17 is produced with isproducedwith 16 , and , and as themainfocus isonthemicrowave instrumentation. the servicerequiresfalloutsiderangeofgeophysical variablesaddressedby thePEGrequirements Policy (asmentionedinChapter1),thevarioussatellite observationsofatmosphericcompositionthat Although CAMS plays an important role inproducing value-added products with relevance tothe EU Arctic atmospheric composition. analyses andforecasts ofglobalatmospheric compositionaswellmulti-yearglobalreanalysesof vations alongwithdataassimilationandnumericalweather predictionmodelstoproducenear-real-time energy, greenhousegasesandclimate forcing. Theserviceusessatelliteandground-basedobser- CAMS provides consistentand quality-controlled global information related to airpollution and health, 2.1.6  of minutes)arerequireddependingonthespecificdisasterphaseconsidered. radar (SAR)andoptical(visible,infra-red)sensors.Stringentdataproductlatency(intherangeoftens ellite-based datarangingfrommeteorologicalweathersatellitetovery/high/mediumresolution Depending on thetype and the different phases ofthedisaster, CEMSrequires awidespectrum ofsat- Fire Information System–GlobalWildfire Information System). droughts (EuropeanDroughtObservatory–GlobalObservatory),andforest fires(EuropeanForest which includessystemsfor floods(EuropeanFloodAwarenessSystem–GlobalSystem), risk &recovery mapsfor preventionandplanning(2)theearlywarningmonitoringcomponent an on-demandmappingcomponentincludingtheprovision ofrapidmapsfor emergencyresponseand (prevention, preparedness,responseandrecovery activities).TheCopernicusEMSiscomposedof(1) The CopernicusEmergencyManagementService(EMS)provides information for disastermanagement 2.1.5  beyond Europeanwaters. oil spilldetectiondeliveredby CMSextendstheEuropeanCleanSeaNetservicetootherareasofinterest (in the range of tens of minutes or less) are required for many of the CMS detection applications. The from veryhigh(VHR)and(HR)tomediumresolution(MR)imagery. Stringentdataproductlatency feature detection,oilspill),different resolutionclassesisrequired for SARandopticalimageryvarying Depending onthetypeofmonitoringactivity, andparticularlyfor detectionactivities(vesseldetection, CMS require SAR sensors providing all-weather, day and night imaging capability and optical sensors. vation datanamelyradar(SAR)andopticalsatelliteimagery. CMS offers on-demandimageproductsandvalue-addedbasedontwotypesofEarthObser- 2.1.4  (CAMS) COPERNICUS ATMOSPHERE MONITORING SERVICE (CEMS) COPERNICUS EMERGENCY MANAGEMENT SERVICE COPERNICUS MARITIME SURVEILLANCE SERVICE (CMS) OF THE COPERNICUS SECURITY SERVICE 27 27 POLAR EXPERT GROUP III REPORT • 2021 28 28 POLAR EXPERT GROUP III REPORT • 2021 (OLCI) andSentinel-2. are supplemented by optical data from VIIRS, MODIS, Sentinel-3 Ocean and Land Colour Instrument NB: InadditiontoCMEMS,asasupportdownstream Transport/Navigation servicesSARandPMR data AVHRR data(VIIRS,MetOp-B)isused. icebergs Sentinel-1isusedtogetherwithRadarsatdata. Forsea-icesurfacetemperatureandfor SST with third-partyPMRdata(AMSR-2fromJapan,SSMIS fromUS),andscatterometerdata(ASCAT). For COSMO-SkyMed). For sea ice drift and ice type-ice stage of development Sentinel-1 is used in combination providing PMRdata(AMSR-2,SSMIS),(ASCAT), andSARdata (Radarsat-2,TerraSAR-X, PMR datafromSMOSfor observingseaicethickness(SIT).SICmakes useofseveralthird-partymissions development, andicebergs.third-partydatafromtheCryoSat-2altimeterisusedincombinationwith For floating ice, Sentinel-1isused of for seaiceconcentration (SIC), sea icedrift(SID), ice type-ice stage hanced Visible andInfraredImager(SEVIRI)isusedfor SSTmonitoring. ESA SMOSandNASASMAPmissions.Inaddition,theMeteosatSecondGeneration(MSG)SpinningEn- JAXA AMSR). L-band PMR is also used for sea surface salinity (SSS) with data from third-party missions Radiometer (AVHRR) dataandC/X-bandPassive Microwave Radiometer(PMR)dataareused(predominately tinel-3 datawithaltimetercovering thepoles.FormonitoringSST, AdvancedVery-High-Resolution Various otheraltimetermissions(Jason-3,HY-2, Saral/AltiKa,CryoSat-2)areusedtocomplementSen- Altimeter (SRAL)sensortomonitorsealevelanomaly(SLA). Radiometer (SLSTR)sensorfor monitoringseasurfacetemperature(SST)andtheSentinelKu-Bandradar The oceanographicservicescurrentlymake useoftheSentinel-3SeaandLandSurfaceTemperature 2.2.1.1 DATA EO IN 2020 2.2.1  over EOcapabilityevolutionsaredescribedbelow. ipation ofsome of CopernicusServices also endorsed (CMEMS,C3S). The source behind the evolution Next-Generation Sentinels)willconsidercontributionsfromthePolarExpertGroupandwithpartic- products (see Copernicus inventory in Annex 1). The evolution over time (2021-2027, Copernicus HPCMs, 2020 isusedasthebaselinefor theEOcapabilitiesandisbasedondatausedfor theCopernicus other sensorsarealsodescribed. time for theCopernicusServices.However, therequirementsthatmightpartiallybefulfilled by using an overview ofmicrowave instrumentation,with“day-and-night,near-all-weather”EOcapabilitiesover is challengingfor theusersandcanleadtoperiodsofgaps,wheredataisnotavailable.Below follows Space basedEOsystemsfor thepolarregionsareevolving over time.Thecontinuouschangeofmissions 2.2  REQUIREMENTS FOR SPACE BASED EARTH OBSERVATION (EO)SYSTEMS COPERNICUS MARINE ENVIRONMENT MONITORING SERVICE (CMEMS) replacement isforeseen for L-band continuitytoSMOSorSMAPresearchmissionsatthispointintime. 2.2.1.2 EO DATA IN 2021-2027 DATA IN EO 2.2.1.2 18 CMEMS requiresthedatafrom thefollowing missions: 2.2.1.4 NEXT GENERATION SENTINELS See furtherelaborationsby theCopernicusService inChapter2.6(HPCMconsiderations). Other variablesthatneedtooperatetogetherwithother missionsaredescribedinChapter2.4. These assessmentsarealsovalidfor downstream iceservices. not offering adailypan-polarcoverage. that the horizontal resolution of the current Sentinel-1constellation is notsufficient. Sentinel-1isalso with 20mresolutioninordertofulfiltherequirementsof Transport/Navigation services.Thismeans of theoceanographicservices<5kmanddailypan-polarcoverage, butwillneedcomplementarydata data need complementary data to CRISTAL will berequired such as CIMR. CIMR fulfilsthe SIC requirements Sea ice thickness (SIT) and sea-ice concentration (SIC) are almost fulfilled, but for SIT and thin ice < 0.5m HPCM andthatissealevelanomalyinthepolarregions. Out ofthetenvariablesonlyonevariablehasrequirementsthatcanbefulfilled by onestand-alone international cooperation. data havenotbeenavailable,however thisislikely tochangeintheperiod 2021-2027 withextended L-Band SAR is currently not used for the floating ice and ocean variables (“marine requirements”) as altimeter sensorsthatcancomefromamissionsuchasCRISTAL inthefuture. Four outoftenthefloatingiceandoceanvariables(“marinerequirements”)arebasedondatafrom such asCIMRinthefuture. Requirements and Space Assets) is based on data from PMR sensors that can be provided by a mission The monitoringeightoftenthefloatingiceandoceanvariables(“marinerequirements”inAnnex2. 2021-2027 are: are relevantfor CMEMSanddescribedinAnnex3.Theuseofsimilarsensors2020for theperiod According tothePEGandCMEMS,allthreepolar-focused HPCMs,namelyCIMR,CRISTAL, andROSE-L, 2.2.1.3 COPERNICUS HPCMS access toALOS-4 andAMSR-3. SAOCOM andNISARfor Antarctica).ESA is exploringthepossibilitiesfor internationalcooperationfor ice variables.CMEMSisinterestedinaccesstodatafromthird-partyL-band SARmissions(e.gALOS-4, until thereisaCryoSat-2follow-on. ThechangetoAMSR-3isalsohighlyrelevantfor severalfloating Radarsat ConstellationMission(RCM).AsCryoSat-2willretire,ICESat-2canbeaninterimalternative For floatingice, thereis aninterestinthreeSentinel-1unitsorbitandtobecoordinated withthe W-band replacingAMSR-2 graphic servicesaretheintegrationofSentinel-6replacingJason-3,andextensionAMSR-3withC- to According tothePEGandCMEMS,mostimportantchangesbaselinesituationfor theoceano-

C-band (6.9 GHz),X-band(10.6Ku-band(18.7Ka-band(36.5W-band(89 GHz) 18 . TheplannedlaunchofAMSR-3is2023withendlifetime in2028.No 29 29 POLAR EXPERT GROUP III REPORT • 2021 30 30 POLAR EXPERT GROUP III REPORT • 2021 20 19 2021-2027 withmoreinternational cooperation(e.g.SARsensorsALOS PALSAR-2, SAOCOM, NISAR). mary tableinannex3)as data havenotbeenavailable.However, thisislikely tochangeintheperiod L-Band SARiscurrentlynotusedfor the“landsurfaceandfreshwater”variables (seetheSum- lake waterlevel. moisture, landsurfacetemperature.Forthesametime periodaltimeterdataarebeingusedtoproduce In 2020andintheperiod2021-2027PMRdatawill be usedfor producingsnow waterequivalent,soil products for CLMS: Expert Group (PEG) the following Copernicus HPCMs can provide important data for producing data CIMR, CRISTAL and ROSE-L, areall relevant for the CLMS polar related products. Accordingtothe Polar 2.2.2.3 COPERNICUS HPCMS monitor lake waterlevel. is theuseofnewaltimeterdatafromSurfaceWater andOceanTopography (SWOT) mission to of repeatobservations.ThePEGalsounderlinedtheimportanceL-band SARdata.Equallyimportant and tobecoordinatedwiththeRadarsatConstellationMission(RCM)inorderimprove thefrequency According tothePolarExpertGroup(PEG)itisrelevantfor CLMStooperatethreeSentinel-1unitsinorbit, 2021-2027 DATA IN EO 2.2.2.2 CLMS iscurrentlyusingthefollowing satellitemissions: 2.2.2.1 DATA EO IN 2020 2.2.2  Other relevantdatafor covering thePEGgeophysicalvariablescanbefound inthe“Summarytable,Annex3”. • • • • • • • • • • Based onMODIS,Sentinel-3SLSTRdatais foreseen tobeusedinthefuture.SARdatacansupport. Based onSentinel-3SLSTRdataandnot “near-all-weather”instrument.Microwave measurementscanpotentiallysupport. development and icebergs. development andicebergs. Next-Generation Sentinel-1(sub-daily coverage) for sea-ice concentration, sea ice drift, ice type-icestageof Next-Generation Sentinel-3SLSTRfor surfacetemperatureover oceanandover ice water equivalentandsnow extent(coarseresolution; flatterrainonly). CIMR isrelevantfor producinglow resolution soilmoisture,landsurfacetemperature,lake iceextent,snow CRISTAL isrelevantfor producinginland waterlevel(lake waterlevel) water equivalent(highresolution;for complexterrain) ROSE-L isrelevantfor producinghighresolutionsoilmoisture,lake iceextent,seasonalsubsidence,snow Sentinel-1 for producingthefollowing productsandservices: then Sentinel-3SLSTR),snow waterequivalent(SSMI),Lake IceExtent index (MetOpASCAT), inlandwaterlevel(Jason/Sentinel-6),snow cover extent(VIIRS,MODISuntilDecember2020, Third-party data from“day-and-night, all-year and near-all-weathermissions”for the following variablessoilwater Sentinel-3 altimeter(SRAL)andradiometer(SLSTR)dataisusedfor producingthefollowing products: Sentinel-2 for highresolutionsnow extentinEurope. Next-Generation Sentinel-3SRALfor seaicethicknessandlevelanomaly. - - -

Inland waterlevel,inlandtemperature Wet snow servicefor Europe(togetherwithSentinel-2highresolutionsnow service). Soil moistureandtheGroundMotionService(for subsidence;currentlybeingimplemented) COPERNICUS LAND MONITORING SERVICE (CLMS) 19 , snow extent(by Jan.2021). ; 20 (by Jan2021). ; ; ; ; and landiceproducts areasfollows. According tothe PEGandC3S,themost importantchangestothe baseline situationfor thefloatingice 2021-2027 DATA IN EO 2.2.3.2 The icesheetsandglacierproductsofC3Srelyonthefollowing data: to theirnatureofbeingmulti-decadalclimatedatarecords: The floatingiceandoceanproductsofC3SrelyonawiderrangedatathanthosefromCMEMS, owing 2.2.3.1  or futureequivalentsintheC3Sproductrange. cations” or“climateproducts”willbe used in lieu ofC3S when discussing ECV products withoutpresent for whichclimaterequirementsexist(e.g.fromGCOS).Inthefollowing sections,theterm“climateappli- service expectstobeableprovide in2021-2027doesnotincludeallECVs consideredby the PEGand Although C3Sstrivestoprovide asbroadarangeofECVs aspossible,itscurrentportfolio andwhatthe 2.2.3  CLMS requirespan-polarcoverage over landfor thefollowing missionsandvariables: 2.2.2.4 NEXT GENERATION SENTINELS Other variablesthatneedtooperatetogetherwithothermissionsaredescribedinchapter2.4. can befulfilled by onestand-aloneCopernicusHPCMandthatislandsurfacetemperature. Out ofthefive“landsurfaceandfreshwater”variablesonlyonevariablehasrequirementsthat moisture andseasonalsubsidence,wetsnow extent: Land surfaceandfreshwaterproductsofC3S relyonthefollowing data: • • • • • • • • • • • • • Glacier outlinesusesopticalsensordatafromSentinel-2 and Landsat; Ice velocityusesSentinel-1SAR; NOAA-X andMetOp-A,ATSR/ERS, AATSR/). Sea surfacetemperatureusesSentinel-3SLSTRincombinationwiththird-partymissiondata(AVHRR on data (ERS,Envisat,Jason/S-6,Topex/Poseidon, SARAL,CryoSat-2); Sea level anomaly uses radar altimeter data from Sentinel-3 (SRAL) in combination with third-party mission Sea iceconcentration(brokered fromOSISAF)andseaicetypeusePMRdataSMMR,SSM/ISSMIS Sea icethicknessusesradaraltimeterdatafromEnvisat(RA-2)andCryoSat-2(SIRAL); Sentinels-1, -2,-3NG(pan-polar)lake iceextent. bands toimprove snow /clouddiscrimination) Sentinel-3 NG SLSTR / OLCI for seasonal snow extent (note: Sentinel-3 NG SLSTR requires additional spectral Sentinel-3 NGSLSTRfor landsurfacetemperature Sentinel-3 NGSRALlake waterlevel SMMR, SMM/IS,TMI,AMSR-2, AMSR-E,WIndSat,SMOS. Surface soilmoistureisproduced usingscatterometerdatafromAMI-WS,ASCAT-A/B andPMRdatafrom Jason/Sentinel-6, Envisat,SARAL,-Follow-On Lake waterlevelusesdatafromSentinel-3andthird-partyradaraltimetersonTOPEX/POSEIDON, Envisat, CryoSat-2. Surface elevation change uses altimeter data from Sentinel-3 SRAL data as well as data from ERS 1/2, EO DATAEO IN 2020 COPERNICUS CLIMATE CHANGE SERVICE (C3S) ; ; ; ; ; ; Sentinel-1 NG soil Sentinel-1 NGsoil ; 31 31 POLAR EXPERT GROUP III REPORT • 2021 32 32 POLAR EXPERT GROUP III REPORT • 2021 21 C3S requiresthedatafrom thefollowing missions: 2.2.3.4 NEXT GENERATION SENTINELS further detailsabouthow theHPCMscanfulfill C3S requirementsinsection2.6“HPCMconsiderations.” Variables thatneedtooperate insynergywithoneormoremissionsaredescribedsection2.4.Seealso requirements thatcanbefulfilled by onlyonestand-aloneCopernicusHPCM(notcombinations): Out of the 15 C3S climate variables from the four previously mentioned categories, 7 variables have PALSAR-2 (e.g.insynergywithSentinel-1for icevelocity). SAR fromthird-partymissionscouldpotentiallybeused,includingSAOCOM A&B,NISAR,andALOS as no data are operationally available. For the period of 2021-2027, systematic acquisitions from L-Band L-Band SARdata,suchasthoseprovided by amissionsimilartoROSE-L,arecurrentlynotusedby C3S the future. categories are based on data from altimeter sensors that can come from a mission such as CRISTAL in Seven outofthe15climatevariableslistedunderfloatingice,ocean,icesheets,glaciersandcaps categories are based on data from PMR sensors that can come from a mission such as CIMR in the future. Eight outofthe15climatevariables continuity beyond 2027 of the sensors used in 2020 and during 2021-2027 could be ensured as follows. All threepolarHPCMs(CIMR,CRISTAL andROSE-L)arerelevantfor C3Sandclimateapplications.The 2.2.3.3 COPERNICUS HPCMS • • • • • • • • • • • • • Variables found bothinglaciers andicecapsinIcesheetsareonlycounted once.Seasurfacesalinityisnot included inthetotalcount. Next-Generation Sentinel-3 SRAL for Lake water level and with a pan-polar coverage for floating ice and ice Sea levelanomaly Ice margin(extent)oficesheets Ice sheetgroundinglinelocation Surface elevationoficesheetsandglaciers Surface icevelocityofsheetsandglaciers Iceberg (concentrationandindividualicebergs)-climate Sea iceconcentration-climate The multifrequencypassivemicrowave radiometerAMSR-3(expectedlaunchin2023withprojectedlifetime planned tobeusedincombinationwithPMRdatafromAMSR-2/AMSR-3/SMAPfor seaicethickness With theCryoSat-2missionapproachingitsendoflife, altimeterdatafromICESat-2for seaicethicknessis (ROSE-L preparation). (ROSE-L preparation). SAR missions (e.g. NISAR) to fill polar gaps in Antarctica and prepare for synergistic use of C- and L-Band SAR For icevelocityandgroundinglineofsheets:potentialsynergySentinel-1SARupcomingthird-party use oftheSP-INSARDEMsfromSentinel-1Cunitflyingin formation withtheSentinel-1Aunit For Surfaceelevationchange,C3Splanstomake useofICESat-2,TanDEM-X SP-INSARDEM,withpotential stellation Mission(RCM) benefit fromthreeSentinel-1unitsinorbitandcoordinatedwiththeobservationplanofRadarsatCon- For Seaicedrift and iceberg(icebergconcentration charts and individual icebergs), climateproductswould and seasurfacetemperatureatlow spatialresolution until 2028)isalsoplannedtobeusedfor seaiceconcentration,Drift,type-icestageofdevelopment surface elevation&changeand mass sheets: sealevelanomaly, seaicethickness(SIT),Iceberg(iceberg concentration chartsandindividualicebergs), ; 21 listed under the floating ice, ocean, ice sheets, glaciers and ice caps listedunderthefloatingice,ocean,icesheets,glaciersandcaps ; ; CRISTAL ROSE-L ROSE-L CRISTAL ROSE-L ROSE-L CIMR ; ; CEMS is requiringS1-NG Sentinel-1 NGglobally includingthe Arctic. 2.2.5.4 NEXT GENERATION SENTINELS radiation, betterdetection of floodsundervegetatedareasisexpected. ROSE-L will increase the number of SAR and due to the penetration capabilities of L-band possibility ofmakinguse theL-band toseewaterbelow vegetation (below thecanopy cover oftrees). CEMS isinterestedinadditional SARcapacityinordertoincreasetherevisittime globallyaswellthe 2.2.5.3 COPERNICUS HPCMS CEMS isinterestedin3unitsofSentinel-1orderto increasetherevisittimeglobally. 2021-2027 DATA IN EO 2.2.5.2 flood monitoringproduct. Sentinel-1 dataiscurrently(starting2021)usedfor thesystematic,automated,Sentinel-1basedglobal 2.2.5.1 DATA EO IN 2020 2.2.5  and ifpossible,withadatalatencyof20to30min.ThisrequirementappliesalsotheArctic. CMS isrequiringS1-NGSentinel-1withahigherhorizontalresolution(from2.5m

included togetsnow waterequivalentfor flatareasatcoarserresolution. (snow waterequivalent for drysnow areasinmountainsandcomplexlandsurfacecover). CIMRcanbe data sets:Sentinel-3SLSTR/OLCI (totalsnow extent),Sentinel-1SAR(snow statewet/dry) andROSE-L Advanced monitoringofseasonalsnow parameterscanpotentiallyexploitthesynergyofseveralSentinel as wellbetweenbarelake iceandsnow-covered lake icewithlimitations(cloudcover periods). lake iceandwater, andSentinel-2 Sentinel-3 providing bettercontrast between water and thinice and Sentinel-3willprovide lake iceextentinformation, withLandC-band SARbeing abletodistinguish Lake iceextentfor CLMSandclimateapplications:ThecombinationofROSE-L,Sentinel-1,Sentinel-2 2.4.10  Sentinel-3 SRAL(KuandC-band SARRadarAltimeter)willprovide lake waterlevelinformation. Lake water level for C3S and CMLS: The combination of CRISTAL (Ku-Band interferometric SAR) and 2.4.9 CRISTAL & SENTINEL-3 thin snow packs). Sentinel-3 SLSTR/OLCI canbeusedtoimprove theboundariesofseasonalsnow extent(especiallyfor The combinationofthe snow waterequivalentproductinflatareasfromCIMRandsnow extentfrom particularly for thecoastalzoneandover lakes. but notthroughclouds.PMRandIRimagerycanbecombinedtoachieveimproved SSTandISTproducts, can measurecoldpolarSSTandISTthroughclouds.IRradiometersthemmoreaccurately, Sea andicesurfacetemperature(alreadyoperationalinCMEMS):PMR(withC-band microwave frequency) with cloudlimitations. will provide landsurfacetemperaturewithnear-all-weathercapability(CIMR)andSentinel-3/SLTR IR Land surface temperature for CLMS and climate applications: The combination of CIMR and Sentinel-3 2.4.8 CIMR & SENTINEL-3 SEASONAL SNOW LAND SURFACE AND SURFACE FRESH WATER LAND SURFACE AND SURFACE FRESH WATER SEASONAL SNOW FLOATING ICE LAND SURFACE AND SURFACE FRESH WATER ROSE-L & SENTINEL-1 & SENTINEL-2 & SENTINEL-3 37 37 POLAR EXPERT GROUP III REPORT • 2021 38 38 POLAR EXPERT GROUP III REPORT • 2021 system isrestricted by swathandduty cycle. a dailybasis.Analtimeter ismorerestrictedtothegroundtracklocationandchoice oforbitandaSAR constraints that must also be considered.Forexample, PMR canprovide pan-Polar regions coverage on TanDEM-X isalso ofconcern.However, eachmissionhas different dutycycleand/orrevisitandcoverage CCM dataseesection1.6). ContinuityoftimelySARdatafromRadarsat-2and SP-InSARDEMsfrom measures shouldbetaken toensureobservationsbeyondthelife timeofthecurrentCryoSat-2(e.g. CryoSat-2. Continuityofaltimeterdataathighpolar latitudes (northof81.5North)isacriticalgapand Mission continuityisageneralconcernfor various missions,butmostcriticalfor SMOS,AMSRdata,and 2.5.1  retrievals arehelpfulinjudgingthereliabilityandrobustness oftheindividualresults. for retrievingchangesofthinicethicknessonscalestensmeters.Mutualcomparisons the thickness average thicknessover areas>50kminextension,whereasSARandthermalradiometersareoptimallysuited PMR (L-band), thermal radiometers, andfromL-band SARdata. Scales are different: with PMRoneobtainsthe SAR dark/brightreturns.Thicknessretrievalfor thiniceclasses:Thethicknessofcanberetrieved from are anambiguityfor PMR.ThecombinationofCIMRandROSE-L/Sentinel-1SARmayalsobeuseful for resolving sea iceconcentration,type,andmelt-pondfractionsareavailablefromSARoroptical/thermalradiometersbut eters permitsindependentverificationofdataobtainedfromPMR.A key elementisthesummerseasonwhere Calibration andvalidationofPMRdataproducts:ThehighspatialresolutionSARoptical/thermalradiom- &CHIME &CIMR 2.4.13 ROSE-L improve detectionoffreeze/thawstate. of CIMRandCHIMEorwithROSE-LSentinel-1.Combinationopticaldatacanbeusedto (up to 5 cm) provided at L-band. Improvement of spatial resolution is possible through a combination retrieval for onlynon-frozensoilandbelow thevegetationcanopy withahighersoilpenetration depth Soil moisturefor CLMSandC3S:ThecombinationofPMRL-&C-band SARwillprovide soilmoisture &S1 &CHIME &CIMR 2.4.12 ROSE-L mation onseaicerheology. High spatialresolutionofSARandoptical/thermalradiometersarecomplementaryinproviding infor- higher contrastfor deformation features. SAR atdifferent frequencies.Low frequency(L-band) SARprovides greaterpenetrationintotheiceand automatic classificationofseaiceconcentrationandtypethroughacombinationmulti-polarimetric High-resolution seaicemappingconcentrationandtypetosupportmaritimeendusers:Improved 2.4.11  FLOATING ICE LAND SURFACE AND SURFACE FRESH WATER FLOATING ICE 2.5  REMAINING GAPS OBSERVATION GAPS PRE-HPCMS FOR POLAR REGIONS ROSE-L & SENTINEL-1 & SENTINEL-2 & SENTINEL-3 & CHIME and the completeness per Copernicus HPCM. and thecompletenessperCopernicusHPCM. The “RequirementsandSpaceAssets”tableinAnnex2 provides and overview ofthevariousrequirements mountain glaciersworldwideandfor glaciers incomplexterrain,andpermafrostareas. SP-InSAR isneededtomonitoralllandicesurfaces, sheets(focussing onmarginsandoutletglaciers), Timeliness (updatefrequencyanddatalatency) isidentifiedasapotentialgap. required by TheCopernicusMaritimeSurveillance)andon-icebuoys with<1hsampling. In-situ observationswillberequiredtofillgaps,suchaspan-polarAutomaticIdentificationSystem(AIS) the importanceofthesemissionstofulfilvariousrequirements. but the decision remains with the owner. It is therefore difficult to be clear on the gaps post-HPCMs and they might be filled. It might be possible to influence the decisions of the owners of third-party missions, It isdifficulttoplanaccordinglytakeas intoaccountfuture(>5years)gapsofthird-partymissions 2.5.2  In-situ dataisgenerallyverysparseinthepolarregions. icebergs. A data latency<1his expressed as a gapfor sea ice thickness, sea ice concentration, sea ice driftand SAR missions(e.g.NISAR);coverage requiredevery3to5years. Coverage ofpolargapinAntarctica:determiningicevelocityusingSAR:requiresleftlookingthird-party snow parametersundervariousilluminationconditions. of spectral bands for upcomingoptical sensors for snow /clouddiscriminationandretrievalofphysical from snow, clouds and atmospheric radiative transfer should be initiated to elaborate on the best set S2 MSI)toallow for abetterdiscriminationofsnow andclouds.Ataskforce groupincludingexperts imagery isrequested.Additionalspectralbandsshouldbeaddedtoopticalsensors(S3SLSTRandOLCI, For glaciers,snow, icesheetsandlandsurfacefreshwaterahigherrevisittime ofoptical covered continuouslyby SP-InSARtomapsurfaceelevationchanges. every 3to5years.Outletglaciersandmarginsoficesheets,capsmountainshouldbe during winter campaign) (InSAR ice velocity), and the interior of Antarctica (as covered by Sentinel-1) full Greenlandicesheetshouldbecontinouslycovered by crossingorbits,butatleastonceayear(e.g. for monitoringofglaciersandicecaps,aswellmarginsGreenlandAntarcticsheets.The (ascendinganddescending)ofSAR(C-Band andL-Band) toenableInSARapplicationsismissing especially ofinterestfor seaicedriftandicebergs.Repeatcoverage (continuous6days)with crossing the frequencyofcoverage ofthesouthernArcticisnotsufficiently covered. Thesouthernlatitudesare The updatefrequencyisalsostressedfor severalofthegeophysicalvariablesandfor manyvariables 2.6  COPERNICUS HPCM CONSIDERATIONS POTENTIAL OBSERVATION GAPS POST-HPCMS 39 39 POLAR EXPERT GROUP III REPORT • 2021 40 40 POLAR EXPERT GROUP III REPORT • 2021 the implementation.Mainimprovements provided by CRISTAL include: The CRISTAL missionalsofulfilsCMEMScommitments togetherwithasignificantdegreeofin feasibility 2.6.1.2  systems. Spatial measurements(SIST/SST)acrosstheiceedgewillintroducespatialcontinuitytooperational in theArcticMFC systemiscurrentlybeinginvestigatedwithintheESAArctic+Salinityproject. The provision ofseasurfacesalinityfollowing afterSMOSwillalsoberelevant.Theassimilation ofSSS resolution (~3km)foreseen beyond2021inCMEMSoperationalsystems. Measurements ofSICataspatialresolutionlessthan5kmwillmeettheincreasehorizontal services intheircommitmentsofproviding coreservicesfor downstream applications. Sub-daily coverage inthepolarregionsandadjacentseasisofparticularimportancefor Copernicus rameters for whichoperationalsystemscanbereliedon(incl.C3S).SISTispartoftheCMEMS portfolio. Apart fromthethinSITwhichonlyhasbeenrecentlyimplemented,SIC,seaicedriftandSSTarepa- Continuity oftheservice:SIC,thinSIT, seaicedriftandSSTarecurrentlyassimilated by CMEMSmodels. interest for CMEMSinclude: commitments (coreservice)for polarregionswithhighfeasibility intheimplementation.Parameters of Out ofthethreemissionsCIMR,CRISTAL andROSE-L,CIMRisthemissionthatmeetsbestCMEMS 2.6.1.1  2.6.1  BENEFITS FOR CMEMS • • • • • • • the lasersignalsdonotpenetrate snow onicesheets. extent ICESat-2 can fill the gaps after Cryosat-2, with noticeable differences as between these observations, Synergy betweenICESat-2asalaserinstrumentandCryoSat-2 asaradaraltimeter. Itisunclearto what No altimetrymissionnorthof81.5°Nandsouth81.5°S by mid-2020’s; wave height(SWH)+improvements withsnow cover onice; Sea level anomaly (ocean currents) (also measured by Sentinel-3 but with less polar coverage) + significant and height; High resolution Thick SIT (> 1.0m) with better accuracy, sea ice type, snow depth on sea ice, iceberg detection SMOS) inmeasuringSIC,SST, thin-SITandotherseaiceoceanparametersin2022-2023timeframe. making useofsynergiesisrelevantfor CMEMS,tomake upfor theexpectedlossofcapabilities(AMSR-2, specifically designedtoaddressSSSincoldwaters; is theonlyplannedmissioninternationallytoprovide L-band continuityfor SeaSurfaceSalinityandhasbeen sea surfacetemperature(SST, 2ndprimaryobjective),seasurfacesalinity(SSS),oceanwinds.CIMR snow depthonseaice,icesurfacetemperature(SIST); sea iceconcentration(SIC,1stprimaryobjective),thinthickness(SIT)(<0.5m),drift,type, COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR) COPERNICUS MARINE ENVIRONMENT MONITORING COPERNICUS POLAR ICE AND SNOW TOPOGRAPHY ALTIMETER (CRISTAL) SERVICE (CMEMS) The CIMRmissionwouldfulfilpartiallyC3Srequirements for theprovision ofthe following ECVs: 2.6.2.1  2.6.2  Main improvements offered by ROSE-L: are currentlynotdesignedtoimplementsuchinformation inamultivariateandmulti-dataframework. ited coverage andveryhighresolutioncomparedtoforecasting systems.Operational(model) systems of thesemeasurements,particularlyfor reliableautomatedsea-icechart-like products.Itprovides lim- large potentialbutmajorefforts havetobedevelopedinoperationalsystemsordertake fullbenefit The ROSE-Lmissionpartlyfulfilsthedataneedsofcoreserviceprovided a by CMEMS;ROSE-Lhas 2.6.1.3  BENEFITS FOR C3S: MAIN BENEFITS PROVIDED FOR CMEMS: BENEFITS FOR CMEMS • • • • • • • • • • • • • • • toring, oil spills and icebergs detection. toring, oilspillsandicebergsdetection. Also part of 1st objectives: Copernicus Maritime Surveillance (safety and security): vessels & fisheries moni- Soil Moisture(SM) sea surfacetemperature(SST) sea icetype(SITy) sea iceedge(SIE) sea iceconcentration(SIC) Thin seaicethickness(<0.5m),snow depthonseaice,oceanwinds spectrum) ; ies: oceansurfacevectorstress(windspeed&direction,seastate),SWH(waveperiod,directionandenergy Potential toaugmentandcomplementexistingMarineserviceshasbeendemonstratedthroughcasestud- and deformation, seaiceconcentrationandedgeposition L-Band SARhigh-resolution(<100m),ice type(icecharts),icebergoccurrenceandarealdensity, seaicedrift Continuity oftheservicefor icebergdetectionproductscurrentlyintheCMEMSportfolio. Continuity oftheservicefor theprovision ofSeaiceconcentrationandtypeatveryhighresolutionin both hemispheres. Iceberg detectionproductswillcompletetheCMEMSportfolio (coreservice)withmeasurementsmadein of measurementiscurrentlyoperationalintheARCMFC andisunderwayintheGLO MFC; models. CRISTAL willprovide dataofthickseaicethicknessfollowing onCryoSat-2;assimilationofthistype Continuity oftheservice:Thesealevelanomalyover theopenoceaniscurrentlyassimilatedby CMEMS boundary conditionsfor high-resolutionArcticregionalreanalyses. Continuity ofthemedium-resolution CDRofSICbasedonAMSR-E/AMSR-2.Thisis importanttoprovide essential oceanboundarycondition for C3Sglobalandregionalreanalyses; M/I-SSMIS series.Asidefrom their importancefor assessinglong-termchanges inseaice,theSICCDRprovides Continuity ofexistinglow-resolution ClimateDataRecords(CDR)ofSIC,SIE,andSITybased ontheSMMR-SS complement toSentinel-1.Thesemeasurementsarethecoreinputfor theicechartsdisseminatedinCMEMS. COPERNICUS IMAGING MICROWAVE RADIOMETER (CIMR) COPERNICUS CLIMATE CHANGE SERVICE (C3S) RADAR OBSERVING SYSTEM FOR EUROPE AT L-BAND (ROSE-L) ; ; ; - 41 41 POLAR EXPERT GROUP III REPORT • 2021 42 42 POLAR EXPERT GROUP III REPORT • 2021 bution fromSentinel-1). ROSE-L willbetheprimarysourcefor grounding linedetectionandmonitoringmigration–(withcontri- Grounding line(Antarctica,Greenland): Ice velocityfor icesheetsandglaciers: as Sentinel-1C-band SAR.Suchsynergywouldassumethefollowing configuration: provision by C3SoflandiceECVs, bothasastandalonemissionandinsynergywithothermissionssuch Although L-band SARarecurrentlynotavailablefor C3S,theROSE-Lmissionwillhighlysupport 2.6.2.3  The CRISTAL missionwouldfulfilC3Srequirements for theprovision ofthe following ECVs: 2.6.2.2  BENEFITS FOR C3S: BENEFITS FOR C3S: • • • • • • • • • • • • • • • • L-band shows improved coherenceagainstC-band, whichwillimprove coverage. Method used:DInSAR-Differential Interferometry SyntheticApertureRadar; ROSE-L’s higherresolutionthanS1willimprove IVcoverage especiallyover mountainglaciers. coverage (duetobettercoherencethanC-band); ROSE-L willprovide improved IVretrievalover theinterioroficesheetswithmissingfeatures andimproved where S1C-band fails; L-band improves significantlyicevelocity (IV)retrievalinareaswithsnow driftandevenlightsurfacemelt, Methods tobeused:Repeat-passInSAR,CoherentandIncoherentoffset-tracking; L-Band SAR). erating incloseformation withSentinel-1platforms (enablingcloselyspeedcollocated aquisition ofC- and ROSE-L: repeatpass<6days,L-band, resolution5mx10m;continuousacquisitionover landandArctic;op- Sentinel-1 A/B/(C):6-drepeatpass;resolution:5mx20m; Snow depthonseaice Sea levelanomaly Sea icethickness Ice sheetsurfaceelevationchange Ice sheetsurfaceelevation long extendeditsnominallifetime andbridgingthegapbetweenCryoSat-2CRISTAL willbeessential; Continuity oftheSITClimateDataRecordbasedonCryoSat-2.However, theCryoSat-2missionhasalready Provision ofsignificantwaveheightdataneeded for assimilationintoglobalreanalyses. Enhanced spatialcoverage ofSITandSLAover thecentralArcticOceancomparedtoCryoSat-2andSentinel-3 (both limitedto<81.5°N);. RADAR OBSERVING SYSTEM FOR EUROPE AT L-BAND (ROSE-L) COPERNICUS POLAR ICE AND SNOW TOPOGRAPHY ALTIMETER (CRISTAL) of icespecificsorcoverage wascorrectlyaddressed: analysis andhaveensuredthatenhancedcontinuitywithbetterobservation,discrimination also consideringthe variables addressedby PEG I andII.The Copernicus Services havecontributedto the The analysisismainlydoneundertaken onthecurrentproductportfolio oftheservicesasabaseline,but Support totheCopernicusservicesisapriority, ensuringcontinuity, enhancedcontinuityandnewproducts: these missionsastheyarealsorelevanttoobserveothervariablesthantheonesidentified by thePEG. compared to the PEG I and II itisalsoimportanttotake intoconsideration the secondary objectives of and applications.Still,evenifthenumberofgeophysicalvariablestobeobtainedishigherfor PEGIII The PEGconsidersthattheprimaryobjectivesofCIMR,CRISTAL andROSE-Laretoservethepolarregions missions withinstrumentssimilaritiestotheCopernicusHPCMs. Copernicus Servicesby makingdataavailablefromRadarsatConstellationMissionaswell S-1 satellite,mainlybecauseofhigherrevisittime.FortheCCMdataitisalsoimportanttosupport to thecompletenessofPEGrequirements,16werefound tohaveaneedfor aphasinginthird The “Summarytable”(Annex3)describesthatoutof25geophysicalvariables,whereS-1cancontribute having three Sentinel-1 satellites in orbit for observing the geophysical variables addressed by the PEG. in a third S-1 satellite. For the period 2021-2027, the Copernicus Services stressed the importance of services. Intheshorttermtherearefew enhancementsaddressedandthatismainlytheneedtophase Ensuring access to the existing Sentinels and CCMs is crucial for generating the Copernicus products and SPECIFICS OF EACH MISSION: ENHANCED CONTINUITY – COPERNICUS HPCMS FOR THE POLAR REGIONS CONTINUITY 2.7  • • • • • also of interest for useby threeservices. CRISTAL is not mandatory for inlandwater levelglobally becauseof with analtimeter andtomake synergyproducts regularly. CRISTAL istherefore lessindependent. CRISTAL is to thicknessat any higherthickness.Itistherefore importanttocombine aPMRsensor(SMOS, SMAP orCIMR) as the ice becomes opaque for ice thicker than as above the 50cm, meaning that there is no/limited sensitivity (< 1meter)theuncertaintyincreases thethinnericeiswhilefor PMR,atL-band, itisalmosttheopposite arctic icesheets)andsealevel providing altimetercoverage northof81.5degrees. However, for icethickness CRISTAL iscriticalfor iceclimatology(includingmassbalance changeandmonitoringofGreenlandAnt- CIMR isuniquefor SSTandsalinity/soilcannotbereplacedby Sentinel-3/SLSTRorMSG/MetOp; ice /seasurfacetemperatureandsalinity/soil moisture. PMRisusedby threeCopernicusservices. CIMR canflyandbringbenefitindependentlyfromothermissions. CIMRaddressesintotalthreedomains:floating CRISTAL aremorecriticalfor theCopernicusServicesthanROSE-L.CIMR addressesmorevariablesthanCRISTAL. When consideringtheprimaryandsecondaryobjectivesto address polarissuesandmainlyice,bothCIMR the CopernicusServices; of ROSE-Lshouldbeaccompaniedwithresourcesfor researchanddevelopmenttoensurethefullusefrom and operationalisedby theCopernicusServiceswithaspecialinterestfromCLMSandC3S.Thedevelopment improvement ofexistingproducts.Thematuritythescienceandalgorithmsremainstobedemonstrated ROSE-L isofinterestfor someparameters,whileROSE-Lratheraddressesnewpotentialapplications orthe and improved applications; demand toomanyresources.However, datafromthesemissionscan befurtherexploredandprovide new isting baseline.Forbothofthem,thescienceiswelldocumentedandadaptationby theservicesshouldnot C3S andCLMSintermsofproviding continuitytoexistingmissionsandsupportingtheofex- The CIMR and CRISTAL missions are obviously addressing extensive needs for the three services CMEMS, EARTH OBSERVATION REQUIREMENTS - SUMMARY

43 43 POLAR EXPERT GROUP III REPORT • 2021 44 44 POLAR EXPERT GROUP III REPORT • 2021 polar services since: polar servicessince: All CopernicusHPCMsoffer importantnewandadditionaldata,thatwouldotherwisenotexist for the combinations are: Many combinations have been investigated in Chapter 2.4 as well as in Chapter 4, but the most important COMPLEMENTARITY / COMBINATION WITH OTHER MISSIONS • • • • • • • • • • • and SMAPmissionfor salinity(over thepoles andglobally),soilmoisture(waterscarcity)thinsea-ice The L-band radiometryofCIMR(1.4GHz)istheonlymissionforeseen toensuresthecontinuityofSMOS realistically avoidedbefore 2028; with anendoflifetime in2028meaningthatCIMR/PMRwouldbeneededatleast2028.Soagapmay X-band (10.6GHz),Ku-band(18.7Ka-band(36.5W-band(89GHz).AMSR-3isplannedin2023 The CIMR/PMRinstrumentisneededtoensurethecontinuitywithAMSR-2and(-3)dataofC-band (6.9GHz), grammatic financialplanningbeyondEuropeaninfluence); Data fromcomparableinstrumentationisnotreliablyaccessibleatall(sovereignty, uncleartechnicalpro- Comparable instrumentationinorbithasexceededpredictedlifetime or; No suchinstrumentsexistor; remains alsotobedemonstrated. Sentinels areelaboratedbutthematurityandoperationalityatshort-tomid-termoftheseapproaches be lessbeneficialasastandalonemission).Complexcombinations/integrationsofROSE-Lwithallother simply anaddedplusorismandatorytomake theROSE-Lsensorbeneficialperse(meaningwould is The combinationofROSE-LandSentinel-1ispromising,butitdifficulttodetermineifthis quency asCIMRandCRISTAL withhighresolutionSARdatafromSentinel-1; and AMSR).Forobservingicespecifics,itis key tocombinesensorswithwidecoverage andhighrevisitfre- and easytoimplementsincethisisbasedontheexperienceknowledge oftheexistingsensors(CryoSat further described in Chapter 4. CIMR, CRISTAL with Sentinel-3 and Sentinel-6 is also of interest, is necessary The combinationofCIMRandtheexistingSentinels(Sentinel-1,Sentinel-3S-6)isdescribedwillbe 2 SAOCOM2 (2025-2031) and NISAR (2022-2025) missions. 2 SAOCOM2 (2025-2031)andNISAR(2022-2025)missions. ROSE-L complementsthecurrent ALOS-2 (end2024),2SAOCOM1 (end2025), futureALOS-4 (2022-2029), a gap.Discussionsshouldstart aboutthepossibilitytoobtaincomplementarydatafrom Icesat-2; a follow-up missiontoICESat-2With theendofoperationsfor CryoSat-2theCopernicus Servicescouldface operations oftheCryoSat-2missionandreallifetime ofICESat-2isunknown aswellthepossibilityfor eter launchedin2018withadesignlifetime of threeyears).Discussionsareon-goingtofurtherextendthe CRISTAL ensures continuity of CryoSat-2 (launched in 2010) and is complementary to ICESat-2 (laser altim- three Sentinel-1satellitestoimprove thetemporalandspatialcoverage oftheobservations. From theanalysesofthreemissionsandby thefiveservices,acommonrecommendationisalsotofly relevance for subsidence.ROSE-LremainscomplementarytoSentinel-1mainly; in makinguseL-band SARfor delineatingfloodsunderthetreecover in forests, but L-band SARisalsoof the C-band. Applicationsrelatedtolandand biophysicalvariablesarewelldocumented.CEMSseesanasset many applicationsitisuncleartowhatextenttheL-band frequencywillresultinimprovements comparedto ROSE-L is promising in many areas and is being assessed by the C3S, CEMS, CLMS CMEMS and CMS. For 81.5 degreesNorth/South; Sentinel-3 andSentinel-6,butitismandatoryfor obtainingsea-leveldatafor higherlatitudesnorth/southof PMR flow inoperationalcontext; before 2028 most probably since SMOS is already more than 11 years old. CIMR would be the first L-band fly until2023.Thereisclearlyagapin L-band observations,theextentofwhichwillbecomeapparent years lifetime in2012.SMOSisassimilatedintomodels andbroughtvalue.TheSMAPL-band missionofNASAwill thickness. This missionlaunchedin 2009 isimportantinthese times of climatechange and passedits nominal monitoring ofpolarregions: The CopernicusServicesexpressedalsorequirementsfor NextGenerationSentinelsandcontinuous NEXT GENERATION SENTINEL MISSIONS FOR THE POLAR REGIONS • • • Next-Generation S1: Next-Generation Sentinel-3 SLSTR: Next-Generation Sentinel-3SLSTR: Next-Generation Sentinel-3SRAL: • • • • • • • • • tral bandstoimprove snow /clouddiscrimination). Surface temperatureover ocean(SST)andover ice(IST),seasonalsnow extent(requiresadditionalspec- Global coverage: Othervariables:Lake waterlevel,lake iceextent. change andmass; ice thickness(SIT),Iceberg(icebergconcentrationchartsandindividualicebergs),surfaceelevation& Pan-polar coverage for floatingiceandsheets for seaicethickness(SIT),levelanomaly, sea NG SARindual-polarisationmode. Other C3Sneedsareandwiderswath(towards 400km)toimprove globalrevisitaswellSentinel-1 C3S addressedalsotheneedfor S1NGSP-InSARsurfaceelevation&changeandmassbalance; CMS productsrequiresdatalatencyof20,30min; resolution (from2.5m

- - - - ADCP, driftingbuoys, HFradar, drones Moving vesselprofiler(MVP), Gliders,CTD, optical sensors on BioArgo, gliders, buoys optical sensorsonBioArgo,gliders,buoys Chlorophyll-fluorescence, lightandother MVP, gliders,CTD SST radiometers,MVP, gliders,CTD ature sensors ature sensors Campaigns, surface-mountedtemper eters Campaigns, surface-mounted radiom Campaigns Campaigns Campaigns Campaigns Campaigns Campaigns Gliders, CTD,Argobuoys, Drones Tide gauge,Moving vesselprofiler(MVP), Campaigns Campaigns Campaigns, GPStrackers Campaigns Boat andairbornecampaigns Boat andairbornecampaigns, Boat andairbornecampaigns, rine data,driftingbuoys Boat andairbornecampaigns,subma- rine data,driftingbuoys Boat andairbornecampaigns,subma- Tide gauge,buoys Potential In-situsensors - - 49 49 POLAR EXPERT GROUP III REPORT • 2021 50 50 POLAR EXPERT GROUP III REPORT • 2021 at nationalandEuropeanlevels. levels of maturity and costs. Sources of funding for the most promising one(s) should be identified both Wideband (UWB),hyperspectralimaging,tomographicradar, andBio-opticalsensors.Theyhavevarying ers (waveandunderwater)newinnovative sensorssuchasGroundPenetratingRadar(GPR),Ultra Satellites (HAPS),otherairbornesystems(kites,balloons),AutonomousUnderwaterVehicles (AUVs), glid covering awidespectrumofsensors,includingUnmannedAircraftSystems(UAS),HighAltitudePseudo A review of new and novel in-situ and airborne observation sensors and techniques was presented, valuable. science ingeneral.Thecontributionsofindigenouspopulationsandlocalauthoritieswouldalsobevery The KEPLERprojectstronglyrecommendsthattheCSapproachbefurtherdevelopedinsupporttopolar ship voyages andiscomplementarytotheAntarcticplatform ASPeCt. meteorological parameters.Theprogrammehasalreadycollectedover 5,600recordsfromnumerous ice. IceWatch isaprogrammecoordinatingroutinevisualobservationsofsea-ice, includingicebergsand application for seaiceobservations”,whereusingtheIceWatch Appcitizenscientistswillbemappingsea A number(5)ofCSEOLpilotprojectsareunderimplementatione.g.theproject“Designamobilephone and by theESACSEOL(CitizenScienceEarthObservationLab)initiative. This approachisalreadypartlyusedtodayby spaceagencies,e.g.by NASAwithmorethan20projects, in-situ experienceespeciallyifthistakes theform of“collaborativeprojects”or“co-createdprojects”. ence”. Thisapproachallows ustoinvolveawidevarietyofnon-spacecompetencebuthavingvaluable whose outcomesbothadvancesscientificknowledge, andincreasesthepublic'sunderstandingofsci- collaborations inscientificresearchthatisconducted,wholeorpart, by non-professional scientists, servations inordertoimprove polarregionsmonitoringandforecasting capabilities”)as“Voluntary The termCitizenScience(CS)canbedefined(ref. KEPLERreport“on thegapsintermsofin-situob- Arctic in-situdatafor theTACs aswelltheMarineMonitoringandForecastingCentres(MFCs). the Wave TAC andtheMultiObservationsTAC. Annex4provides anoverview ofthecurrentusage other variables),theOceanColourTAC (OceanColourSatelliteData),theseasurfacetemperatureTAC, the SeaLevelTAC (SeaLevelSatelliteData), theIn-SituTAC (in-situtemperature,salinity, currentsand These 8TACs, geographicallydistributedall over Europe,includetheSeaIceTAC, theSurfaceWind TAC, generated by the8TACs (ThematicAssemblyCentres),essentialcomponentsoftheCMEMSsystem. Similar requirementsfor in-situobservationsareneededfor thevalidationofCopernicuspolarproducts 3.4  “CITIZEN SCIENCE” APPROACH AND NEW TECHNOLOGIES - 3.5 ANTARCTICA (REF EU-POLARNET WHITE PAPER ON EUROPEAN POLAR INFRASTRUCTURE ACCESS AND INTEROPERABILITY26

Previous chapters were focused on the Arctic Ocean, surrounded by developed nations, and of easier and more frequent access through commercial regular maritime traffic routes compared to Antarctica. The geopolitical environment for the Arctic is also different from that of Antarctica where activities (mostly research) are regulated by an international treaty. However, Antarctica is the site of intense research programmes most often carried out on a national and multi-national basis governed by bi- or multi-lateral agreements. One can note a growing activity in connection with the study of climate change (Antarctica as a major “climate indicator”) as well as tourist activities (the latter worrying the scientific community). Major infrastructures (e.g. French-Italian Concordia station), observation platforms (32 stations) and equipment have been deployed and still continue today.

Therefore, most of the findings and recommendations made for the Arctic are applicable to Antarctica. Particular attention should be given to improving cooperation and coordination between these various programmes, facilitating transnational research (TNA) and ensuring access to existing infrastructures (Concordia, research vessels through Eurofleets funded by the EC), developing/promoting standardisation and interoperability of deployed facilities, and increasing the deployment of in-situ observation equipment, which is still too sparse today. 3.6 RECOMMENDATIONS

Clear recommendations were made to develop a strategic plan in order to improve the present situation. Key recommendations/actions are as follows:

• Ensure a better cooperation and coordination between the various Arctic projects (the number of 202 projects was mentioned), in particular for a better utilisation of European polar research assets (i.e. stations, ships, aircraft and people) essential for the validation of Copernicus polar products and Cal/Val activities of ESA/EUMETSAT space assets; • Re-enforce the dialogue of all agencies with responsibilities for the Arctic, which is currently too limited, and the cooperation and coordination between ESA, EUMETSAT and national Arctic projects deploying in-situ observing equipment in polar regions, in-situ data should be coordinated far beyond the scope of validating EO data. Accordingly, the cooperation should be more among the environmental projects and agencies with responsibilities for the Arctic; • Define modalities for an improved access and exchange, possibly free of charge, of collected in-situ data and usage conditions (free or limited use, financial conditions if applicable, etc.); • Explore the possibility/feasibility of having a unique access portal for in-situ data; • Develop international cooperation on design and implementation of sustained observing systems in the Arctic and Antarctica since at the moment the number of in-situ platforms is very limited and not sufficient to monitor the entire regions; • Define and implement an efficient in-situ data handling management and integration with existing data management systems for space data (e.g. DIAS, ESA PDGS and EUMETSAT SAFs); • Effort and particular attention should be given to provide access to non-European data in particular Russian data and also from countries expressing an interest in polar research (e.g. China, Japan, Korea); • Develop standardisation of infrastructure, instruments and protocols, essential to improve interoperability (reference to INSPIRE directives); • Improve dialogue/communications between space agencies, polar infrastructure operators and relevant national and international organisations (WMO, IOC).

26 Gonçalo V. et al, 2020, White Paper on European Polar Infrastructure Access and Interoperability 52 52 POLAR EXPERT GROUP III REPORT • 2021 endorsed by PEGIIIexperts. in-situ data next to thePolarExpertGrouprequirements(see “Summary table”Annex3)was national/European financing for in-situactivitiesintheArctic.Theproposalofplacingneeds for tions suchastheEuropeanCommissionorSpaceAgencyinordertoattractsignificant The KEPLERprojectstressedalsothe importance of a cleardescription of in-situneedsfrom institu • • • ations and expand current CSEOL activities in the Arctic environment. ations andexpandcurrentCSEOLactivitiesintheArcticenvironment. Space agencies,andinparticularESA,shallfurtherdeveloptheCSapproachrelationwithassoci- Improve estimatesofuncertaintyandbudgetsfor insitumeasurments; validation work.; Ensure thatarelevantFRMqualitysubsetofmeasurementsisavailablefor satellitecalibrationand - 28 Ibid 27 Table 2.Instrumentsynergiescomposedby theKEPLERproject in redcolour. Parameters withhighimpactfor intermediateandend-usersaremarked inbold boxes indicateiceandseaapplications.OperationalproductsinCopernicusphase1(2021)arewritten are alreadytestedexperimentally. Synergiesfor landapplicationsaregiveningreenboxes, lightgrey The KEPLERprojectdescribesvariousinstrumentsynergiesfor theCopernicusHPCMs.Thesesynergies 4.1.1 SYNERGIES For somemissionsthistranslatesinto: servations andretrievals: detailed observationrequirementsfor covering thesamegeographicareastosupportmulti-sensor ob- The PEGreportIandIItheMissionRequirementDocumentsofCIMR,CRISTAL andROSE-Laddress 4.1 ORBIT PHASING/CROSS INSTRUMENT SAR Optical Infra-red Altimeter Radar PMR Sensors • • • • 4.  - Deliverable D3.3” KEPLER report,Carolina Gabarró,2020,“Final reporton researchgapsofspace-basedArcticmonitoring - DeliverableD3.3” of ROSE-Landothermissionswithlimiteddutycycle. Requirements for the orbit, instrument-/mode scheduling and operations of the data acquisition, e.g. in case Orbit requirements”e.g.inthecaseofCIMRandallmissionswithcontinuousinstrumentoperations; in synergisticuseofdifferent instrumentfamilies(e.g.,combinationof C-band, L-Band SAR,PMR,altimeters). with thesameinstrument-family(e.g.,variousC-and L-band SARsystems,variousaltimetersystems); REQUIREMENTS ORBIT PHASING/CROSS SCENARIOS AND MERITS INSTRUMENT OPERATION SIC, SIDrift SIT, icetype sea surfacetemp temperature, SIT, icesurface depth SIT1, icetypesnow (e.g. CIMR) PMR ice snow depthsonsea iceberg properties, evolution sea icedeformation ice type,MPF SIT, icetype lake icethickness (e.g. CRISTAL) Radar Altimeter 28 ice type (e.g.LSTM) Infra-red SIC, icetype dynamics phytoplankton groups, Phytoplankton groups Phytoplankton downscaling Soil moisture (e.g. CHIME) Optical lake iceextent snow avalanche snow wetness snow extent Soil moisture Equivalent Snow Water (e.g. ROSE-L) SAR 27 . 53 53 POLAR EXPERT GROUP III REPORT • 2021 54 54 POLAR EXPERT GROUP III REPORT • 2021 29 particular of: increase withthecontinuousadditionoffurtherSentinels intotheentiredatacollectionscheme,in The feasibility tomeetthecross-missioncombinations describedin4.1.1operationswillgradually 4.1.2 CROSS-MISSION REQUIREMENTS ing iceandoceanvariables(grey).Inboldcombinationsalreadyoperational) Table 3.Two-dimension instrumentsynergiescomposedby thePEG(cryosphere variablesonland(green)andfor float- and day-nightSentinelmissions(seeTable 3): KEPLER projectthePEGsummarisesfollowing two-satellitesystemcombinationsfor theall-weather instrument synergies: well as in in the “Summary table” in Annex 3. The PEG members highlighted the need for the following The PolarExpertGroupsuggeststhecoordinatedoperationsofdifferent instrumentsinChapter2as lenging andtherefore itisnotpossibletoenterthemintoatwo-dimensionaltable,butinspiredby the The PolarExpertGroupdescribescombinationsofseveralfamiliesinstruments(>3),whichischal- S-3 S-1 ROSE-L CRISTAL CIMR Sensors • • • • • • • (2020) Copernicuslong-term scenario. Phase-0 oftheseNG missions iscompleted;different expertgroups are currentlypreparingfurtherassumptions for the Phase-Astudies.Reference ESA, Next Generation(NG)Sentinelsasfrom2031 Expansion Sentinelsasfrom2027; further Sentinelsofthecurrentseries(C&Dunits); mented by PMRinflatareas.Additionally, snow extentfromopticalsensors(Sentinel-3SLSTR)isuseful. and L-band SAR(InSARSWEretrievalfor drysnow only),respectively. L-Band SWEproductsarecomple- For wet-snow andsnow-water equivalentinmountainregionsintegrationofC-Band SAR(wetsnow detection) elevation changes; For SP-InSARopportunities of C-band (or higher frequencies X-, Ku-, Ka-band) SARs for monitoring surface and L-band) andpotentiallyRA; For thegroundinglinedetection,synergiesbetweendifferent SARsensors(C-band withshortrepeatintervals frequency ofthesameinstrument families). further dataaccessagreementswithcontributingmissions (heseagreementswillenhancetherevisit CIMR Sea SurfaceTemper- snow cover onsea-ice Sea IceConcentra- Sea IceThickness, tion, SeaIceDrift, Snow depthand Sea IceType ature, CRISTAL Ice Thickness Iceberg, Sea

ROSE-L Sea IceConcentration, Land Ice,Snow Water Equivalent,Soilmoisture,Meltextent Grounding lineinformation, Icemargin(icesheetsextent) Ice Drift,Iceberg,Sea Mass andmasschange(icesheets),SurfaceTopography, 29 ; Type

(ice sheets) S-1 Ice Margin,Snow Water Equiv- alent, Lake IceExtent,Snow melt, SeasonalSubsidence, Surface icevelocity, Flood extent S-3 Land Surface Temperature Lake water level tributing missions Table 4:Initialsetofexamples‘Cross-Mission/Instrument’requirements for Sentinel-1and-3,HPCMsrelatedcon- missions withalimiteddutycycle.Theseleadstothefollowing requirements: quasi-simultaneous acquisitionsofdifferent instruments) over polarregionsandadjacentseas and for For themissionoperationsscenario,PEGexpertsconfirmneed for cross-instrumentsensing(e.g. An initialsetofcross-missionrequirementsaresummarisedinTable 4below. (*) Rose-L MRD specifies RoseL behind 1min-1h behind S1, this compromises the revisit. (*) Rose-LMRDspecifiesRoseLbehind1min-1h S1,thiscompromisestherevisit. S1 Rose-L CCM S1-NG Cristal L-Contr CIMR Contr CR- Contr CIMR • • • e.g. between: e.g. between: seek maximumsynergybetweenobservationsofthesamegeographicalareasfromdifferent instruments, planning ofdownlink, dataacquisitionandprocessingaccordingtothespecifiedtimelinessfromsensing. planning ofinstrument-,imagingmodeoperations,accordingtothespecifiedneeds, ------

And othercombinationsaddressedinchapter2.4. ROSE-L SAR/CIMRCRISTAL Sentinel-3/CRISTAL Sentinel-3 SLSTR/CIMR ROSE-L SAR/CIMRCRISTAL Sentinel-1 SAR-,ROSE-LSARwithCIMR Sentinel-1 SAR/CIMRandCIMR/MetOp-SG-B Sentinel-1 SAR/ROSE-L- SARsbutalsobetween C-band/C-band SARs S1 C-Band SAR without gaps ; without gaps; daily coverage plan/duty cycle cessing, alignacq of Acq&NRTPro- align timeliness min*), (1 min 6 < S1/RCM Compl. Planning without gaps ( or6h)coverage Cross-cal, daily < 1h

S1-NG gaps without coverage ( or6h) daily Cross-cal,

CCM gaps acquistion complement RCM to

Rose-L L-Band SAR plan/duty cycle align acq Processing, of Acq&NRT align timeliness min*), < 6min(1 alignement alignement Mode Repeat Overlap/ <3h

L-Contrib. Cross-Cal Cristal Radar Altimeter processing Sync in <3h S3-RA sync Contr S3&S6 with lation Constel- Contempory; Metop NG; Sync with CIMR PMR <1h <3h <3h Contr min apart) (1-7-10 top-SG-B Me- 55 55 POLAR EXPERT GROUP III REPORT • 2021 56 56 POLAR EXPERT GROUP III REPORT • 2021 potentials. Below follow someviews ofthePolarExpertscross-instrumentanalysispresentedby ESA: therefore moredemandingfor theground segmentinordertomake mostoutoftheir cross-instrument location/choice oforbitandtheSARsystemswithrestricted swathsanddutycycles.TheSARsystemsare simulations mentionedabove: CIMRwithpan-polarcoverage onadailybasis, CRISTAL withgroundtrack The differences indutycycleand/orrevisitandcoverage for thevariousinstruments areevidentintheESA server: These simulationsandthedetailedpresentationsareavailablefor consultationonthepubliclyaccessible scenarios, simulationsandoptions,waspresentedby ESAtoPEGexpertsasperthetablebelow: analysis. A very comprehensive and detailed set of analysis of different orbit- andinstrument operations’ Still, ESAwerevery cooperative andsupportive torequests fromthe PEGwhen requesting cross-instrument synergies addressedby KEPLERorthePEG. MRDs donotindetailexpressrequirementsfor orbitconfigurationsupportingthecross-instrument already plannedmission(e.g.CIMRinthesamereference groundtrackasMetOp-SG(B)).However, the urations handlingthemissionsindividually, butalsoconsideringthecross-missionrequirementswith The MissionRequirementDocumentsofCIMR,CRISTAL andROSE-Laddressaseriesoforbitconfig- 31 30 MeanLocalSolar Time (MLST):The averagelocaltimeofthedescendingnode ofaspacecraft'sSun-synchronousorbit. 4.3  4.2 RESULTS OF ESA SIMULATIONS CIMR,Sentinel-1 CIMR coverage CIMR coverage CIMR,MetOp-SG CRISTAL,Sentinel-3 CRISTAL,Sentinel-1 CIMR,Sentinel-3 Expansion Sentinelmissions Instrument combinationofExistingand CIMR,CRISTAL,ROSE-L, Sentinel-1A/B • Canadian SpaceAgency, (2020), Accesstodata-Standardcoverage maps operations below). Untilthenandalsobeyondthattime,aclosecooperation withRadarsatConstellationMission(RCM) the PEGmajority. Theorbitphasingofthe3Sentinel-1 missionsshouldbe0-120-240degrees(seeFigure 4 region includingthesouthern partofGreenland(seegapinFigure 3below). Thisisthepreferred solutionof 3 Sentinel-1unitsoperatedsimultaneouslywouldensureasub-dailygap-freecoverage ofthe Arctic is agoalnotyetfullymetby thecurrentconstellation; https://www.copernicus.eu/en/Copernicus-Animations-2021 (orusetheQRcode). VIEWS OF PEG EXPERTS ON THE CROSS- INSTRUMENT ANALYSIS 31 and mutual timely data exchange should be sought. It is understood that a 6h-repeat coverage andmutualtimelydataexchange shouldbesought.Itisunderstoodthata6h-repeat coverage 1. Daylight 2. 1. Daylight/Eclipse, 1day Daylight Daylight Daylight, 5days Daylight, 2-5days eclipse) Simulations (daylight/ Arctic view Global view Arctic view

Mean LocalSolarTime (MLST 06:00 09:00 12:00 30 ) 15:00 18:00 34 33 32 (for furtherdetailsseeESAPresentation onthepubliclyaccessibleserver Figure 4.Optionsfor Sentinel-1constellations Figure 3.Example:GreenlandSentinel-1 coverage gap(modeIW, polarization DH) • • For Sentinel-2thistimeliness iscurrentlynotplanned. Both, thePEG-Ireport and theKEPLERReportD3.3hadalreadyexpressed thetimelinessrequirement<1hfor sea-ice monitoringfromSentinel-1,ROSE-Land CIMR. Presentation prepared by PierrePotin,ESA,2020. The timeliness requirement for (level L1-2) data products of 1 h from sensing, band missionrequirementMR-SYS-090isconfirmed; C-band coverage. ThislatterrequirementmaybemetthroughacooperationwithRCM.Accordingly, theC-L- acquisition isconsideredby thePEGasahigherprioritythan optiontouseROSE-Lfor gap-fillingthe The timeliness requirement for a 1-6 minutes maxoffsetfrom Sentinel-1 C-band to ROSE L-band would furtherincreasethedownlink capacityfor theoperationsscenario; at thereceivingstation ROSE-L andCIMRcanbemetindirectstationvisibilityusingapass-throughmode and real-timeprocessing 34 . Usinganadditionalsatellitedatarelayfunction(EDRS), e.g.for S1andROSE-L, Sentinel Day 9/90 Day 4/120

Day 2/60° Day 11/150 Day 7/30 - 1C ° ° ° ° Day 6/180 Day 0/0 Day Sentinel ° - 1A ° Day 1/210 Day 5/330 Day 10/300 32 Day 8/240 Sentinel Day 3/270 ) ° ° - 1B ° ° ° 33 e.g., for Sentinel-1, 57 57 POLAR EXPERT GROUP III REPORT • 2021 58 58 POLAR EXPERT GROUP III REPORT • 2021 • • • • • • • deg. over certainArcticregionsisrequestedandalreadyplanned; the Arctic.AnadaptationofSentinel-2acquisitionstrategyatsunzenithanglesreachingalatitude85 CMEMS andotherCopernicusServiceshavebeenusingLandsatdatainlow sunilluminationconditionsover issues arecurrentlyexpected; The synergyoperationsrequirementfor CIMRwithMetOp-SG-B(MRD-030)hasbeenconfirmedandno consultation withusersandexperts. remain openuntilandevenduringoperationsphase shall becontinuouslyaddressedthrougharegular for financial,technicalandoperationalaspects.However, someoptions/choicesontheoperationsscenariowill requirements orform thebasisfor furtherrecommendationsanddecisions, which also need to account The simulationsandplansoftheexistingSentinelsHPCMseitherconfirmfulfilmentPEG observation frequency); phasing close to S1 satellites, privileging cross-band observations rather than increase coverage and repeat Some cross-calibration campaigns are disadvantages data shallbemadeavailablefor scienceuseandfor services; Cross-calibration campaignsshallbeorganisedfor thedifferent instrumentsynergies.Thiscross-calibration periods shallbeconsidered.TheHLOP isregularly updatedanddiscussedwithexperts. The option ofacquisition campaigns, i.e.for certain instrument operations oreven orbit scenarios during specific shall betransparentlyusedtomanagethecompromisebetweenprioritiesofdifferent usercommunities. The HighLevelOperationsPlanmechanism(HLOP) allowing for adaptationofthemissionoperations scenario the polarareas; arrangements toensurebestrevisitandredundancyfor allCopernicususercommunitiesandparticularly The acquisitionplansofSentinelsandCopernicusContributingMissionsshouldbecoordinatedthrough for other applications and goals (e.g. ROSE-L satellite for otherapplicationsandgoals(e.g.ROSE-Lsatellite val dataandplanreprocessingcampaignsasrequired. campaigns. Mission Performance Clusters (MPC) ensure the evolution of algorithms and updates of cal/ LTA service ensures data preservation and integrity as well as the production service for reprocessing The groundsegmentprovides along-termdataarchiving(LTA) functionalityfor raw(Level0)data.The framework ofCollaborativeGroundSegment(CollGS)initiatives. product generation and dissemination. QRT have been implemented by several member states in the of theSentinelcoregroundsegment,whilethisisnotcasefor QRTproductdataandinformation explored. Near-real-time processing and product dissemination with the adequate throughput intermediary userssuchastheIce-Services)istechnicallypossible,butRFrisksneedtobecontinuously visibility quasi-real-time(QRT)ornear-real-time(NRT)dataaccess(either1h3hfromsensingtothe 35 downlink at thesametime.Forplannedorbitscenariosnoissuesoninterference intheRadio-Frequency (RF) Regarding thedownlinks, therearenoconstraintsfor theSentinelsoverflying thesamereceivingstations anticipated. flexibility toadapttheexistinggroundsegmentdifferent cross-missionoperationsistherefore and operationallybemanagedimplementedthroughESAEUMETSAT respectively. Therequired mission planning,specificauxiliarydataetc.).Different elementsofthegroundsegmentwillcontractually in” andintegratemission-specificcomponentsorservices for newmissionssuchasHPCMs(processors, production, dataquality, datadistribution,archive).Thismulti-missionapproachwillallow to“plug- of servicesandfacilitiescommontovariousSentinelmissions(e.g.acquisitionservices,dataprocessing/ The groundsegmentoftheCopernicusspaceinfrastructureisbasedonamodularapproachmakinguse 5.1  • 5.  Figure 5.ESASentinelGroundSegmentArchitecture as ROSE-L satellites willperform RFdownlink inKa-Band. The Sentinel-1 andROSE-Lsatellite willfollow eachotherby afew seconds orminutes,however theSentinel-1 satellitesperform RF downlink inX-band, where- OVERALL GROUND SEGMENT CONCEPT 35 OVERALL GROUND CONSIDERATIONS SEGMENT OPERATIONS are expectedasoftoday. Therefore withintheonboardconstraintsanddirectstation are part are part 59 59 POLAR EXPERT GROUP III REPORT • 2021 60 60 POLAR EXPERT GROUP III REPORT • 2021 36 tific users. With increasingamount ofdata,thedisseminationcapacityneedstobere-assessedregularly. (e.g. throughfederation) for avoiding networktrafficissues fortheCopernicusServices,publicandscien- users. This/thesecloudenvironment(s)willhavetoensure sufficientredundancyandinter-dependencies ment(s) whichoffer streamlineddownload interfaces,processingandcooperationenvironments for the Data accesswillrely, inlinewiththeCopernicusdatapolicy, onasuiteofopenlyaccessiblecloudenviron gorithms andqualityparametersarebeingdefined/developedwiththescienceapplicationsusercommunities. For theupcomingSentinelmissions,theseLevel-1andLevel-2standardproductsarestilltobespecified.Theal- to apredefinedlistofcoreproductswithinspecifiedtimeliness. All Sentineldatafrompastandfuturemissionsaredownlinked andprocessedsystematicallyaccording additionally addresstheoperationsofROSE-LandotherrelevantSentinels. Future versionsoftheHLOP –alwaysjointlydevelopedby ESAandtheEuropeanCommission-will for permanentinnerGreenlandcoverage asillustratedinFigure 6. A recentupdateoftheHLOP addressede.g.,the needfromtheCopernicusClimateChangeService(C3S) account theevolutionofobservationneedsby thedifferent usersandservices,thesystemcapacity. on a regular basis, in consultation withtheEuropean Commission andCopernicusServices, taking into Sentinel-5P) -arecurrentlyoperated,following aHigh-LevelOperationsPlan(HLOP). ThisHLOP isupdated Sentinels –especiallytheoneswithalimiteddutycycle aptation ofoperationsscenariosalwaysaimingatbestusers’satisfactionwithintheexistingconstraints. Consequently, theplanningandpreparationofCopernicusSpacesegmentoperationswillrequiread- risk offailureoneSentinel). quence ofdevelopmentcycles,andotherprogrammaticoroperationalelements(e.g.fundingavailability, satellites tobeoperatedsimultaneously(e.g.2or3Sentinel-1units),theexactlaunchdatesasaconse- The finaloperationsconceptwillbeinfluenced byanumberofdecisionssuchastheSentinel periodically, withthenextcheckpointplannedfor early2021. ible. TheevolutionandcompatibilityoftheESAEUMETSAT ground-segment elements areassessed The ground segment infrastructures put in place by ESA and EUMETSAT for Copernicus are fully compat- rely ontheevolutionofandsynergywithitsvalidatedmulti-missionelementsservices. The ground segment functions and facilities put in place by EUMETSAT in the framework of Copernicus 5.3  5.2  i.e. instruments whichcanoperate onlyonpartsofan orbitorindifferent modes throughouttheorbit EVOLUTION OF THE OPERATIONS APPROACH TECHNICAL AND PROGRAMMATIC CONSIDERATIONS

36 (Sentinels-1 and -2 and partly Sentinel-3 and (Sentinels-1 and-2partlySentinel-3 - The cross-operations of some missions (e.g. Sentinel-1 and ROSE-L) will require the additional, specific setup of cross-mission elements, such as the mission planning to ensure joint observations. Further en- hancements in timeliness, will also require adjustments of the multi-mission ground segment in terms of acquisitions, processing and dissemination.

It should be noted that the space infrastructure ground segment will generate single instrument Level 1 and Level 2 geophysical products. The cross-mission integration and synergetic processing in synergy of these single-mission products are to be planned and prepared by the Copernicus Services. The space infrastructure ground segment shall provide the necessary auxiliary data (orbit information, instrument timing and parameters, etc.) to support the generation of such synergy-prod- ucts by the Copernicus Services.

Figure 6. Regular Sentinel-1 coverage of the inner part of Greenland, in ad- dition to the specific yearly acquisition campaigns providing a 6-day repeat frequency in both ascending and descending geometry

5.4 GROUND SEGMENT & OPERATIONS SUMMARY

ESA’s current analysis confirms that:

• cross-mission coordination and operations are specifically relevant for the constellations of Sentinel-1 and ROSE-L, and require not only the maintenance of a specific orbital configuration, but also the coordinated planning of instrument/mode observations; • complementarity of the Sentinel observation scenario with relevant contributing missions, such as RCM, and ALOS-4, shall be sought, e.g. to improve revisit over sea-ice areas not daily covered; • the polar user community is invited to provide input to the regular updates of the high-level operations plans (HLOP); • CIMR will provide key and frequent observations of polar areas; joint operations of CIMR (which is operated by ESA) and MetOP-SG (which will be operated by EUMETSAT) are planned and specified in the CIMR MRD; • CRISTAL is foreseen to be operated independently and does not require orbit synchronisation with non-altimetry missions; but concomitant observations with other missions are of interest (see related simulations); • Sentinel-2 should be further considered by the PEG and Arctic services, especially as observations in low illumination conditions have been recently included in the Sentinel HLOP.

The selection of data from Contributing Missions, being made available through Copernicus to the Ser- vices, shall transparently follow the user-priorities:

• Current agreements with the operators of contributing missions will be extended and aligned with the oper- ation concept of the HPCMs; • New contributing missions will complement the Sentinel data, e.g., RCM will extend the C-band SAR obser- vations provided by Sentinel-1 on relevant Arctic regions in order to further increase the revisit frequency.

Cross-mission operations and synergy aspects at the space- and ground segment need to be:

• complemented by multi-mission products by the Copernicus Services and the related science base; • supported by inter-calibration and inter-validation activities. 62 62 POLAR EXPERT GROUP III REPORT • 2021 Figure 7CMEMSpolarproductsandusers NRT productsarepreferred over thereanalysisproducts.ThisisillustratedinFigure 7below. that benefitsmostfrompolarCMEMSproducts;MarineResourcesbeingthelessrepresentativearea.The In termsofareasbenefits,theClimate(icemonitoring),Seasonaland Weather Forecastsisthesector Scientific studies are the main subscribers’ application within universities and public sector organisations. within morethan500different organisations.Thenumberofnewsubscribersiscontinuouslyincreasing. world where European countries remain by far the most representative countries. These users are spread MyOcean projects),477regularusershavedownloaded polar(Arcticonly+seaice)productsallover the from astatisticalanalysis.Atthisdate(autumn2020)andsincetheopeningofservicein2009(incl. The currentstateofCMEMSpolarproductsusers(incl.intermediateandend-users)isregularlyestablished ticular attentiongiventopolarrelevance. A shortsummaryisprovided onthecurrentstatusofCopernicusservicesandtheirevolutionwithpar- STATUS 6.1 CMEMS STATUS AND EVOLUTION 6.  STATUS AND EVOLUTION SERVICES OF COPERNICUS POLAR earth.esa.int/eogateway/activities/snowpex). contribution tointernationalsatellitesnow productintercomparisonandvalidationexercises(e.g.https:// data sets(e.g.fromhighresolutionsensors,in-situdata);(iii)homogenizationofrelevantservices;(iv) each product;(ii)continuousquality assessment ofproductsinkey region usingindependentreference the cryosphericproductportfolio includes:(i)attachmentofaper-pixeluncertaintyestimationlayer to products (e.g.permafrost,snow condition(dry/wet)).Furtherrecommendationsfor potentialevolutionof current products(algorithmevolution,adaptationtonewsensors)andthegenerationofvalidated Production anddeliveryoflandforecast productsshouldbeconsideredaswelltheevolution ofthe concerns thewholeglobalCLMS,nodetailsareprovided for justthecryosphereproductsusers. of dataweredownloaded inthe2ndquarterof2019.Thereare5000registeredusers.However, this The currentstateofCLMScryosphereproductsisprovided ontheCLMSportalandstatesthat94TB from dataassimilation. products inthecurrentglobalCLMSproductcatalogueusesforecasts orreanalysisproductsderived snow waterequivalentassimilatessatellitedataandin-situsnow measurements.Noneofthecryosphere and snow water equivalent. Snow cover extent and lake ice extent are based only on satellite data, while themes, amongthem“Cryosphere”thatincludesonlythreevariables:lake iceextent,snow cover extent, ropean andlocal.PriorityhasbeengiventotheglobalCLMSproductportfolio structuredintoseveral The CopernicusLandMonitoringService(CLMS)isdividedintothreecomponents,namelyglobal,pan-Eu models (e.g.improved seaicemodelphysics). forecasts), the need for observations of biogeochemistry parameters and the development of improved sea iceproducts,easierdownload ofproducts,theavailabilityadditionalforecast products(e.g.iceberg includes, for instance,theneedfor amorecompleteportfolio ofhigherspatialandtemporalresolution and for newproductsandservices.ThisiscomprehensivelyaddressedintheKEPLERproject Feedbacks fromusersisoverall positivebutindicatestheneedfor improvement ofexistingproducts EVOLUTION STATUS EVOLUTION 6.2 CLMS STATUS AND EVOLUTION - 63 63 POLAR EXPERT GROUP III REPORT • 2021 64 64 POLAR EXPERT GROUP III REPORT • 2021 products (glacierextent,elevationandmassbalance products, suchasERA5andERA5-land,whichcanalsobeusedfor polarapplications. SST, which means that their use is not limited to polar applications. At the same time, global reanalysis (>60,000). Thesepolarproductsincludedatasetswithglobalcoverage suchassealevelanomalyor the CDS.ThisnumberrepresentsarelativelysmallfractionoftotalregisteredC3Susers since 2018canbeattributedbothtonewuseruptake andtotheintegrationofnewECVproductsin overwhelmingly fromthe academic sector (75%).Thesteady growth in the number of monthly users followed by China,theUnitedStates,andIndia(25%combined).Unlike CMEMSusers,C3Suserscome 1,400 organisationsspreadacross127countries.EUcountriesrepresentthemaincontingent(30%), vation change 39 38 37 and reliesonindependent technical andscientificassessmentsofthedatasets alsoavailabletousers. new feature is intended to provide guidance to users on the content, quality, and usability of C3S products for selecteddatasetsintheCDSandwillbefurtherenhancedexpandedsubsequentmonths. This Quality Control(EQC)service,anewqualityassessment feature wasfirstimplementedinOctober2020 more, dataqualityisacentralaspectoftheC3Sservice. BuildingontheworkofC3SEvaluationand algorithms, changesininputdata,andtheneedtoproduce consistentandstabledatarecords.Further- Data Records(CDRs),newCDRversionsarealsoproduced periodicallytoincorporatedevelopmentsin surveys andgatheredinaUserRequirementDatabase. InadditiontoregularextensionofitsClimate The evolutionofC3Sisdrivenby feedback andrequirementsfromuserscollectedthroughregularuser polar productsincludebothsatellite-based(floatingicevariables,sheetvelocity polar regionsthroughtheC3SClimateDataStoresinceopeningofserviceinMay2018.These munity. AsofNovember 2020,closeto4,000usershaddownloaded C3SECVproductsrelevanttothe C3S closelymonitorsdataaccesstoitsproductsassessandimprove theservicetoitsusercom- EVOLUTION STATUS 6.3 C3S STATUS AND EVOLUTION product for Greenland,brokered fromESACCI–willbereliantonthe GRACE-FO Mission product for Greenlandand Antarctic –reliesonCryoSat-2andSentinel-3A product for Greenland-relies ondatafromCopernicusSentinel-1 38 , seasurfacetemperature,levelanomaly, soilmoisture,lake waterlevel)andin-situ 39 ). Users of these products originate from close to ). Usersoftheseproductsoriginatefromcloseto 37 andele- new geographical areas, etc.). new geographicalareas,etc.). of carryingoutoperational validationof already existingproductsinnew areasof application (newuse, an operation. These activities include support to exercises and operations of end-users with the purpose User Uptake Meetings,(iii)Userquestionnaires, and(iv)Userfeedback forms submitted oncompletionof gathered in a variety of contexts such as (i) User Requirement Workshops and Annual User Groups, (ii) tions for futureproductsandservices.These activitiesstemfromtherequirementsofuserswhichare The serviceevolutionactivitiesincludetheidentification andvalidationoftechnicaloperationalsolu Safety ofnavigation. the ArcticfromGreenlandinwesttoFinland intheeast.CMSisalsoactivatedAntarcticand monitoring activitiesspecific for polarregions. CMSisactivated by Copernicus Participating Countriesin CMS has close to 50 registered user organisations, but there is no readily available statistics for CMS Figure 8.GlobalareasofEuropean interestcovered by CMSin2020 and otherusercommunities.Figure 8below indicatestheareasofinterestcovered by CMS. monitoring, andsupporttointernationalorganisations(e.g.UnitedNationsOfficeofDrugsCrime(UNODC) of fisheriescontrol,maritimesafety andsecurity, lawenforcement, customs,marineenvironmentpollution Operational servicesaredeliveredtoMemberStates’nationalauthoritiesandEUbodiesinthefunctionareas

EVOLUTION STATUS 6.4 CMS STATUS AND EVOLUTION

- 65 65 POLAR EXPERT GROUP III REPORT • 2021 66 66 POLAR EXPERT GROUP III REPORT • 2021 Today therearesome6680registereduserswithCEMS(Mapping:32 and 5MENA(MiddleEastNorthAfrica)countries. EFFIS networkconstitutes43countriesincluding26EUMemberStates,12Europeannon-EU government organisationsandcitizenswithnearly200,000usersfrom188countries.Atpresent,the sonal forecast andmonthlyforecast. Referring tothe2019EFFISannualreport, EFFISiswidelyusedby active firedetection,rapiddamageassessment,Europeandatabase,sea- European, theMiddleEastandNorthAfricancountries.MainEFFISmodulesincludefiredanger forecast, information onwildlandfiresinEurope.EFFISissupported by anetworkofexpertsfrom40countriesin and provides theEuropeanCommissionservicesandParliament withupdatedandreliable EFFIS supportstheservicesinchargeofprotectionforests againstfiresintheEUMember States the forecasts withreference floodthresholds,andarecategorisedaccordingtodifferent lead-time: highlight possiblefuturefloodrisk from theEFAS forecast simulations. They are produced by comparing logical algorithms are used for the flash floodindicators. EFAS productsare a set of mapsandgraphs that developed by JRC,isprimarilyusedfor medium-andseasonal-rangeforecasts, whilstconceptualhydro- orological forcing andlandsurfacedatahydrologicalmodels.ThemodelLISFLOOD, transnational riverbasins.To thisend,EFAS reliesonahydrologicalforecasting chainincludingmete- EFAS isdesignedtosupportpreparatorymeasuresfor floodeventsacrossEurope,particularlyinlarge Awareness System)andEFFIS(EuropeanForestFire Information System). ery). The early-warning and monitoring service of interest to polar regions includes EFAS (European Flood and monitoring(fires,floodsdroughts)on-demandmapping(RapidMappingRisk&Recov- The Copernicus Emergency Management Service (CEMS) is divided into two modules namely Early-warning 41 40 Authorities monitoringfires andfloodsintheregion. CEMS activities covering the Arctic have increased in recent years with activations from the Civil Protection Country specificstatistics are availableontheEFFISwebsite(https://effis.jrc.ec.europa.eu/). STATUS 6.5 CEMS STATUS AND EVOLUTION Number ofFires Burnt Area(ha) EFFIS • • • • One registered userfor eachcountrymember ofEFFIS. Authorised Usersonly. Flood impactforecasts: theyhighlightregionswithexpectedimpactsinthenext10days. Seasonal hydrologicaloutlooks:theysummarisethesituationover thenext8weeks; Medium-range flood forecasts: theygive overview ofupcomingfloodevents forthenext10days; Flash floodindicators:theyprovide indicationofriskfloodingfromflashfloods,upto5days; Middle EastandNorthAfrica:555 Other Europeancountries:1025 European Union:2282 Middle EastandNorthAfrica:256340.58 Other Europeancountries:199847.03 European Union:333542.12 2019 Middle EastandNorthAfrica:698 Other Europeancountries:1368 European Union:1658 Middle EastandNorthAfrica:188161 Other Europeancountries:54705 European Union:338263 2020 40 , Floods:6,605,Fires: 43 41 countries): 42 https://erccportal.jrc.ec.europa.eu/Maps//NEWMAPSPAGE#/maps/3565 for bothEFFISandEFAS: and monitoringoffiresfloods.Upgradingmodelssettingupdatabasesarealsoinprogress data is increasing, new automatic products are being developed allowing continuous detection of fires CEMS isrecognisedfor theirRapidMappingactivations,butastheaccesstosatellitedataandother with activationsinNorway, SwedenandFinland for monitoringanddelineatingthespringfloodsin2020. On-demand activationsfor floods haveincreased for theScandinaviancountries above 60degreeslatitude in large-scaleforest firesof5,000,000hectares over theperiodMay-August as for thelarge-scaleforest firesinSweden2018.In2020thehightemperaturesRussiaresulted There havebeenon-demandactivationsinGreenlandfor wildfiremonitoringin2017and2019,aswell In recentyearstherehasbeenanincreaseofactivationsintheArctic. EVOLUTION • • EFAS: Theset-upofthesystematic,automated,Sentinel-1basedglobalfloodmonitoringproduct. the post-firesoilerosionrisk; EFFIS: AdditionalEFFISmodulesareunderdevelopmentsuchasthepost-firevegetationregenerationand 42 . 67 67 POLAR EXPERT GROUP III REPORT • 2021 68 68 POLAR EXPERT GROUP III REPORT • 2021 viding dataandinformation for the Arctic. developments needtobecarefullymonitoredandCopernicusplayswillplayanimportantrolepro- and thepotentials(e.g.naturalresources,shiprouting)inregion.To sustainpeaceintheregion all interests ofthelocalcommunitiesinArcticandanincreasedinternationalinterestresources The updateoftheCommunicationwillhavetohandleandbalancesafeguarding oftheArctic, the to climatechangeandenvironmentalpressuresitseconomicsecurityimpact”. “… andpresentaCommunicationontheArctictoupdateEUpolicytowards aregionparticularlyexposed ambition “AstrongerEuropeintheworld”): Letter ofIntentfor theStateofUnion2020andspelledoutinWork Programme2021(headline 2020 by the EU Council.TherelevanceoftheArcticPolicy was alsoreiterated in President von derLeyen’s This wasrecentlyfurtherconfirmedwiththeEUGreenDealanditsEuropeanClimate Pact adoptedin 2016) andintheEUCouncilconclusionsof“Spacesolutionsfor asustainableArctic”(November 2019). This needwasexpressedintheEUArcticPolicy(“AnintegratedEuropeanUnionfor theArctic”, and continuousmonitoringofthecryospheremorespecificallyArctic,AntarcticaGreenland. (permafrost dependingontheseason)”.Understandingandforecasting climatechangeimpliesa close land ice,icesheets,packicebergs,sea,lake andriverice,temporarilyorpermanentlyfrozensoils IPCC reportentitled“TheOceanandCryosphereinaChangingClimate”,namely:“Volumes ofsnow, glaciers, A majorcomponentofthecomplexEarthclimatesystemiscryosphereasdefinedinspecial2019 neutrality by 2050. the COP21Paris Agreementwiththeobjectivesof40%GHGsemissionreductionby 2030andclimate and possiblemitigationsactions.Theseconcernswereexpressedatthehighestpoliticallevelin2015by politicians, decision-makers andthescientificcommunityinrelationtoclimatechangeconsequences Over thelastdecademajorEuropeanpolicydecisionshavebeentaken inresponsetotheconcernsof 7.1  7.  EU POLICY AND STRATEGY FOR CLIMATE CHANGE ACTIONS FINDINGS AND RECOMMENDATIONS with animproved coverage and higherrevisittimeinline withthePEGIIIrequirements. Thisentails: [REC1: ThePEGIIIrecommends thattheCopernicusSpaceComponent(CSC)provides C-band SARdata planning areappreciated. coordination efforts made by ESAtogether with theCanadianSpaceAgencyonRCM/Sentinelacquisition of theRADARSAT-2 datatoday. AccesstoRCMdatawasanalysedby the PEGandthecooperation data fromtheRadarsatConstellationMission(RCM) isalsorequestedby theservicesthatmake use nicus Servicesasthisishighlightedfor thegeophysical variablesaddressedby thePEG.Complementary having 3satellitesinorbit.Aconstellationof inorbitofSentinel-1isapriorityfor theCoper- Copernicus iscurrentlyexploringthepossibilityofphasing inathirdsatelliteofSentinel-1,-2,-3,and the needfor anincreasedavailabilityisstressed by theusersandespeciallyCopernicusServices. Copernicus Services are using today (baseline 2020). Sentinel-1 is used for several applications and As describedinChapter2itisofhighimportancetoensure theavailabilityofobservationsthat third party mission operators will have to be concluded to fill these gaps to the maximum extent possible. occur for spacealtimetrydataandPMRL-band (1.4GHz)data.Inthecaseofgaps,partnershipswith ensure astrictcontinuityofspaceobservationsand,inanycase,minimisegaps,whichmayfor instance community. Thecurrentlaunchschedule and development of spaceassetswill have tobereviewed to time seriesofobservationstooperationalusers’entitiesandtheveryactiveEuropeanscientificresearch Continuity andimproved capabilitiesofsatelliteobservationsarecrucialfor theprovision oflong-term 7.3.1 CONTINUITY OF OBSERVATIONS The mainPEGIIIfindingsandrecommendationaresummarizedinthe following subsections. and C3Sbutaswellby theon-demandservices(CEMSandCMS). products” are available on an operational basis since 2014/15, provided mostly by CMEMS CAMS, CLMS Copernicus services as, today, there is no single/stand-alone “Copernicus Polar Service”. In practice, “Polar The polarusercommunityisanimportantoneandprovided withproductsgeneratedfromseveral and innovative space-basedapplicationsincludingcommercialbusinesses. scientists tolocal/regional/nationalgovernment authorities,industry, NGOsandSMEsdeveloping new six prioritydomainsasmentionedabove. Userscomefromawidespectrumofaffiliationsresearch products throughDataandInformation AccessServices(DIAS)totensofthousandsusersfromthe terabytes ofdata,whicharefreelyaccessibleandprovide reliableandhigh-qualityinformation anddata Copernicus hasdeployed 8major“Sentinel”satellitesintoorbit.Dailythesegenerateeverydaytensof climate change,emergencymanagementandsecurity. satellite-based qualityservicesaddressing6prioritythematicdomainsnamelyland,marine,atmosphere, knowledged leadingpositionworldwidefor themonitoringofEarthenvironmentand provision of With theimplementationofCopernicusprogrammeover thelastdecade,Europetodayhasanac- CONTINUITY OF OBSERVATIONS BASED ON SPACE ASSETS 7.3  7.2  PEG III SUMMARY FINDINGS AND COPERNICUS, A MAJOR EUROPEAN RECOMMENDATIONS MONITORING CONTRIBUTION TO POLAR REGION 69 69 POLAR EXPERT GROUP III REPORT • 2021 70 70 POLAR EXPERT GROUP III REPORT • 2021 43 resolution and improved datalatency. additional requirements for fulfillingthe variablesthatrelatetotheir products,suchashigher horizontal tinuous pan-polarandsub-daily monitoringofpolarregions.ForNG-S1,theCopernicus Serviceshave The requirementsfor theNextGenerationSentinels1and3(SRAL,SLSTR) arestringent,requiringcon- with additionalmissionsin theperiod2021-2027(seealso7.3.7Roleandcontribution ofIndustry). X-band SAR missions arealreadyavailableasContributingMissionsand willbefurthercomplemented based ontheexperiencesgainedfromvariousspace agencies worldwide(e.g.Japan,Argentina,USA)]. [REC4: ThePEG recommends further efforts to explore the possibilities with L-band SAR data for operations polar regions) risk offuturegapsfor altimeterdata(northof81.5North/southSouth)andPMRL-band (for the [REC2: ThePEGIIIrecommendsthatclearmitigationplansandactionsareputinplacetoreducethe potentially alsobethecasebeyondAMSR-3(projectedlifetime to2028). is relevant for various missions where one is dependent on one or few third-party missions and this can decided in2020by JAXA,whichworriedtheusersastherearenoidenticalalternatives.Thisuncertainty be operationaluntil2025meaningthatitoverlaps withAMSR-3(plannedlaunchdate2023). AMSR-3was estimated life-time endingin2021.TheCIMRMissionRequirementDocumentindicatesthatAMSR-2will PMR frequenciescovered by AMSR-2arestillaccessibleasthisinstrumentisoperationaldespitethatthe gaps willimpactthefollowing Copernicusproducts: of dataavailabilityisaddressedaspotentialgapsfor thefuture(see“summarytable”inAnnex3).These currently reliesondatafromthird-partymissionstocover theprovision ofthesedataandtheuncertainty Data fromCIMRandCRISTAL willbeeasilyintegratedintheworkofCopernicusServices. number ofPEGIIIvariables. addresses thepriorityuserrequirements,asdefinedinPEGIandII,cancontributetohighest data tobegenerated.CIMRisconsequentlythemicrowave missionamongtheCopernicusHPCMsthat caps andsnow. CIMRasaresponsetothePEGIIreportgoesfurtherwithinstrumentsallowing L-band ments for the priority variables: Floating ice (in particular sea-ice concentration), ice sheets, glaciers/ice A PMR mission wasconsideredas the priority of PEG II asit responded best to the observation require- Services (mainlyCMEMS,C3SandCLMS)itisimportanttoensurecontinuousprovision ofthesedata. Passive microwave radiometer(PMR)andaltimeterdataarecurrentlyextensivelyusedby theCopernicus to furtherexplorethepotentialsofcombiningC- andL-band SARfor preciseseaicemapping. what degree this will strengthenCopernicus asawhole,but there isa strong interest fromIce Services rent productsandthegenerationofnewproducts).This isatanearlystageanditcurrentlyunclearto C-band SARfor potentiallyimproving CopernicusServices(identifyingthepotential improvement ofcur- tion withSentinel-1.ThePEGidentifiedcapabilities of L-band SARalsoincombinationwithSentinel-1 for theCopernicusServices,butthereisaninterestofServicestotesttheseincombina - L-band SARmissionsarecurrently not usedtoday(baseline2020), as operationaldataarenotavailable dependent ononeorfew third-partydataproviders isconsidered]. recommends thatcontinuityoftheCopernicusServicesisprioritisedandvulnerabilitybeing [REC3: IncaseaselectionprocedurebetweenthesixCopernicusHPCMsisnecessary, thenthe PEG III • • • • PEG IIIfocus isonly onMWinstrumentation, butthisisalso applicableingeneral for othertypesofCopernicus data PMR (L-band): Thinseaice(seathickness <0.5meter),seasurfacesalinity, soilmoisture; RCM dataintheCopernicusContributingMissionportfolio withlatencycomparabletotheRADARSAT-2 data Continuously 3S-1satellitesinorbit(Sentinel-1AtoSentinel-1D); elevation change. Altimeter (northof81.5North/southSouth):seaicethickness(>0.5meter),levelanomaly, surface 43 ]. [REC6: ThePEGrecommendsthatrequirementsfor Fiducial Reference Measurementsbecomeaninte- regions, shallbefreeandopen,following standardiseddataformats]. maintain platforms andequipment.In-situdatausedfor researchandoperationalservices, inthepolar EU MemberStates,WMOandArcticStates)encouragingnationalinvestments/effort todevelop and 44 requirements for productsandservices]. [REC7: ThePEG recommends thattheCopernicus Servicesfurtherconsiderand describeL3andL4crossmission and the3HPCMsasdescribed inChapter4“OrbitphasingandCross-instrument operations”. tion of appropriate orbit configurations and phasing between existing, forthcoming Next Generation, described inChapter2.Itshould benotedthatthisisconditionalupontheselection andimplementa- some products(e.g.floating iceproducts)aswellthedevelopmentofnew innovative productsas enable thedevelopmentofimprovement for existingproducts,for instance,intermsofaccuracy and multi-microwave frequencyobservations willcomplementthecurrentSentinelobservationsand The majorimprovements provided interms ofspatialandtemporalcoverage, horizontalresolution with existing and forthcoming NG Sentinels will bring unique opportunities for Copernicus services. The possibilityofhavingthethreeCopernicusHPCMs, CIMR,CRISTAL andROSE-L,usedinsynergy 7.3.3  grated partintheMissionRequirementsandconsequentlydesignphaseofnewSentinelmissions]. [REC5: ThePEGrecommendscontinuous interest inoperatingtheArctic(e.g.China,Korea,Japan). (having alongtraditionandexperiencewithArcticactivities)fromcountrieshavingexpressedan access tonon-Europeanin-situresearchandoperationalmonitoringdatafromcountriessuchasRussia between thepartiesconcerned.Anadditionalandimportantaspectistohighlightneedfor improved and conditionsfor exchange of data (some have a restricted access or are available at commercial rates) agreed datastandardsandformats, modalitiesofaccessandconditions ofutilisation,andpossibilities also toensurethetimelydeliveryofdata.Thiseffortof shouldincludeinparticularthedefinition efficient datamanagementsysteminordertomaximisetheuseandeaseaccessthese required notonlytomaintainthisequipmentoperatinginaharshenvironmentbutalsoorganisean coordination andhaving,for variousreasons,asomewhatlimitedcooperation.Majorimprovements are forms deployed primarily by national/multi-national research projects /programmes but lacking proper An inventoryofexistingin-situobservationplatforms intheArctichasidentifiedavarietyofin-situplat- 7.3.2  gaps (see“thesummarytable”inAnnex3). produced anoverview tableincludingthegapsofin-situdataandpotentialinstrumentsfor covering the what thisprogrammecanoffer inexchangeasdataandservices.Inordertoclarifytheneeds,PEG The basisfor internationalcooperationisclearlythe needsoftheEuropeanSpaceProgrammeand a repositoryofin-situdata. countries isessential,butalsowiththeresearchcommunityandnationalinvestmentsinordertosustain (this isalsoapplicabletoAntarcticaandGreenland).DevelopmentofinternationalcooperationwithArctic to increasethenumberofobservationplatforms andequipmentinparticularfor thecentralArcticregion In-situ data is sparse in the polar regions and there is a clear need for Copernicus to make major efforts

CONTINUITY OF OBSERVATIONS BASED ON NON-SPACE ASSETS (IN-SITU) Cooperation agreementsalready existswiththeUSand Chile,andadditional onesarebeingplanned (Canada,Japan, andWMO). BENEFITS OF THE COPERNICUS HPCMS IN SYNERGY EFFICIENT DATA MANAGEMENT FOR IN-SITU DATA WITH EXISTING AND FORTHCOMING NG SENTINELS 44 , stronger international cooperation/coordination (including all , strongerinternationalcooperation/coordination(includingall

71 71 POLAR EXPERT GROUP III REPORT • 2021 7.3.4 USERS CONSULTATION PROCESS

Copernicus is organising regular workshops and consultations with the user communities and the private industry (industrial workshops). These meetings provide very useful information about the quality of the products and services, and also about the need for new and innovative products. Examples are CMEMS workshops45, workshops for the Copernicus Arctic Regional Reanalysis Service46 as well as the Coperni- cus Polar industry Workshop in late 201847. This process can be further improved by reaching out to the broader private sector, including oil companies, insurance companies, shipping industry, fishing industry, mining companies, IT industry. Further enhanced outreach to decision makers in Europe and worldwide on Arctic environmental policies is also of high importance.

These improvements are challenging due to various reasons, such as national as well as commercial interests. However, Copernicus plays an important role in understanding the environmental changes in the polar regions offering standardised, open and free satellite data and services.

In the last years the activities around the Copernicus Contributing Missions have increased the focus on commercial satellite data providers’ interest in supporting Copernicus with data and information products covering various areas including the Arctic. This example of increased involvement of the private sector should be further pursued and integrated in the work of the Copernicus Services.

7.3.5 END-TO-END INTEGRATED POLAR MONITORING SYSTEM

An important part of an end-to-end integrated polar monitoring system is the ground segment. Chapter 5 describes the ESA and EUMETSAT multi-mission ground segment elements currently operating the Sentinel missions and third-party missions as agreed, with data and products made available on a full, free and open basis to all users, through EUMETSAT’s Near Real Time dissemination channels EUMETCast/ EUMETview, the different Copernicus Online Data Access Hubs and the DIAS.

Operations/planning of multiple missions and generation of NRT geophysical products (up to Level 2) of individual missions are classical ground segment activities. While the synergistic satellite- and instrument operations are scheduled by ESA and EUMETSAT respectively, however, it should be noted as per Chapter 5 that the synergistic cross-mission integration and processing of these single-mission products are to be planned and prepared for by the Copernicus Services. These developments are relevant and should be followed in the possible future work of the Polar Expert Group.

7.3.6 TELECOMMUNICATIONS IN POLAR REGIONS

Timeliness of the services is essential for some operational entities (e.g. operational forecasting, or en- vironmental forecasting, or ocean/atmosphere forecasting safety of maritime traffic, emergency rescue). The data processing and network transmission between the on-board instrument data acquisition and the product delivery to the user segment interface is a critical part of the service quality.

• As addressed by the KEPLER project, when addressing latency in the sparsely populated polar regions, it is important to consider the time to the users and not to the . For the Arctic users on land and sea, this means additional use of space assets in form of communication satellites. This is also addressed in the report of DG-JRC called “Europe's Space capabilities for the benefit of the Arctic”48 For the European Space Programme, this need should be addressed in the discussions around the GovSatcom capability, now included as a new component of the proposed Space Programme, based on existing, pooled and governmental SatCom resources.

[REC8: The PEG recommends to consolidate Copernicus requirements for telecommunication capacity in the Arctic (and Antarctica49) in order to reach the end-users and to share this with GovSatcom].

45 Copernicus Marine Service (2019)), Training Workshop dedicated to the Arctic Sea region 46 Copernicus Climate Change Service (2020), User workshop on Copernicus regional reanalysis for Europe and the European Arctic 47 European Commission (2019) Copernicus Polar Industry Workshop 48 https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/europes-space-capabilities-benefit-arctic 49 Arctic is explicitly mentioned in the EU Space Regulation, but not Antarctica Services tofurther developandintegratenew spaceandnon-spacedataas well asscientificresearch]. [REC10: ThePEGrecommends that thefinancingofoperationsisstrengthenedmakingitpossible for theCopernicus mechanisms shouldbeidentified, e.g.theprivatesector/industry. importance ofthecontinuity ofrequiredspaceassets.Asfor thescientificresearchactivitynewsources/ it is important to continuously work with and inform the EU, ESA and their Member States about the for eachseriesisconfirmed.Unfortunately, theEUMFF covers onlythe2021-2027period.Therefore, space segment Sentinels seems to be ensured until 2030+, provided the funding for the 4 units planned identified. Thisalsoappliestothedevelopmentofadditional in-situplatforms whilstthecontinuityof space systemsfor thepolarregionsisnotwell definedandfundingmechanismssourcesshouldbe The financingofscientificresearchrelatedtodevelopment andadaptationofapplicationsbasedonnew 7.3.9 FINANCING REQUIREMENTS AND SOURCES for productvalidation). authorities wouldalsobeveryvaluableandshouldintegratedintheresearchactivity(for instance support of polar science in general. The contributions of indigenous populations, routine vessels and local The Citizen Science approach already (modestly) used by space agencies should be further developed in links andmaintaingoodrelationswithkey countriesintheregion. transnational accesstoresearchinfrastructureandopendataresourcesimprove politicalandeconomic The EUshouldpromoteandfacilitateeffective internationalscientificcooperationthroughsupporting opment ofadvanceddataassimilationtechniques(e.g.EnsembleKalmanFilter, statisticalapproach). physical andbiogeochemicalalgorithms,relevantvalidationfor Level2products,andthefurther devel- of newmissions(e.g.HPCMs)requiresignificantscientificresearchsuchasthedevelopmentimproved Existing servicesandproductsimprovements aswelldevelopmentofnewproducts,takingadvantage 7.3.8 UNDERLYING SCIENTIFIC RESEARCH for complementaryproductsandservices]. of theCopernicusSpaceComponent(e.g.Sentinels)shouldnothamperprivatesector, butmake room focused on: The role of the private sector in Europe for Earth Observation was until a few years ago essentially 7.3.7  the benefitofCopernicusServices,andinparticular for thedevelopmentofpolarservices.Theevolution [REC9: ThePEGrecommendsthattherapidlyevolvingprivatesectorshouldbecontinuouslyexploredfor This situationhasevolvedover thelastyearswith: • • • • now enteringtheContributingMissionportfolio). could offer aninterestingcomplementtothecurrentlargesystemslike Sentinels(e.g.IceEyeconstellation sities. Thesenewmissions,contrarytothelargemulti-purposehaveveryfocused objectivesand The adventofhigh-performance miniandmicrosatellitesinparticular, thosedevelopedby SMEsanduniver- sector; The manufacturingandoperationofEOsatellites(withservicesoffered onacommercialbasis) by theprivate The developmentofhigh-performance dataprocessingsystems(ITindustry). The procurement and manufacturing of space and ground systems (large space companies, specialised SMEs); ROLE AND CONTRIBUTION OF THE PRIVATE SECTOR 73 73 POLAR EXPERT GROUP III REPORT • 2021 74 74 POLAR EXPERT GROUP III REPORT • 2021 and thisreportfromthePEGhasprovided someconstructiveinputstothisprogrammaticdecisionpoint. start in2021.2021willalsobetheyearofsomeimportantdecisionsregardingCopernicusHPCMs handled by DG-JointResearchCentre.Thenextphaseistobehandledby aPolarTask Forceandwill the nextphaseofPolarExpertGroup.Adraft Terms ofReference hasbeenproducedand synergies with theotherpartofEU Space Programme. Thiswilltherefore be the mainobjective of in the future work of the PEG. The work of the Services will need to be further explored together with to theEUArcticPolicy, however Antarcticaisconsideredinthisreportbutneedstobefurther assessed space assetsusingmicrowave technologies.TheArctichasbeenthemainfocus ofthePEG responding This reporthasamainfocus ontheobservationsneededinyearstocomethereby concentrating on 7.3.10 FINAL REMARKS described. described. Hereafter for illustration purpose,twoexamples ofCopernicusservices, CMEMS andC3S,arebriefly information/accuracy estimate, deliveryformat andmechanisms,updatefrequency, etc.(whenapplicable). observations used,dataassimilation techniques/modelsused,spatialandtemporal resolutions,quality description oftheproduct characteristics,nameofproductionentity/agency, listofspaceandin-situ Typically, a Copernicus product is associated with a Product User Manual (PUM) providing a detailed Emergency managementsituations(CEMS)andSecurity (CSS). monitoring (CMEMS), Land monitoring (CLMS), Climate Change (C3S), Atmosphere composition (CAMS), tailored tothe6thematicprioritydomainsselectedby theCommission,namelyfor Marineenvironment This is a product based on combined space and in-situ observations, possibly assimilated into models, and mation, statistics,andotherinformation. service requirements.Itcantake theform ofanL3/L4productbutalsoincludesocio-economicalinfor- This isaninformation productdeliveredtoend(orintermediate)userswhichmeetstheiroperational moisture) equaltoLevel2data. Terminology whichcovers geophysicalvariables(e.g.seasurfacetemperature,salinity, soil COPERNICUS PRODUCT PRODUCT GEOPHYSICAL VARIABLES (ALSO CALLED PARAMETERS) SATELLITE/INSTRUMENT DATA • • • 8. GLOSSARY • • • • • appended; available supplementalinformation tobeusedinsubsequentprocessing(e.g.ephemeris,healthandsafety) nications headers,duplicatedata…),unprocessedinstrumentandpayloaddatafromsatelliterawwith Level 0:Reconstructed(i.e.withallcommunicationsartefactsremoved e.g.synchronizationframes,commu- de-multiplexing; Raw data: Physicaltelemetrypayloaddataasreceivedfromthesatellite,i.e.aserialstreamwithout measurements. by the instruments, but are derived from these measurements; could be derived from multiple instrument Level 4: Model output or results from analyses of lower-level data i.e., variables that are not directly measured making useofaggregationand/orinterpolation.; specified inthemetadata).Harmonisationandcombinationmayincluderadiometricgeometricresampling and acquisitionstoachievealargerspatialortemporalcoverage (thecompletenessofwhichusuallywillbe Level 3: Level1or2datawhichhavebeenharmonisedandcombinedacrossoneseveralplatforms index, soilmoisture)inthesamegrid(i.e.withoutspatialresampling)asLevel1sourcedata; Level 2:Derived geophysical object properties (e.g. surface reflectance, seasurface temperature,leaf area Level 1C:L1Bdataorthorectifiedandre-sampledtoaspecifiedgeodeticgrid; supplemented by appropriateancillaryandauxiliarydatafor furtherprocessingtoLevel1C; cated) torepresentphysicalunitsinsensornominalspatialsamplingandviewinggeometry, geolocatedand Level 1B:1Ainstrumentdatawhichhavebeenradiometricallycalibratedandspatiallyaligned(co-lo- geo-referencing parameterse.g.ephemeris)allowing, ifappropriate,furtherprocessingtoLevel 1B; supplemented by auxiliaryinformation (includingradiometricandgeometriccalibrationcoefficients and Level 1A: Unaltered/unprocessed Level 0 instrument data annotated with processed ancillary data and Unaltered/unprocessedLevel0instrumentdataannotatedwithprocessedancillaryand PROCESSING LEVELS (REFERENCE CEOS – WGISS)

75 75 POLAR EXPERT GROUP III REPORT • 2021 76 76 POLAR EXPERT GROUP III REPORT • 2021 The portfolio ofC3Sserviceproductsincludes: provide quality-assureddataandservicesinareliabletimelyfashiontoallitsusersstakeholders. of the climate in Europe and worldwide. In the context of C3S, operational means that C3S is able to science todevelopauthoritative,quality-assuredinformation aboutthepast,currentandfuture states The Copernicus Climate Change Service (C3S) combines observations of the climate system with the latest also includeswaveandtidaldriftcalledSMOC(SurfacemergedOceanCurrent). ranging from0to5500meters.Thisproductalso delivers aspecialdatasetfor surfacecurrent,which horizontal resolutionwithregularlongitude/latitudeequirectangularprojection.50verticallevelsare level height,temperatureandcurrents.Theglobaloceanoutputfilesaredisplayedwitha1/12degree from thetoptobottomover theglobalocean.Italsoincludeshourlymeansurfacefields for sea monthly meanfilesoftemperature,salinity, currents,sealevel,mixedlayerdepthandiceparameters ed intimeordertoreachatwofullyearsseriesslidingwindow. Thisproductincludes dailyand of 3Dglobaloceanforecasts updateddaily. ThetimeseriesstartsonJanuary1st,2016andisaggregat- The OperationalMercatorglobaloceananalysisandforecast systemat1/12degreeisproviding 10days CMEMS Productexample:GlobalOcean1/12°PhysicsAnalysisandForecastupdateddaily(fromsite) the past),analyses(today)and10-dayforecasts oftheocean. numerical modelsassimilatingtheabove satelliteandin-situdatatogeneratereanalyses(20yearsin servations for real-time(today)andreprocessed(20yearshistoric)products(ii)outputsofocean all marine applications.CMEMS provides two main categories of products:(i)Satellite and in-situ ob- and regionalseas.Theobservations(spacein-situ)forecasts producedby theservice support CMEMS provides regularandsystematiccorereference information onthestateofphysicaloceans data manipulationoperations throughtheCDSToolbox. active onlineform orthroughapython-based API.Userscanalso visualise thedataandperform various a qualitystatusflag.Data can bedownloaded fromtheC3SClimateDataStoreeitherthroughaninter - during themeltingseason.AlongwithSITdata,files containestimatesofalgorithmuncertaintyand real time.Dataarecurrentlylimitedtothewintermonths ofOctoberthroughAprilduetoretrievalissues EASE-2 gridwitha25-kmresolution.Itisupdatedon amonthlybasiswithone-monthdelaybehind from theEnvisatandCryoSat-2satellites.Thedataset isaLevel-3collatedproductprovided onapolar for theArcticregionfromOctober2002topresent derivedfromsatelliteradaraltimetrymeasurements The C3Sseaicethickness(SIT)ClimateDataRecord consists ofmonthlyretrievalsseaicethickness C3S Productexample:seaicethickness POLAR REGION OF INTEREST (AS DEFINED FOR PEG) • • • • • • • • • • Consistent estimatesofmultipleEssentialClimateVariables; A ClimateDataStoreproviding accesstoabroadrangeofclimatedatasets,applications,andanalysistools; Copernicus ClimateChangeclimateServices(C3S) Arctic Ocean:> 59-60°N,0-360°longitude (thisincludesIceland,Svalbard, RussianArcticicecaps,etc.) Copernicus MarineEnvironmentMonitoringServices(CMEMS) Sector-specific climateinformation anddatatailored for businesses anddecision-makers. Climate projectionsatglobalandregionalscales; Multi-model seasonalforecasts; Products basedonconventionalandsatelliteobservationsalone; (atmosphere, ocean,land,carbon); Global andregional reanalyses (including for the Arctic region), covering acomprehensive Earth system domain

causes, andtounderpinclimate services. guide mitigation and adaptation measures, to assess risks and enable attribution of climatic events to underlying characterization ofEarth’s climate.ECVdatasetsareneeded tounderstandandpredicttheevolutionofclimate, An ECVisaphysical,chemical, orbiologicalvariableagroupoflinked variablesthat criticallycontributestothe of thedeliverymediaincaseofflineand management ofon-lineaccess. (e.g. ftp-push)orelectronicserveraccessftp-pull).Therefore, disseminationisconcernedwiththepreparation The disseminationfunctiondeliversthefinalproductto user, by meansofphysicalmedia,electronic distribution teorological purposes–thisiswithin3hoursfromsensing. instrument dataacquisitionandtheproductdeliverytousersegmentinterface.Typically–for me- Time delayintroducedby automateddataprocessingandnetworktransmissionbetweentheon-board truth datathatistobeusedinthecalibrationprocessingroutine. signal inputs.Itimpliesthecollectionofpre-flightandin-flightcalibrationmeasurementsground Calibration refers to the process of quantitatively defining the instrument responses to known, controlled ECWMF/Met. Offices.Auxiliarydatahelpinprocessing,butarealsosetstheir ownright. data collectedby anyotherplatform orprocess.Examplesaree.g.meteorologicaldatareceivedfrom not capturedby thesamedatacollectionprocessasmaininstrumentdata.Auxiliaryinclude Data whichenhanceprocessingandutilizationofmaininstrumentdata.Theauxiliarydataareusually position andvelocityofplatform). Level 0 data). They have the primary purpose to serve the processing of main instrument data (e.g. orbit Data acquiredon-boardbutnotobtainedfromthemaininstrumentitself(usuallyprovided aspartof 2. Theterm“precision”shouldnotbeusedfor “accuracy”. 1. “Accuracy”isaqualitativeconcept.Thequantitativemeasureoftheaccuracyexpressedinterms“Uncertainty”; Notes: urement. The closenessoftheagreementbetweenresultameasurementandtruevaluemeas- ESSENTIAL CLIMATE VARIABLES (ECVS) DISSEMINATION DATA LATENCY CALIBRATION DATA AUXILIARY DATA ANCILLARY DATA ACCURACY OF MEASUREMENT (REFERENCE WMO) • • • • Antarctica: >50°S,0-360°longitude Greenland: >55°N Land areas: >60°N Arctic (BalticSea,GulfofBotnia,Finland, etc.) Adjacent Seas(>50°NasperCIMRMRD)encompassingallseasandmajorwaterbodiesadjacenttothe 77 77 POLAR EXPERT GROUP III REPORT • 2021 78 78 POLAR EXPERT GROUP III REPORT • 2021 intermediate and end-users(for example, meteorologicalweatherand marineforecasts). uous basis(allthroughoutthe year, 7daysaweekifapplicable)information productsofinteresttocommunities This isthecapabilityoffered by anagency/organisation/companyto provide ahighquality, reliableandonacontin- value isattachedtotheobservedphenomenonby counting ormeasuring. vations canbequalitative,thatis,onlytheabsenceorpresence ofapropertyisnoted,orquantitativeifnumerical Observation istheactiveacquisitionofinformation fromaprimarysourcelike anobjectoraphenomenon. Obser- events/catastrophe situations.Thismaybeaslow as15 minutes(asspecified by EMSA). less than1hourfromon-boardsensorobservationfor operationalapplicationssuchasexceptionalemergency QRT data/productsarethosethathavetobemadeavailable touserswithaspecifiedshortlatency, whichistypically within 3hoursfromon-boardsensorobservationfor operationalapplications(suchasmeteorology). NRT data/productsarethosethathavetobemadeavailableuserswithaspecifiedshortlatency, whichistypically interference betweendownlinks ofdifferent satellites. and receivingstationavailabilities.Part ofthisfunctioniscross-missionreceptionconflictresolution,e.g.incase downlink andreception.Planninghastotake intoaccountconstraintslike sensorsandplatform limitations,capacities activities ofthestations.Theplannedcomprisesensingoperationstomeetusers’requirements,recording, This isanon-conflictingtimelineofactivities for thespacesegmentpayloadand for thecorresponding reception Measurements arequantitativeobservationshavingtheobjectiveofdeterminingvaluesaquantity. systems oralteredinitsoriginalconditions. Laboratory observationsare(usually)in-situinwhichtheobjectorphenomenonisisolatedfromother these conditionsareconsidered‘RemoteSensing’. physical contactoradistancewhichhasnonegligibleimpactonthemeasurement.Measurementsnotfulfilling without isolatingitfromothersystemsoralteringitsoriginalconditions.In-situmeasurementsrequireeitherdirect ‘In-situ’ describesobservationsperformed inthesameplacewhereanobjectislocatedoraphenomenonoccurring, shape moreeffective policies. Earth Observationsenabledecisionmakers aroundtheworldtobetterunderstandissuestheyface,inorder This includesspace-basedorremotely-senseddata,aswellground-basedin-situdata.Coordinatedandopen Earth Observationsaredataandinformation collectedaboutourplanet,whetheratmospheric,oceanicorterrestrial. OPERATIONAL SERVICE OBSERVATION QUASI REAL TIME (QRT) DATA/PRODUCT NEAR REAL TIME (NRT) DATA/PRODUCTS MISSION PLANNING MEASUREMENTS LABORATORY OBSERVATION IN-SITU OBSERVATION EARTH OBSERVATION (GEO DEFINITION) as wellground-basedandin-situdata. measurements in-flight system outputs.Asfor thecalibrationactivities,itimpliescollectionofpre-flightand Validation istheprocessofassessing,by independentmeans,thequalityofdataproductsderivedfrom deviation (oragivenmultipleofit),orthehalf-widthanintervalhavingstatedlevelconfidence. values thatcouldreasonablybeattributedtothemeasurement.Theparametermaybe,for example,astandard Non-negative parameter, associatedwiththeresultofameasurement,whichcharacterizesdispersion chain ofcalibrationseachcontributingtothemeasurementuncertainty. Property ofameasurementresultwhereby theresultcanberelatedtoareference throughadocumentedunbroken measurements orobservations. pact onthemeasuredquantity. Theeffect ofdistanceisthemaindistinctioncriteriabetween‘remote’and‘in-situ’ object orphenomenon.‘Significant’inthiscontextmeansthatthedistancehasmayhaveanon-negligibleim- Remote sensingistheobservationofproperty of anobjectorphenomenonatasignificantdistancefromthat a simple“flag”. of thedataorderivedproduct.AQualityIndicatormaybeanumber, setofnumbers,graph,uncertaintybudget,or A qualityindicatorshallprovide sufficientinformation toallow alluserstoreadilyevaluatethe“fitness forpurpose” VALIDATION DATA UNCERTAINTY (REFERENCEWMO) TRACEABILITY QUALITY INDICATOR 79 79 POLAR EXPERT GROUP III REPORT • 2021 80 80 POLAR EXPERT GROUP III REPORT • 2021 European Commission, (2020),KarenBoniface etal.“Europe’s Space capabilitiesfor the benefitoftheArctic” https://www.copernicus.eu/en/events/events/copernicus-polar-industry-workshop European Commission(2019) CopernicusPolarIndustryWorkshop https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52018PC0447&from=en European Commission,2016, COM(2016)705final,“SpaceStrategy for Europe” https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/COM-2016-705-F1-EN-MAIN.PDF European Commission,2016,COM(2016)705final, “Space Strategy for Europe” pdf/8a3b940a-6537-4ee1-b9f5-26d072c12d50?t=1569943128000 https://sentinels.copernicus.eu/documents/247904/685154/Sentinel_High_Level_Operations_Plan. ESA, 2019,“SentinelsHighLevelOperationPlan(HLOP)” v2.0_issued.pdf https://esamultimedia.esa.int/docs/EarthObservation/Copernicus_L-band_SAR_mission_ROSE-L_MRD_ ESA, 2019CopernicusL-band SAR-MRD2.0 sued_20190228.pdf http://esamultimedia.esa.int/docs/EarthObservation/Copernicus_CRISTAL_MRD_v2.0_Is- ESA, 2019CopernicuspolaRIceandSnow Topography ALtimeter(CRISTAL) –MRD2.0 https://esamultimedia.esa.int/docs/EarthObservation/CIMR-MRD-v3.0-20190930_Issued.pdf ESA, 2019.CopernicusImagingMicrowave Radiometer–MRD3.0 ropean-union-policy-for-the-arctic_en.pdf http://eeas.europa.eu/archives/docs/arctic_region/docs/160427_joint-communication-an-integrated-eu - AnintegratedEuropeanUnionpolicyfor theArctic” tive)), 2016,JOIN(2016)21final“JointCommunicationtotheEuropean Parliament andtheCouncil EEAS (TheHighRepresentativeoftheUnionfor ForeignAffairsandSecurityPolicy(HighRepresenta - https://marine.copernicus.eu/events/copernicus-marine-service-training-workshop-arctic-sea-region Copernicus MarineService,2019,Training Workshop dedicatedtotheArcticSearegion https://insitu.copernicus.eu/library/reports/CopernicusArcticDataReportFinalVersion2.1.pdf/at_download/file Copernicus In-SituComponent,EBuchetal,2019.ArcticAvailability https://climate.copernicus.eu/user-workshop-copernicus-regional-reanalysis-europe-and-european-arctic the EuropeanArctic Copernicus ClimateChangeService(2020),Userworkshoponregionalreanalysisfor Europeand https://climate.copernicus.eu/sea-ice-cover-october-2020 2020 Copernicus ClimateChangeService,2020,Seaicecover for October2020,accessed1November https://asc-csa.gc.ca/eng/satellites/radarsat/access-to-data/standard-coverage-maps.asp Canadian SpaceAgency, 2020,Accesstodata-Standardcoverage maps https://arctic-council.org/en/news/first-arctic-shipping-status-report-increase-shipping-traffic/ Arctic Council,2020,ShippingStatusReports,accessed1November 2020 DOCUMENT LIST DOCUMENT REFERENCES / POLAR EXPERT GROUP,

- Copernicus InSituComponent.CMEMSInternalreport.Editedby AntonioReppucci,September2018. Mercator Ocean,EuroGOOSandCMEMSPartners (2018),CMEMSrequirementsfor theevolutionof https://drive.google.com/file/d/1tOzvsaJj2_04djwHgnSHo85XhY2Ba3eJ/view monitoring” DeliverableD3.3 KEPLER Project,CarolinaGabarróetal,2020,“Final reportonresearchgapsofspace-basedArctic https://drive.google.com/file/d/15rG057whtA-1ra6ZTGck5f8Y0VSW6Sp8/view?usp=sharing KEPLER Project,J.Wilkinson etal,2020.“Insituobservationgaps”.DeliverableD3.1 erables D2,D3:https://kepler-polar.eu/deliverables/ KEPLER project:KeyEnvironmentalmonitoringfor PolarLatitudesandEuropeanReadiness,WPdeliv- https://eu-polarnet.eu/wp-content/uploads/2020/11/EU_PolarNet_Infrastructure-final_version.pdf EU-PolarNet Gonçalo V. etal,2020,White Paper onEuropeanPolarInfrastructureAccessandInteroperability language-en https://op.europa.eu/en/publication-detail/-/publication/25ed00e2-946f-11e8-8bc1-01aa75ed71a1/ Copernicus polarmission-Phase2report,High-levelmissionrequirements European Commission,(2018),GuyDuchossoisetal.,PolarExpertGroup-Userrequirementsfor a language-en/format-PDF/source-search https://op.europa.eu/en/publication-detail/-/publication/3682bfb3-946b-11e8-8bc1-01aa75ed71a1/ quirements andpriorities European Commission,(2018),GuyDuchossoisetal.,PolarExpertGroup-Phase1report,Userre pabilities-benefit-arctic https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/europes-space-ca- 81 81 POLAR EXPERT GROUP III REPORT • 2021 82 82 POLAR EXPERT GROUP III REPORT • 2021 the Copernicusproducts Satellites/Sensors usedtoproduce Accuracy/Uncertainty Latency Update frequency Horisontal Resolution Horisontal coverage Products Annex 1:Copernicusinventory, specificationperproduct ANNEX 1. COPERNICUS PRODUCT INVENTORY ANNEXES Satellites and/orSensorsusedtoproducetheCopernicusproducts stated levelofconfidence. be attributedtothemeasurand.Theparametermaybe,for example,astandarddeviation(orgivenmultipleofit),orthehalf-width ofanintervalhavinga Uncertainty: Non-negativeparameter, associatedwiththeresultofameasurement,whichcharacterizesdispersionvaluesthatcould reasonably 2. Theterm“precision”shouldnotbeusedfor “accuracy” 1. “Accuracy”isaqualitativeconcept.Thequantitativemeasureofthe accuracyisexpressedintermsof“Uncertainty”. Notes: Accuracy: Theclosenessoftheagreementbetweenresultameasurementandtruevaluemeasurand. Time delaybetweentheon-boardinstrument dataacquisitionandtheCopernicusproductdeliverytousersegmentinterface Temporal frequencyoftheCopernicusproducts The samplingdistanceofmeasurementsin[m],equalspacingxandyisassumed Area ofinteresttobecovered Name ofCopernicusproduct

1.Marine 1.1Seaicethickness(SIT) time isadded (***)S1A+Bfor OilSpill DetectionandVDS only for CleanSeaNetservice (*) SARbased value addedproducts :EVS,EFS,WDS,ADS currentlyunderintegration testsonEMSAEO Chain(**) Thesedelivery timesrefer to the standardimage size. Forimagesacquired outsideEMSA contracted groundstations coverage, using on-board recorders, satellite fly 1.2Sea-iceconcentration(SIC) 1.3Seaicedrift 1.4Snow depthandsnow cover onsea-ice 1.5aIcetypeofdevelopement 1.5bIceageofdevelopement individual icebergs) 1.6Iceberg(icebergconcentrationchartsand 1.7Sea-iceedge-Existingparameter 1.8Sea-iceextent-Existingparameter 1.9Sea-icealbedo-Existingparameter parameter 1.10Sea-icesurfacetemperature-Existing 1.11 Sea level anomaly 1.11Sealevelanomaly PRODUCTS 1.12SeaSurfaceTemperature (SST) 1.13SeaSurfaceSalinity (SSS) Horisontal coverage S. Hemisphere(Model N. Hemisphere (Model) N. Hemisphere(Model) N. Hemisphere(Obs) S. Hemisphere(Model N. Hemisphere(Model) Global (Obs) Arctic (Obs) (Obs) Svalbard &Greenland Ice charts,ArcticRegional, S. Hemisphere(Model N. Hemisphere(Model) Global (Obs) Global (Obs) S. Hemisphere(Model N. Hemisphere(Model) N. Hemisphere (Model) N. Hemisphere(Model) Global (Obs) N. Hemisphere (Model) N. Hemisphere(Model) Greenland (Obs) N. Hemisphere,Regional Global (Obs) Antarctica Regional(Obs) both Model&Obs S. Hemisphere N. Hemisphere N. Hemisphere (Model) N. Hemisphere(Model) N. Hemisphere(Obs) ERAGE HORISONTAL COV CHARACTERISTICS Global (Model) Global (Obs) Global (Model) Global (Obs) Global (Obs) Global (Obs) Global (Model)

- 9km 3km 25km 9km 3km 10km 5km 1km 9km 3km 62.5km 10km 9km 3km 12,5km 10km 12,5km 10km 10km 1km Timeseries inkm2 12km 5 km LUTION HORISONTAL RESO 9km 14Km L3alongtrack 25Km L4 9km 5km 10km, L3 25km 9km

- Daily Weekly Daily Daily Daily Irregular Daily Weekly-mean Irregular Daily Daily Subdaily/Daily Irregular Daily Daily Daily Daily Irregular Daily Weekly-mean Irregular Daily Irregular Yearly Daily Daily Daily Daily QUENCY UPDATE FRE Daily Daily/Monthly Daily skin Temperature Hourly for diurnal Daily, Daily

- LATENCY 1m SatL4 Sat L4 18-20% 18-20% Sat L4 5-8km/day Use ofInSitu 0.1-0.2 Mkm2 added shortly Ice Agemtricstobe Situ Validation withIn UNCERTAINTY ACCURACY/ 6cm SatL3 AVHRR) Sat (MetopA,B& 0.6-0.8°C InSitu& 0.2 InSitu

Assimilation oCryosat2,SMOSmergedonlyfor N.Hem. Cryosat2,SMOSMerged SSMIS, AssimilationofOSISAF10kmproducts SSMIS brokered fromOSISAF AMSR2 brokered fromOSISAF Sometimes S2(coastal) TerraSAR), MODISmoreusedthanS3,OLCI (twilightacquisitionissue). HR ImagerySAR,mainlyS1,otherSARmissions(Radarsat,COSMO. Assimilation ofOSISAF62,5kmproducts,onlyfor N.Hem. ASCAT, QuikSCAT, SSM/ISbrokered fromOSISAF S1A/S1B (hasusedSAREnvisatRADARSAT) Observation R&Dexist,manytechniquesbasedonPMR,altimetry, SAR... Validation withCMEMS/OSISAFdatabutalsoicecharts SSMIS brokered fromOSISAF Not measurablewithinsitu. S-1 SSMIS brokered fromOSISAF S-1, Radarsat,ASCAT, SSMIS SSMIS brokered fromOSISAF Observation R&DexistandbasedonS3-OLCI NICUS PRODUCTS SATELLITES/SENSORS USED TO PRODUCE THE COPER Sentinel3bSLSTRSST, NOAA20VIIRS SSTandVIIRS_NPPSST/IST Assimilation ofallAltimetry All altimeters,nodataifpresenceofseaice Assimilation ofSSTOSTIA OSTIA SST; IRandPMWsatellite(AVHRR, MSG,NOAA20,S3a,b,AMSR2) 11 AATSR, /AMSRE, TRMM/TMI)andgeostationary(MSG/SEVIRI, GOES- Multi sensors:NOAA-18&NOAAA-19/AVHRR, METOP-A/AVHRR, ENVISAT/ OSTIA diurnalskintemperature Multi productensembleusingalargenumberofMWsatellite No assimilationyet

- 83 83 POLAR EXPERT GROUP III REPORT • 2021 84 84 POLAR EXPERT GROUP III REPORT • 2021 2. Land time isadded(***)S1A+Bfor OilSpillDetectionandVDSonlyfor CleanSeaNetservice (*) SARbasedvalueaddedproducts:EVS,EFS,WDS,ADScurrentlyunderintegrationtestsonEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize.ForimagesacquiredoutsideEMSAcontractedgroundstationscoverage, usingon-boardrecorders,satellitefly 2.1 LeafAreaIndex,FaPAR, Fcover, NDVI 2.2 LandSurfaceTemperature 2.3 SoilMoisture 2.4 SoilWater Index 2.5 LandCover 2.6 InlandWater Bodies 2.7 InlandWater Level 2.8 InlandWater Temperature 2.9 InlandWater Quality 2.10 Lake IceExtent 2.11 Snow Cover Extent 2.12 Snow Water Equivalent(SWE) PRODUCTS 2.13 Ground Motion 2.13 GroundMotion Exent 2.14 EEAHighResol.Snow &IceService-Snow River ice 2.15 EEAHighResol.Snow &IceService-Lake/ Snow ExentINIMPLEMENTATION 2.16 EEAHighResol.Snow &IceService-Wet [-60,80] [-60,70] Europe Global [-60,78.25] up to75N Global Global Global Baltic SeaRegion N. Hemisphere[25,84] ERAGE HORISONTAL COV CHARACTERISTICS N. Hemisphere[35,85] EEA39 EEA39 EEA39 EEA39 - 300 m,1Km 5 km 1 Km 0.1 deg(1kmfor Europe) 100 m,300m 300 m,1km N/A (non-gridded) 1 Km 300 m,1km 250 m 1 Km(500mfor Europe) LUTION HORISONTAL RESO 5 Km 20 m 20 m 20m tbc - 10 d 1 h,10d 1 d-6 daily annually 10 d 10 d 10 d 10 d 10 d daily daily daily QUENCY UPDATE FRE annual daily daily daily - 4 hours 1 day 4 d < 1day < 1day LATENCY < 2days 4 months < 3h < 3h tbc 3 K(A),4(U) 0.04 m3/m3(A) 0.2 m(A) 250 m(A) UNCERTAINTY ACCURACY/ cation: 15m(A) 0.5 cm(U);geolo- SPOT VGT, PROBA,S3 MSG, GOES,MTSAT, S1 METOP ASCAT, S1 SPOT VGT, PROBA,S3 SPOT VGT, PROBA,S3,S2 Jason, S3 S3 SLSTR S3, S2 MODIS /Sentinel-3SLSTR NICUS PRODUCTS SATELLITES/SENSORS USED TO PRODUCE THE COPER MODIS /VIIRS VIIRS /Sentinel-3SLSTR SSMI S1 S2 S2 S1

- 3. Climate time isadded (***)S1A+Bfor OilSpill DetectionandVDS only for CleanSeaNetservice (*) SARbased value addedproducts :EVS,EFS,WDS,ADS currentlyunderintegration testsonEMSAEO Chain(**) Thesedelivery timesrefer to the standardimage size. Forimagesacquired outsideEMSA contracted groundstations coverage, using on-board recorders, satellite fly 3. Seaiceconcentration 3.2 Seaicethickness 3.3 Seaiceedge 3.4 Seaicetype 3.5 SeaLevel 3.6 SeaSurfaceTempearture 3.7 MapsofLandCover 3.8 Albedo 3.9 LeafAreaIndex 3.10 Glaciersoutlines(distribution) elevation change 3.11 masschange/ 3.12 Gravimetricmassbalance PRODUCTS 3.13 IceVelocity 3.14 SurfaceElevationChange 3.15 Lake surfacewatertemperature 3.16 Lake Water Level 3.17 Surfacesoilmoisture

ern polarregions) Global (northernandsouth- Northern Hemisphere ern polarregions) Global (northernandsouth- Northern Hemisphere Black Seas Global +Mediteraneanand Global Global land Global land Global land Antarctica glaciers inGreenlandand All glaciers,incl-.Peripherial selected glaciers globally selected glaciersglobally ERAGE HORISONTAL COV CHARACTERISTICS from ESACCI Icesheet -brokered product Greenland andAntarctic Greenland Icesheet Icesheet Greenland andAntarctic Global Global Global land - 30-60 km) 25 kmgridres(truespatialres: 1-10 km) 25 kmgridres(truespatialres: res: 15km) 12.5 kmgridres(truespatial 40-70 km) 25 kmgridres(truespatialres: nean andBlackSeas - 0.125x0.125°for Mediterra- - 0.25x0.25°for global; Level 4products - 0.05°xfor Level3and 2P products; - ~4kmx4kmfor AVHRR Level SLSTR Level2Pproducts; - 1kmxfor ATSR and 300 m 300 m for AVHRR and PROBA-V, 1/30°(~4km) 1/112° (~1km)for SPOT-VGT for AVHRR and PROBA-V, 1/30°(~4km) 1/112° (~1km)for SPOT-VGT sensor ) 30 m(dependentonsatellite glacier specific LUTION HORISONTAL RESO 50kmx50km 250 m 250 m 25kmx25km 0.05 x0.05° one valueperlake pertimestep 0.25x0.25°

- 1987) day from1979- Daily (everysecond through April) only (October Arctic wintermonths Monthly andfor 1987) day from1978- Daily (everysecond 1987) day from1978- Daily (everysecond Daily Daily Yearly 10 days 10 days Annualy annual todecadal Monthly (timeseries) QUENCY UPDATE FRE Annual IVMaps satellites) moving windows for monthly (*different Daily 1 to10days monthly Daily, 10-dayand - 16 days 1 month 16 days 16 days 6 months 9-12 months January) Annual (in Annually LATENCY release Annual January) Release (in Annual datasets upddate of monthly (January), Release Annual 4 months SH: 10-17% NH: 6-14% 0.4-1 m from icechartedge) 30-40 km(distance L4: 0.2-0.3Kvsinsitu area better than5%of 0.2m/y (TBC) 0.2m/y (TBC) 0.2 kg/m2 UNCERTAINTY ACCURACY/ product attached tothe product attached pixelbased uncertainty product product attached tothe pixelbased uncertainty

SMMR, SSM/I,SSMIS SIRAL onCryoSat-2 RA-2 onEnvisat, SMMR, SSM/I,SSMIS SMMR, SSM/I,SSMIS ERS-1/2, Envisat,Jason-1/2/3,Topex/Poseidon, SARAL,Cryosat-2,S-3A - SLSTRonS-3A/B - AATSR onEnvisat - ATSR onERS-1/2, - AVHRR onNOAA-XandMetop-A, AVHRR, SPOT-VGT, PROBA-V&S3-OLCI AVHRR, SPOT-VGT &PROBA-V AVHRR, SPOT-VGT &PROBA-V Landsat, (Sentinel-2) NICUS PRODUCTS SATELLITES/SENSORS USED TO PRODUCE THE COPER based oninsitumeasuremtsfromWGMS database Grace Grace Sentinel-1 ERS-12, ENVISAT, Cryosat-2,Sentinel-3A,Sentinel-3B ERS-2 (ATSR-2), Envisat(AATSR), MetopA&B(AVHRR) RA onTOPEX/POSEIDON, Jason1/2/3,Envisat, SARAL,GeoSat-Follow-On, S-3A Passive data: SMMR, SMM/I, TMI, AMSR-E, AMSRE, WIndSat, SMOS Passive data: SMMR,SMM/I,TMI,AMSR-E,AMSRE,WIndSat, SMOS Active data:AMI-WS, ASCAT-A &B

- 85 85 POLAR EXPERT GROUP III REPORT • 2021 86 86 POLAR EXPERT GROUP III REPORT • 2021 species (underdevelopment) 4.8 Depositionofaerosolandchemical 4.7 UVIndex 4.6 Methaneconcentrations 4.5 PM10concentrations 4.4 PM2.5concentrations 4.3 Blackcarbonaerosolconcentrations 4.2 Organicmatteraerosolconcentrations 4.1 Ozoneconcentrations 4. Atmosphere time isadded(***)S1A+Bfor OilSpillDetectionandVDSonlyfor CleanSeaNetservice (*) SARbasedvalueaddedproducts:EVS,EFS,WDS,ADScurrentlyunderintegrationtestsonEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize.ForimagesacquiredoutsideEMSAcontractedgroundstationscoverage, usingon-boardrecorders,satellitefly PRODUCTS ERAGE HORISONTAL COV CHARACTERISTICS - and atsurfacelevel 40km spatialresolution and atsurfacelevel 40km spatialresolution and 137verticallevels 40km spatialresolution and 137verticallevels 40km spatialresolution and 137verticallevels 40km spatialresolution and 137verticallevels 40km spatialresolution and 137verticallevels 40km spatialresolution and 137verticallevels 40km spatialresolution LUTION HORISONTAL RESO - forecasts analyses and Twice-daily forecasts analyses and Twice-daily forecasts analyses and Twice-daily forecasts analyses and Twice-daily forecasts analyses and Twice-daily forecasts analyses and Twice-daily forecasts analyses and Twice-daily forecasts analyses and Twice-daily QUENCY UPDATE FRE - LATENCY UNCERTAINTY ACCURACY/ S-5p, GOSAT, IASI MODIS, PMAP, (VIIRS,S-3) MODIS, PMAP, (VIIRS,S-3) MODIS, PMAP, (VIIRS,S-3) MODIS, PMAP, (VIIRS,S-3) S-5p, GOME-2,MLS,OMI,SBUV-2 NICUS PRODUCTS SATELLITES/SENSORS USED TO PRODUCE THE COPER - 6.3 Activefiremaps 6.2 BurntArea 6.1 AutomaticFloodMonitoring 6. EmergencyManagement Fisheries control,Anti-piracy, …) 5.7 ActivityDetectionService(ADS)*(eg: 5.6 Wake DetectionService(WDS)* farms, Debris,..) 5.5 EnrichedFeatureService(EFS)*(eg:Fish 5.4 EnrichedVessel Service(EVS)* 5.3 OilSpillDetection 5.2 FeatureDetectionService(FDS)* 5.1 Vessel DetectionService(VDS)* 5. Security time isadded(***)S1A+Bfor OilSpillDetection andVDSonlyfor CleanSeaNetservice (*) SARbasedvalueaddedproducts:EVS,EFS, WDS,ADScurrentlyunderintegrationtestsonEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize.ForimagesacquiredoutsideEMSAcontracted groundstationscoverage, usingon-boardrecorders,satellitefly PRODUCTS Global Global Global Global Global Global Global Global Global Global ERAGE HORISONTAL COV CHARACTERISTICS - 20 m 4 m;) VHR2 (from2.5m

- 6d On demand On demand On demand On demand On demand On demand On demand QUENCY UPDATE FRE - 30 min** 30 min** 30 min** 30 min** 20 min** 20 min** 20 min** LATENCY UNCERTAINTY ACCURACY/ S1 Radarsat TERRASAR-X,PAZ Radarsat TERRASAR-X,PAZ Radarsat TERRASAR-X,PAZ Radarsat TERRASAR-X,PAZ Radarsat, S-1(***),TERRASAR-X,PAZ Radarsat TERRASAR-X,PAZ Radarsat, S-1(***),TERRASAR-X,PAZ NICUS PRODUCTS SATELLITES/SENSORS USED TO PRODUCE THE COPER - 87 87 POLAR EXPERT GROUP III REPORT • 2021 88 88 POLAR EXPERT GROUP III REPORT • 2021 ANNEX 2. REQUIREMENTS AND SPACE ASSETS CRISTAL, ROSE-L Requirement Compliancestatementpermissionfor CIMR, Satellites/Sensors usedtoproducetheCopernicusproducts Accuracy/Uncertainty Latency Update frequency Horisontal Resolution Horisontal coverage Geophysical variable Annex 2:PEGIIIspecificationscheme by geophysicalvariable - Non-Compliant(novalue):Themissiondoesnotcomplywithanyor few requirements Sentinel missions. - Fulfilled(F):ThemissionfulfilsallrequirementsinPolarregions and AdjacentSeasasastand-alonemissionorincross-sensorplanningwith Satellites and/orSensorsusedtoproducetheCopernicusproducts an intervalhavingastatedlevelofconfidence. reasonably beattributedtothemeasurand.Theparametermaybe,for example,astandarddeviation(orgivenmultipleofit),orthehalf-width Uncertainty: Non-negativeparameter, associatedwiththeresultofameasurement, whichcharacterizesthedispersionofvaluesthatcould 2. Theterm“precision”shouldnotbeusedfor “accuracy” 1. “Accuracy”isaqualitativeconcept.Thequantitativemeasureoftheaccuracyexpressedinterms“Uncertainty”. Notes: Accuracy: Theclosenessoftheagreementbetweenresultameasurementandtruevaluemeasurand. delivery totheusersegmentinterface. Time delayintroducedby automateddataprocessingandnetworktransmission betweentheon-boardinstrumentdataacquisitionandproduct acquisitions Update (temporal)frequencybetweenthesametypeofinstrument(e.g.S1A,B,C,Dphasingoptions)for regularmeasurementsand‘ondemand’ The samplingdistanceofmeasurementsin[m],equalspacingxandyisassumed Area ofinteresttobecovered algorithms (physical,semi-empirical/empirical…)fromsatellite/insitusensorsdata(similartoL2) Generic designation/terminologywhichcovers geophysicalvariables(e.g.seasurfacetemperature/salinity/windfield…)derivedviaprocessing

(*1) Betweenthesametypeofinstrument(incl S1A,B,C,Dphasingoptions)(*2)Crossinstrumentrepeatbasedoncombinationsofexisting,planedandfutureinstrumentse.g. SARC-Band/L-band repeat,SARC-Band/CIMR/MetOp repeat,SARCIMR/CRISTAL repeat. (*) SARbasedvalueaddedproducts:EVS,EFS, WDS,ADScurrentlyunderintegrationtestsonEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize. Enhanced Continuity(2):continuity intheMFFperiodpost-2021withservicelevelof2020asbaseline Continuity(1): Continuityontheservicelevel of2020 1.1.1 Seaicethickness(SIT)-Marine 1. Floatingice 1.1.2 Seaicethickness(SIT)-Climate 1.2.1 Sea-iceconcentration(SIC)-Marine 1.2.2 Sea-iceconcentration(SIC)-Climate 1.4.2 Snow depthandsnow cover onsea-ice-Climate 1.4.1 Snow depthandsnow cover onsea-ice-Marine 1.3.2 Seaicedrift-Climate 1.3.1 Seaicedrift-Marine 1.7.2 Sea-icesurfacetemperature-Climate 1.7.1 Sea-icesurfacetemperature-Marine - Climate 1.6.2 Iceberg(icebergconcentrationchartsandindividualicebergs) - Marine 1.6.1 Iceberg(icebergconcentrationchartsandindividualicebergs) 1.5.2 Icetype-Icestageofdevelopment-Climate 1.5.1 Icetype-Icestageofdevelopment-Marine GEOPHYSICAL VARIABLES 2. Pan Arctic" "1. Global Global, Pan Arctic 2. Pan Arctic" "1. Global Global, Pan Arctic Global, Pan Arctic 1. Global Pan Arctic 2. Pan Arctic" "1. Global Pan Arctic 1.Global European Arctic Greenland and European Arctic" 2.Greenland and "1. Global Pan Arctic 1-2. Pan-Arctic. COVERAGE HORISONTAL POLAR EXPERT GROUP REQUIREMENTS

2. 80m(20m)" "1. <5km 25 (5)km 2.20 m" "1. <5km 15 km(<5) 25 (5)km 1. <5km <10km) 10 km(asSICif 2.80 (20)m" "1. <10km 1 km(IR) 1. <5km 10 km 2.as S-1(20m)" "1. <10km 10 km(1km) 2.T80 (20)m" "1. <10km LUTION HORISONTAL RESO

- 24h" " 24 h <24h(6h) 24 h 24 h 24 h 24 h ≤24h(6h) < 24h(6h) < 6h 24h 48h (24h)" "<24h QUENCY UPDATE FRE

- <1h ≤24h <1h ≤24h 24h <1h <1h 24h <1h 24h <1h LATENCY (<0.5 m):5%(A)" Thick ice:0.1m(A),Thinice 2. ured quantity(A). otherwise <10%ofthemeas- Thin andFreeboard: <0.05m; Thick ice:<0.1m; "1. <0.1m (A) 2. 5%(A)" "1. <5%(A) <5% (A) SC: 10%(A)" "SD: 10mm(A) SC: 10%(A)" 2.?SD: 10mm(A) measured quantity(A) "1. <0.05mor<10%ofthe <1km/day (A) 2.< 100m/Day" "1. <2-3km/Day(A) 0.5K for L2 products(A) 1. 0.5Kfor L2products(A) 15% (A)" " < 15%(A) 1-2: <15%(A) UNCERTAINTY (U) (A) / ACCURACY

<50km" 5%, Resolution 10% insteadof "F (Thinice(<0.5m): 1. F(Global) F F FULL (F),NON-COMPLIANT (NOVALUE) REQUIREMENT COMPLIANCE STATEMENT PER MISSION CIMR

1. F(Thickice) F (Thickice)

km) F: (5cmover 25 CRISTAL F CRISTAL 89 89 POLAR EXPERT GROUP III REPORT • 2021 90 90 POLAR EXPERT GROUP III REPORT • 2021 (*1) Betweenthesametypeofinstrument(inclS1A,B,C,Dphasingoptions)(*2)Cross repeatbasedoncombinationsofexisting,planedandfutureinstrumentse.g. SARC-Band/L-band repeat,SARC-Band/CIMR/MetOp repeat,SARCIMR/CRISTAL repeat. (*) SARbasedvalueaddedproducts:EVS,EFS,WDS,ADScurrentlyunderintegrationtests onEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize. Enhanced Continuity(2):continuityintheMFFperiodpost-2021withservice levelof2020asbaseline Continuity(1): Continuityontheservicelevelof2020 3.4 Snow depthonLand-ice 3.3 Snow Extent 3.2. Snow melt 3.1 Snow waterequivalent(SWE) 3. Seasonalsnow 2.3 Surfaceelevation&Changeandmassbalance 2.2 Surfaceicevelocity 2.1 Glacierextent 2. Glaciersandicecaps GEOPHYSICAL VARIABLES regional" "Global Global toregional Regional" "Global ing icesheets) Antarctica; exclud- of Greenlandand peripehrial glaciers ice capsand / ice,including permanent snow global (areasof COVERAGE HORISONTAL POLAR EXPERT GROUP REQUIREMENTS

G: 100m" T: 500m G: 500m "T: 1km 100m)" (complex terrain: G: 100m "T: 500m : T: 1kmG:100m" regional/complex Ter- "T: 5km;G:1km G: 10m" "T: 100m G: 10m" "T: 100m G: 10m" "T: 30m LUTION HORISONTAL RESO

- G: 12h" "T: 1day 24 h 24 h poeriod)" mer/ablation (end ofsum- G: 1y "T: 5y G: 1m" "T: 1y poeriod)" mer/ablation (end ofsum- G: 1y "T: 5y QUENCY UPDATE FRE

- < 1d < 1d < 1d not critical not critical not critical LATENCY G: 5%" "T: 10% G: 5%" "T: 10% G: 10mm (glacier wide)" better than200kg/m2/year 0.2 m relative elevationchange G: 0.5m "T: 2m G: 1%" "T: 5% G: 1%" "T: 3% UNCERTAINTY (U) (A) / ACCURACY

FULL (F),NON-COMPLIANT (NOVALUE) REQUIREMENT COMPLIANCE STATEMENT PER MISSION CIMR F CRISTAL F CRISTAL (*1) Betweenthesametypeofinstrument(inclS1A,B,C,Dphasingoptions)(*2)Cross repeatbasedoncombinationsofexisting,planedandfutureinstrumentse.g. SARC-Band/L-band repeat,SARC-Band/CIMR/MetOp repeat,SARCIMR/CRISTAL repeat. (*) SARbasedvalueaddedproducts:EVS,EFS,WDS,ADScurrentlyunderintegrationtests onEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize. Enhanced Continuity(2):continuityintheMFFperiodpost-2021withservice levelof2020asbaseline Continuity(1): Continuityontheservicelevelof2020 3.4 Snow depthonLand-ice 3.3 Snow Extent 3.2. Snow melt 3.1 Snow waterequivalent(SWE) 3. Seasonalsnow 2.3 Surfaceelevation&Changeandmassbalance 2.2 Surfaceicevelocity 2.1 Glacierextent 2. Glaciersandicecaps GEOPHYSICAL VARIABLES regional" "Global Global toregional Regional" "Global ing icesheets) Antarctica; exclud- of Greenlandand peripehrial glaciers ice capsand / ice,including permanent snow global (areasof COVERAGE HORISONTAL POLAR EXPERT GROUP REQUIREMENTS

G: 100m" T: 500m G: 500m "T: 1km 100m)" (complex terrain: G: 100m "T: 500m rain: T: 1kmG:100m" regional/complex Ter- "T: 5km;G:1km G: 10m" "T: 100m G: 10m" "T: 100m G: 10m" "T: 30m LUTION HORISONTAL RESO

- G: 12h" "T: 1day 24 h 24 h poeriod)" mer/ablation (end ofsum- G: 1y "T: 5y G: 1m" "T: 1y poeriod)" mer/ablation (end ofsum- G: 1y "T: 5y QUENCY UPDATE FRE

- < 1d < 1d < 1d not critical not critical not critical LATENCY G: 5%" "T: 10% G: 5%" "T: 10% G: 10mm (glacier wide)" better than200kg/m2/year 0.2 m relative elevationchange G: 0.5m "T: 2m G: 1%" "T: 5% G: 1%" "T: 3% UNCERTAINTY (U) (A) / ACCURACY

REQUIREMENT COMPLIANCE STATEMENT PER MISSION FULL (F),NON-COMPLIANT (NOVALUE) CIMR F CRISTAL F CRISTAL (*1) Between the sametype ofinstrument (inclS1 A,B,C,Dphasing options) (*2)Cross instrument repeat basedon combinations ofexisting, planed andfuture instruments e.g. SARC-Band/L-band repeat,SAR C-Band/CIMR/MetOp repeat, SARCIMR/CRISTAL repeat. (*) SARbased value addedproducts :EVS,EFS,WDS,ADS currentlyunderintegration testsonEMSAEO Chain(**) Thesedelivery timesrefer to the standardimage size. Enhanced Continuity(2): Enhanced continuityintheMFF periodpost-2021with theservicelevelof 2020asbaseline Continuity(1): Continuity ontheservicelevelof2020 4.1 SurfaceTopography 4. Icesheets 4.6 Icemargin(Extent) 4.5 Massandmasschange 4.4 Meltextent 4.3 Groundinglinelocation 4.2 Surfaceicevelocity GEOPHYSICAL VARIABLES land Antarctia, Green- land Antarctia, Green- land Antarctia, Green- land Antarctia, Green- land Antarctia, Green- land Antarctia, Green- COVERAGE HORISONTAL POLAR EXPERT GROUP REQUIREMENTS G: 50m" T: 100m Margins: Outlet Glaciers/ G: 1km T :1km "Interior oficesheets: G: 20m" "T: 500m glaciers" drainage basinofoutlet "50 km G: 100m" Outlet Glaciers: G: 500m "T: 5km G 100m" "T: 1km G 100m" "T: 500m LUTION HORISONTAL RESO

-

Margins: G:1m" "Interior: G:1y G: 1m" "T: 1year G: 1y" "T: 5y G: 1d" "T: 7days G: 1months" streams: glaciers /ice changing outlet for fast G: 1year "T: 5years year" margins: all campaign acquisition veloicty :Winter "ice sheetwide QUENCY UPDATE FRE

-

not critical SAR, " Pass-IN- A/C Single lation: S1 Constel- Useful S1 using DEM) of icefront (delineation Cristal (Amplitude); B and/orC A and/or "Rose-L, S1 data)" wih other od together (IOM- meth- ROSE-L/S1 "Cristal, not critical not critical not critical LATENCY

G 0.3m" T: 2m change Standarddev.) Outlet Glaciers:(Relative G: 0.1m T: 0.1m "Interior: (RelativeChange) not critical not critical G: 5%ofareaTBC" "T: 10%orarea 1 m G: 2%ofvelocity" "T: 5%ofvelocity UNCERTAINTY (U) (A) / ACCURACY

FULL (F),NON-COMPLIANT (NOVALUE) REQUIREMENT COMPLIANCE STATEMENT PER MISSION CIMR F F CRISTAL << 6days) ice sheets, F: (Allmajor << 6days) ice sheets, F: (Allmajor F CRISTAL 91 91 POLAR EXPERT GROUP III REPORT • 2021 92 92 POLAR EXPERT GROUP III REPORT • 2021 (*1) Betweenthesametypeofinstrument(inclS1A,B,C,Dphasingoptions)(*2)Cross repeatbasedoncombinationsofexisting,planedandfutureinstrumentse.g. SARC-Band/L-band repeat,SARC-Band/CIMR/MetOp repeat,SARCIMR/CRISTAL repeat. (*) SARbasedvalueaddedproducts:EVS,EFS,WDS,ADScurrentlyunderintegrationtests onEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize. Enhanced Continuity(2):continuityintheMFFperiodpost-2021withservice levelof2020asbaseline Continuity(1): Continuityontheservicelevelof2020 7.1 Floodextent 7. EmergencyManagement 6.1 Soilmoisture 6.Land surfaceandSurfacefreshwater 5.1 Sealevelanomaly 5. Ocean 6.4 LandSurfaceTemperature 6.3 Lake waterlevel 6.2 Lake iceextent 5.3 Seasurfacesalinity 5.2.2 SeaSurfaceTemperature (SST)-Climate 5.2.1 SeaSurfaceTemperature (SST)-Marine 6.5 Seasonalsubsidence GEOPHYSICAL VARIABLES

Global Global Global Global Global Pan-Arctic, Europe Global Pan Arctic Global Pan-Arctic, Europe COVERAGE HORISONTAL POLAR EXPERT GROUP REQUIREMENTS 20 m 1 km <10km 1 km Threshold: 5kmGoal: lake areas>1km2) N/A (non-gridded,for 250 m <5km (asfor SST) 10 km(1(IR)) <5km 20 m-100(L2) LUTION HORISONTAL RESO - 6d 1d ≤24h 1d 10d 1d <24h <24h (6h) <24h (6hfor L2) annual QUENCY UPDATE FRE - 1d <1h 4 hours 4 d 1 d < 1h <1h 4 months LATENCY 0.04 m3/m3(A) along-track products(A)" "3cm for Goal: 1K(A), 2K(U) Goal: 1K(A),2K(U) Threshold: 3K(A),4K(U) Goal: 5cm(A) Threshold: 0.2m(A) accuracy 1/3IFOV 250 m(A);location 0.2 0.1K for L2products(A) L2 products(A)" "0.1K for 15 m(A)L2b cm (U)L2bgeolocation: 0.5 cm(U)L2a1 UNCERTAINTY (U) (A) / ACCURACY

F FULL (F),NON-COMPLIANT (NOVALUE) REQUIREMENT COMPLIANCE STATEMENT PER MISSION CIMR F CRISTAL CRISTAL (*1) Betweenthesametypeofinstrument(incl S1A,B,C,Dphasingoptions)(*2)Crossinstrumentrepeatbasedoncombinationsofexisting,planedandfutureinstrumentse.g. SARC-Band/L-band repeat,SARC-Band/CIMR/MetOp repeat, SARCIMR/CRISTAL repeat. (*) SARbasedvalueaddedproducts:EVS,EFS, WDS,ADScurrentlyunderintegrationtestsonEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize. Enhanced Continuity(2):continuity intheMFFperiodpost-2021withservicelevelof2020asbaseline Continuity(1): Continuityontheservicelevel of2020 racy, …) 8.7 ActivityDetectionService(ADS)*(eg:Fisheries control,Anti-pi- 8.6 Wake DetectionService(WDS)* 8.5 EnrichedFeatureService(EFS)*(eg:Fish farms,Debris,..) 8.4 EnrichedVessel Service(EVS)* 8.3 OilSpillDetection 8.2 FeatureDetectionService(FDS)* 8.1 Vessel DetectionService(VDS)* 8. Security GEOPHYSICAL VARIABLES Global Global Global Global Global Global Global COVERAGE HORISONTAL POLAR EXPERT GROUP REQUIREMENTS " ≤ 4m;) VHR2 (from2.5m

- On demand On demand On demand On demand On demand On demand On demand QUENCY UPDATE FRE - 30 min** 30 min** 30 min** 30 min** 20 min** 20 min** 20 min** LATENCY UNCERTAINTY (U) (A) / ACCURACY

FULL (F),NON-COMPLIANT (NOVALUE) REQUIREMENT COMPLIANCE STATEMENT PER MISSION CIMR CRISTAL CRISTAL 93 93 POLAR EXPERT GROUP III REPORT • 2021 94 94 POLAR EXPERT GROUP III REPORT • 2021 Availability ofinsituobservations Synergies/cross-sensor planning Potential ObservationgapsPost-HPCM Observation gapsPre-HPCM NG Requirements Post-HPCM Pre-HPCM -Enhancedcontinuity Pre-HPCM -Continuity Geophysical variable Annex 3:PEGIIISummarytablespaceandnon-spacedataover time Potential in-situ sensors Potential in-situsensors ANNEX 3. SUMMARY TABLE [3] internationalstandardisednetwork [2] varioussourcesexistand(non-harmonised)dataaremadeavailable onaregularbasis, [1] irregularmeasurementsavailable, [0] hardlyaccessible, Availability ofinsituobservations,optionsare: Synergies/cross-sensor planningimportanttotake intoconsiderationintheorbitplanningofHPCMs,existingandNext-GenerationSentinels Observation gapsimportantalsoexistingpost-HPCMs(alsoconsideringNon-spacedata) Observation gapsimportantpre-HPCMs(alsoconsideringNon-spacedata) Short requirementsfor theNGSentinelstoensureenhancedcontinuityofexiting Covering theSentinelExpansionsandothernecessarymissions/instruments Enhanced continuityintheMFFperiod>2021withservicelevelof2020asbaseline GRAV: Gravimeter Continuity ontheservicelevelof2020(ALT: Altimeter, OPT: Optical,PMR:Passive Microwave, SAR:SyntheticApertureRadar, SCAT: Scatterometer, rithms (physical,semi-empirical/empirical…)fromsatellite/insitusensorsdata(similartoL2) Generic designation/terminologywhichcovers geophysicalvariables(e.g.seasurfacetemperature/salinity/windfield…)derivedviaprocessingalgo- Not exhaustivelistofinsituobservations.SourcetheKEPLERproject andMarkDrinkwater(ESA)

Marine 1.1.1 Seaicethickness(SIT)- 1. FLOATING ICE For imagesacquiredoutsideEMSAcontracted groundstationscoverage, usingon-boardrecorders,satelliteflytimeisadded (*) SARbasedvalueaddedproducts:EVS,EFS, WDS,ADScurrentlyunderintegrationtestsonEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize. Continuity(1): Continuityontheservicelevel of2020 Climate 1.1.2 Seaicethickness(SIT)- - Marine 1.2.1 Sea-iceconcentration(SIC) - Climate 1.2.2 Sea-iceconcentration(SIC) 1.3.1 Seaicedrift-Marine GEOPHYSICAL VARIABLES • PMR:SMOS (SIRAL) • ALT: CryoSat-2 (SIRAL), ERS(RA2) • ALT: CryoSat-2 offer not intheCCMEdata currently notused X-band). L-band SAR with CCMEs(C- and complemented available viaS-1 • SARC-band SAR • SCAT: ASCAT SSMIS • PMR:AMSR-2, SSMIS • PMR:SMMR,SSM/I, • SAR:S-1,Radarsat • SCAT: ASCAT • PMR:AMSR-2, IDEAL SPACE OBSERVATION ASSETS OVER TIME NUITY(1) PRE-HPCM -CONTI

EnhancedContinuity(2):continuity intheMFFperiodpost-2021withservicelevelof2020asbaseline

- • PMR:SMAP • ALT: ICESAT-2 • PMR:SMAP • ALT: ICESAT-2 NISAR for Antarctica ALOS-4, SAOCOM and L-band SARavailableas RCM data • SAR:S-1A+B+C,ev. • PMR:AMSR-2/-3 • PMR:AMSR-2/-3 RCM data • SAR:S-1A+B+C,ev. • SCAT: METOP-SG METOP-SG • PMR:AMSR-2/-3, CONTINUITY(2) PRE-HPCM -ENHANCED

• PMR:CIMR • ALT: CRISTAL • PMR:CIMR • ALT: CRISTAL -ROSE-L L-band SAR RCM data SAR -S-1ev. • SAR:C-band • PMR:CIMR data. ROSE-L, RCM • SAR:S-1, TOP-SG SCAT: ME- METOP-SG AMSR-3, • PMR:CIMR, • PMR:CIMR POST-HPCM

lar) • ALT: S-3(Pan-Po- lar) • ALT: S-3(Pan-Po - • OPT: S-2,S-3 lar) • SAR:S-1(Pan-Po- (Pan-Polar) • SAR:NG-S-1 (Pan-Polar) • SAR:NG-S-1 REQUIREMENTS NG

• Morethan<1hLatency • Insituobservations • Bi-dailyPan-Polar coverage • Missioncontinuity • Morethan24hLatency • Insituobservations • DailyPan-Polar coverage • Missioncontinuity • Morethan<1hLatency • Insituobservations • DailyPan-Arctic coverage • Missioncontinuity • Morethan≤24hLatency • Insituobservations latitudes) • DailyPan-Arctic coverage (lower • Missioncontinuity(AMSR-2,AMSR3) • Morethan≤24hLatency • Insituobservations • DailyPan-Arctic coverage • Missioncontinuity GAPS PRE-HPCM OBSERVATION

Latency • Morethan<1h tions • Insituobserva- tions • Insituobserva- Latency • Morethan<1h tions • Insituobserva- Latency • Morethan≤24h <1h sampling tions, on-icebuoys • Insituobserva- tions • Insituobserva- POST-HPCM SERVATION GAPS POTENTIAL OB

-

0,5 m 0,5 m and thinSeaice< bination ofSIT>1m • ALT andPMR: Com- 0,5 m 0,5 m and thinSeaice< bination ofSIT>1m • ALT andPMR:Com- forecasting models input tonumerical for high-resolution for navigationaland ucts (sharpened) ice-chart-like prod- able automatedsea • PMRandSAR:Reli- production automatic icechart the potentialfor SIC estimateswith robust andreliable leading tomore rate iceandwater L-Band SAR:sepa- • C-Band SARand forecasting models input tonumerical High-resolution • PMRandSAR: Synergy C/L-band SAR S-1&ROSE-L and increased repetitivity • withHPCM: recommended access or3*S-1 • Pre-HPCM:RCM forecasting models input tonumerical High-resolution • PMRandSAR: PLANNING CROSS-SENSOR SYNERGIES/

0 0 0 3 0 SERVATIONS OF IN SITU OB AVAILABILITY -

buoys rine data,drifting campaigns, subma- Boat andairborne buoys rine data,drifting campaigns, subma- Boat andairborne Drifting buoys IN-SITU SENSORS POTENTIAL

95 95 POLAR EXPERT GROUP III REPORT • 2021 96 96 POLAR EXPERT GROUP III REPORT • 2021 icebergs) -Marine tration chartsandindividual 1.6.1 Iceberg(icebergconcen- development -Climate 1.5.2 Icetype-Icestageof For imagesacquiredoutside EMSAcontractedgroundstationscoverage, usingon-boardrecorders,satellitefly timeisadded (*) SARbasedvalueadded products:EVS,EFS,WDS,ADScurrentlyunder integrationtestsonEMSAEOChain(**) These deliverytimesrefer tothestandard imagesize. Continuity(1): Continuity ontheservicelevelof2020 development -Marine 1.5.1 Icetype-Icestageof cover onsea-ice-Climate 1.4.2 Snow depthandsnow cover onsea-ice-Marine 1.4.1 Snow depthandsnow 1.3.2 Seaicedrift-Climate GEOPHYSICAL VARIABLES darsat • SAR:S-1,Ra- • SCAT: ASCAT • PMR:AMSR-2, darsat • SAR:S-1,Ra- • SCAT: ASCAT • PMR:AMSR-2, • SAR:S-1,Radarsat • SCAT: ASCAT • PMR:AMSR-2, IDEAL SPACE OBSERVATION ASSETS OVER TIME NUITY(1) PRE-HPCM -CONTI EnhancedContinuity(2): EnhancedcontinuityintheMFFperiodpost-2021 withtheservicelevelof2020asbaseline

- • SAR:S-1,RCM • SCAT: METOP-SG METOP-SG, SSMIS • PMR:AMSR-2/-3, • SAR:S-1,RCM • SCAT: METOP-SG METOP-SG • PMR:AMSR-2/3, data. data. • SAR:S-1A+B+C,RCM • SCAT: METOP-SG METOP-SG • PMR:AMSR-2/-3, CONTINUITY(2) PRE-HPCM -ENHANCED

ROSE-L S-1, RCM, • SAR: METOP-SG METOP-SG • SCAT: SSMIS METOP-SG AMSR-3, • PMR:CIMR, ROSE-L S-1, RCM, • SAR: METOP-SG • SCAT: METOP-SG AMSR-3, • PMR:CIMR, data. ROSE-L, RCM • SAR:S-1, TOP-SG • SCAT: ME- METOP-SG AMSR-3, • PMR:CIMR, TAL • ALT: CRIS- • PMR:CIMR, TAL • ALT: CRIS- • PMR:CIMR, POST-HPCM

• SAR:S-1-NG • SAR:S-1-NG (Pan-Polar • SAR:NG-S-1 REQUIREMENTS NG

• Morethan<1hLatency • Insituobservations age) • Missioncontinity(RS-2cover- • Insituobservation AMSR3) • Missioncontinuity(AMSR-2, • Insituobservations AMSR3 • Missioncontinuity(AMSR-2, products Lack ofreliableoperational products Lack ofreliableoperational • Morethan≤24hLatency • Insituobservations latitudes) • DailyPan-Arctic coverage (lower • Missioncontinuity(AMSR-2,AMSR3) GAPS PRE-HPCM OBSERVATION

<1h Latency • Morethan vations • Insituobser- <24h Latency • Morethan vations • Insituobser- <24h Latency • Morethan vations • Insituobser- vations • Insituobser- vations • Insituobser- Latency • Morethan≤24h <1h sampling tions, on-icebuoys • Insituobserva- POST-HPCM SERVATION GAPS POTENTIAL OB

-

CRISTAL Synergy plus and C/Lband tivity S-1&ROSE-L increased repeti- • withHPCM: recommended access or3*S-1 • Pre-HPCM:RCM models ical forecasting input tonumer- CIMR andSAR: SAR Synergy, plus and C/Lband tivity S-1&ROSE-L increased repeti- • withHPCM: recommended access or3*S-1 • Pre-HPCM:RCM casting models numerical fore- and SAR:inputto Synergy, plusPMR and C/Lband tivity S-1&ROSE-L increased repeti- • withHPCM: recommended access or3*S-1 • Pre-HPCM:RCM forecasting models input tonumerical High-resolution • PMRandSAR: Synergy C/L-band SAR S-1&ROSE-L and increased repetitivity • withHPCM: recommended access or3*S-1 • Pre-HPCM:RCM CRISTAL • CIMRand CRISTAL • CIMRand PLANNING CROSS-SENSOR SYNERGIES/

0 0 0 0 0 3 SERVATIONS OF IN SITU OB AVAILABILITY -

campaigns Boat andairborne campaigns Boat andairborne campaigns Boat andairborne Drifting buoys IN-SITU SENSORS POTENTIAL

icebergs) -Marine tration chartsandindividual 1.6.1 Iceberg(icebergconcen- development -Climate 1.5.2 Icetype-Icestageof For imagesacquiredoutside EMSAcontractedgroundstationscoverage, usingon-boardrecorders,satellitefly timeisadded (*) SARbasedvalueadded products:EVS,EFS,WDS,ADScurrentlyunder integrationtestsonEMSAEOChain(**) These deliverytimesrefer to thestandardimagesize. Continuity(1): Continuity ontheservicelevelof2020 cover onsea-ice-Marine 1.4.1 Snow depthandsnow 1.3.2 Seaicedrift-Climate cover onsea-ice-Climate 1.4.2 Snow depthandsnow development -Marine 1.5.1 Icetype-Icestageof GEOPHYSICAL VARIABLES darsat • SAR:S-1,Ra- • SCAT: ASCAT • PMR:AMSR-2, darsat • SAR:S-1,Ra- • SCAT: ASCAT • PMR:AMSR-2, • SAR:S-1,Radarsat • SCAT: ASCAT • PMR:AMSR-2, IDEAL SPACE OBSERVATION ASSETS OVER TIME NUITY(1) PRE-HPCM -CONTI EnhancedContinuity(2): EnhancedcontinuityintheMFFperiodpost-2021 withtheservicelevelof2020asbaseline

- • SAR:S-1,RCM • SCAT: METOP-SG METOP-SG, SSMIS • PMR:AMSR-2/-3, METOP-SG • PMR:AMSR-2/3, • SAR:S-1,RCM • SCAT: METOP-SG data. data. • SAR:S-1A+B+C,RCM • SCAT: METOP-SG METOP-SG • PMR:AMSR-2/-3, CONTINUITY(2) PRE-HPCM -ENHANCED

ROSE-L S-1, RCM, • SAR: METOP-SG METOP-SG • SCAT: SSMIS METOP-SG AMSR-3, • PMR:CIMR, ROSE-L S-1, RCM, • SAR: METOP-SG • SCAT: METOP-SG AMSR-3, • PMR:CIMR, data. ROSE-L, RCM • SAR:S-1, TOP-SG • SCAT: ME- METOP-SG AMSR-3, • PMR:CIMR, TAL • ALT: CRIS- • PMR:CIMR, TAL • ALT: CRIS- • PMR:CIMR, POST-HPCM

• SAR:S-1-NG • SAR:S-1-NG (Pan-Polar • SAR:NG-S-1 REQUIREMENTS NG

• Morethan<1hLatency • Insituobservations age) • Missioncontinity(RS-2cover- • Insituobservation AMSR3) • Missioncontinuity(AMSR-2, • Insituobservations AMSR3 • Missioncontinuity(AMSR-2, products Lack ofreliableoperational products Lack ofreliableoperational • Morethan≤24hLatency • Insituobservations latitudes) • DailyPan-Arctic coverage (lower • Missioncontinuity(AMSR-2,AMSR3) GAPS PRE-HPCM OBSERVATION

<1h Latency • Morethan vations • Insituobser- <24h Latency • Morethan vations • Insituobser- <24h Latency • Morethan vations • Insituobser- vations • Insituobser- vations • Insituobser- Latency • Morethan≤24h <1h sampling tions, on-icebuoys • Insituobserva- POST-HPCM SERVATION GAPS POTENTIAL OB

-

CRISTAL Synergy plus and C/Lband tivity S-1&ROSE-L increased repeti- • withHPCM: recommended access or3*S-1 • Pre-HPCM:RCM models ical forecasting input tonumer- CIMR andSAR: SAR Synergy, plus and C/Lband tivity S-1&ROSE-L increased repeti- • withHPCM: recommended access or3*S-1 • Pre-HPCM:RCM casting models numerical fore- and SAR:inputto Synergy, plusPMR and C/Lband tivity S-1&ROSE-L increased repeti- • withHPCM: recommended access or3*S-1 • Pre-HPCM:RCM forecasting models input tonumerical High-resolution • PMRandSAR: Synergy C/L-band SAR S-1&ROSE-L and increased repetitivity • withHPCM: recommended access or3*S-1 • Pre-HPCM:RCM CRISTAL • CIMRand CRISTAL • CIMRand PLANNING CROSS-SENSOR SYNERGIES/

0 0 0 3 0 0 AVAILABILITY SERVATIONS OF IN SITU OB -

campaigns Boat andairborne Drifting buoys campaigns Boat andairborne campaigns Boat andairborne IN-SITU SENSORS POTENTIAL

2.2 Surfaceicevelocity - Climate 1.7.2 Sea-icesurfacetemperature - Marine 1.7.1 Sea-icesurfacetemperature - Climate tion chartsandindividualicebergs) 1.6.2 Iceberg(icebergconcentra- For imagesacquiredoutsideEMSAcontractedgroundstationscoverage, usingon-boardrecorders,satelliteflytimeisadded (*) SARbasedvalueaddedproducts:EVS,EFS,WDS,ADScurrentlyunderintegrationtests onEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize. Continuity(1): Continuityontheservicelevelof2020 2.1 Glacierextent 2. GLACIERS AND ICE CAPS and mass balance and massbalance 2.3 Surfaceelevation&Change GEOPHYSICAL VARIABLES • SAR:TSX,S-1, • OPT: S-2,Landsat8, VIIRS_NPP tOp(AVHRR), • OPT: Me- VIIRS_NPP tOp(AVHRR), • OPT: Me- • SAR:S-1,Radarsat < 30m ellite withresolution 8, otheropticalsat- • OPT: S-2,Landsat SP-INSAR DEMs • SAR:TandemX Icesat-2 ERS RA,Envisat • ALT: CryoSat-2, IDEAL SPACE OBSERVATION ASSETS OVER TIME NUITY(1) PRE-HPCM -CONTI

EnhancedContinuity(2):continuityintheMFFperiodpost-2021withservice levelof2020asbaseline -

• SAR:TSX,S-1, and -9, • OPT: S-2,Landsat-8 VIIRS_NPP • OPT: MetOp(AVHRR), VIIRS_NPP • OPT: MetOp(AVHRR), • SAR:S-1,RCM < 30m satellite withresolution and -9,otheroptical • OPT: S-2,Landsat-8 A+C SP-INSARDEM • SAR-Potential:S-1 SAR DEM • SAR:TanDEM-X SPIN- SRAL, Icesat-2 • ALT: CryoSat-2,S-3 CONTINUITY(2) PRE-HPCM -ENHANCED

• SAR:S-1 and -9, Landsat- 8 • OPT: S-2, 30 m resolution < satellite with other optical and -9, Landsat-8 • OPT: S-2, VIIRS_NPP tOp(AVHRR), • OPT: Me- • PMR:CIMR VIIRS_NPP tOp(AVHRR), • OPT: Me- • PMR:CIMR RCM, ROSE-L • SAR:S-1, DEM SP-INSAR tial: S-1A+C • SAR-Poten- • ALT: CRISTAL POST-HPCM

• OPT: S-2-NG • SAR:S-1-NG crimination required Snow/Cloud dis- bands toimprove Additional spectral • OPT: S-2NG • SAR:S-1NG • S-3-NGSLSTR SLSTR • OPT: S-3-NG • SAR:S-1-NG (volume change) • ALT: S-3SRALNG SP-INSAR • SAR:S-1NG REQUIREMENTS NG

SAR SAR • acquisitionsofcrossingorbitsfor days; alsoover icecaps) • repeatcoverage ofSAR(continous6 free images • Improve repeatcoverage for cloud- S-1 coverage southern Arcticlatitudesinthedaily • Somegapsatsomedays A+C) DEMs (TanDEM-X ;PotentiallyS-1 • MissioncontinuationofSP-InSAR SP-INSAR) to resolutionofAltimeter(requires limited toverylargeglaciersdue • regularcoverage ofglaciatedareas GAPS PRE-HPCM OBSERVATION

Latency • Morethan<1h tions • Insituobserva- S-1 A+CSPiNSAR for TandemX or ation ofSP-INSAR • Missioncontinu- not covered with complextopo glaciers); glaciers for verybig improve coverage • CRISTAL will POST-HPCM SERVATION GAPS POTENTIAL OB

-

plus CRISTAL C/L bandSynergy S-1&ROSE-L and increased repetitivity • withHPCM: recommended access or3*S-1 • Pre-HPCM:RCM Landsat) and OPT: S-2(ev • SARROSE--L,S-1 NG SP-INSAR • CRISTAL andS-1 PLANNING CROSS-SENSOR SYNERGIES/

0 0 0 0 1 1 SERVATIONS OF IN SITU OB AVAILABILITY -

oblique Photos campaigns Boat andairborne campaigns Boat andairborne campaigns Boat andairborne GPS GPS IN-SITU SENSORS POTENTIAL

97 97 POLAR EXPERT GROUP III REPORT • 2021 98 98 POLAR EXPERT GROUP III REPORT • 2021 4. ICE SHEETS 3.4 Snow depthonLand-ice 3.3 Snow Extent 3.2. Snow melt 3.2. Snow melt For imagesacquiredoutsideEMSAcontracted groundstationscoverage, usingon-boardrecorders,satelliteflytimeisadded (*) SARbasedvalueaddedproducts:EVS,EFS, WDS,ADScurrentlyunderintegrationtestsonEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize. (SWE) 3.1 Snow waterequivalent 3. SEASONAL SNOW Continuity(1): Continuityontheservicelevel of2020 4.2 Surfaceicevelocity 4.1 SurfaceTopography GEOPHYSICAL VARIABLES SWE direcly relatedto resolution: S-2 Europe: High MODIS, VIIRS, • OPT: Global: Alps) products S-1(e.g. • SAR:regional gions: notcovered • Mountainre- steep mountains) Resolution notfor AMSR-2 (Coarse • PMR:SSMI, • OPT: Landsat8,S-2 Radarsat, TSX ERS, ENVISAT ASAR, • SARArchiveddata: • SAR:S-1A+B,RSAT, Icesat-2 ERS RA,Envisat • ALT: CryoSat-2, IDEAL SPACE OBSERVATION ASSETS OVER TIME NUITY(1) PRE-HPCM -CONTI EnhancedContinuity(2):continuity intheMFFperiodpost-2021withservicelevelof2020asbaseline

-

NA resolution: S-2 resolution: S-2 VIIRS, Europe:High • OPT: Global:MODIS, satellite data) Extent fromoptical synergy withSnow S-1A+B+C+ RCM(in • SAR:Pan-European InSAR InSAR SAOCOM, NISAR with .Mountain regions: • SAR-Potentialfor mountains) lution notfor steep 2/-3 (CoarseReso- • PMR:SSMI,AMSR- Extent Product Synergy withSnow • OPT: S-2,Landsat8+9 PALSAR-2 NISAR, SAOCOM, ALOS Pot. 1dayS-1A+C; • SAR:S-1A+B+C; Sat-2, Icesat-2 • ALT: S-3SRAL,Cryo- CONTINUITY(2) PRE-HPCM -ENHANCED

NA (Global) SLSTR/OLCI • OPT: S-3 A+B+C • SAR:S-1 ROSE-L tain Regions: • SAR:Moun- • PMR:CIMR • OPT: S-2, S-1, NISAR • SAR:ROSE-L, S-3 SRAL ALT:CRISTAL, POST-HPCM

NA required required discrimination Snow/Cloud bands toimprove ditional spectral SLSTR /OLCI: Ad- • OPT:S-3 NG • SAR:S-1NG crimination required crimination required Snow/Cloud dis- bands toimprove Additional spectral • OPT: S-2NG: • ALT: S-1NG • ALT: S-3SRALNG REQUIREMENTS NG

NA Coverage ofS-2 • Europe:Highresolution:Daily • Morethan12hLatency • Dailycoverage ofsnow regions • Morethan12hLatency • Insituobservations • Missioncontinuity tion aresparse • insitudatainAISandGISfor valida- desc) needed • crossingorbitsfor SAR(ascand • polargapinAIS not covered • areaswithlow coherence(drift,melt) resolution ´(SP-INSARneeded) • outletglaciernotcovered dueto • missioncontinutiyfor GAPS PRE-HPCM OBSERVATION

NA looking) ?? ?? looking) of NISAR(left S-1; continuation by ROSE-Land AIS notcovered • Polargapin needed orbits (Asc+Des) • Crossing terrain) (complex, steep • Outletglaciers POST-HPCM SERVATION GAPS POTENTIAL OB

-

NA of S-3 daily coverage • Opticaldata: e.g. RCM C-band Sensors: • S-1andother CIMR areas: SWEfrom - Non-Mountain areas), ) S-1(Wet snow dry snow areas ROSE-L (SWEfor - Mountainareas: Snow (dryorwet) - S-3:presenceof coverage: S-3 SLSTRdaily S-1, andCIMR; time: ofROSE--L, • Sameacquisition and Des) Crossing orbits(Asc • ROSE-L,S-1- Outlet glaciers S-1 NGSP-INSARfor • ALT: CRISTAL and PLANNING CROSS-SENSOR SYNERGIES/

2 1 2 1 1 SERVATIONS OF IN SITU OB AVAILABILITY -

Campaigns Campaigns Campaigns elevation change) GPS(through Surface (snow temperature) indirect throughAWS IN-SITU SENSORS POTENTIAL

4.3 Grounding line location 4.3 Groundinglinelocation For imagesacquiredoutsideEMSAcontractedgroundstationscoverage, usingon-boardrecorders,satelliteflytimeisadded (*) SARbasedvalueaddedproducts:EVS,EFS,WDS,ADScurrentlyunderintegrationtests onEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize. Continuity(1): Continuityontheservicelevelof2020 4.6 Icemargin(Extent) 4.5 Massandmasschange 4.4 Meltextent GEOPHYSICAL VARIABLES • ALT: CryoSat-2 days • SAR:S-1A+B6 • OPT: S-2 • ALT: CryoSat-2 days • SAR:S-1A+B6 A+B - OPT: Landsat,(S-2 RSAT, TSX ERS, ENVISAT ASAR, RSAT, Archiveddata: - SAR:S-1A+B, od: • ThroughIO-meth- CryoSat-2, Volume change; • ALT: through • GRAV: GraceFO, Radarsat-2 • SAR:S-1,RCM/ IDEAL SPACE OBSERVATION ASSETS OVER TIME NUITY(1) PRE-HPCM -CONTI

EnhancedContinuity(2):continuityintheMFFperiodpost-2021withservice levelof2020asbaseline

- SRAL • ALT: CryoSat-2,S-3 PALSAR-2 NISAR, SAOCOM, ALOS ev. 1dayS-1A+C; • SAR:S-1A+B+C; • OPT: S-2 • ALT: S-3SRAL • SAR:S-1A+B6days - OPT: S-2A+B NISAR, SAOCOM A+B - S-1SAR:A+B+C, • IO-method: SRAL mezthod; CryoSat-2,S-3 • ALT: Volume change • GRAV: GraceFO, Radarsat-2 • SAR:S-1A+B+C,RCM, CONTINUITY(2) PRE-HPCM -ENHANCED

• ALT: CRISTAL • SAR:ROSE-L - S-2A+B S-1 A+B+C, - SAR:ROSE-L, velocity: using ice IO-method • Through SRAL) CRISTAL, (S-3 change; Volume • ALT: through FO, • GRAV: Grace • PMR:CIMR RCM • SAR:S-1, • ALT: CRISTAL S-1 • SAR:ROSE-L, POST-HPCM

Amplitude • SAR:S-1NG DEM) mapping using SAR (Automatic • SAR:S-1NGSPIN- • OPT: S-2NG velocity) • SAR:S-1NG(ice (volume change) • ALT: S-3SRALNG • SAR:S-1NG • SAR:S-1NG detection versus snow/ice bands for cloud NG OLCI: additional • OPT: S-2NG,S-3 REQUIREMENTS NG

face Mass Balance models face MassBalancemodels data needed;e.g.airborne)andSur- data atgroundingline(fromother • SARIOM:icevelocity, icethickness • Missioncontinuityfor GraceFO • dailycoverage withS-1required with drift/melt(S-16d) • InSARcoherenceproblemsinareas GAPS PRE-HPCM OBSERVATION

for SAR for AISandGIS tinous acquisitions • requirescon- (by airbornedata) needed for IOM grounding line measurments at • icethickness required (S-1) • dailycoverage AIS andGIS tion planningfor ROSE-L acquisi- • requirespropoer POST-HPCM SERVATION GAPS POTENTIAL OB -

CRISTAL S-1 NGINSAR,+ • ROSE-L,S-1, • CRISTAL • ROSE-L,S-1 • S-1,CIMR • CRISTAL • ROSE-L,S-1; PLANNING CROSS-SENSOR SYNERGIES/

0 0 0 0 SERVATIONS OF IN SITU OB AVAILABILITY -

IN-SITU SENSORS POTENTIAL

99 99 POLAR EXPERT GROUP III REPORT • 2021 100 POLAR EXPERT GROUP III REPORT • 2021 5.3 Seasurfacesalinity (SST) -Climate 5.2.2 SeaSurfaceTemperature (SST) -Marine 5.2.1 SeaSurfaceTemperature For imagesacquiredoutsideEMSAcontractedgroundstationscoverage, usingon-boardrecorders,satelliteflytimeisadded (*) SARbasedvalueaddedproducts:EVS,EFS,WDS,ADScurrentlyunderintegrationtests onEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize. 5.1 Sealevelanomaly 5. OCEAN Continuity(1): Continuityontheservicelevelof2020 GEOPHYSICAL VARIABLES COSSM, SMAP PMR :SMOS, SSMIS • PMR:AMSR-2, MetOp(SEVIRI) S-3A-3B SLSTR, VIIRS_NPP, tOp(AVHRR), • OPT: Me- SSMIS • PMR:AMSR-2, MSG(SEVIRI) S-3A-3B SLSTR, VIIRS_NPP, tOp(AVHRR), • OPT: Me- oSat-2 Saral/AltiKa, Cry- Jason-3, HY-2A/B, • ALT: S-3A/B, IDEAL SPACE OBSERVATION ASSETS OVER TIME NUITY(1) PRE-HPCM -CONTI

EnhancedContinuity(2):continuityintheMFFperiodpost-2021withservicelevelof2020asbaseline

- SMAP PMR:SMOS, COSSM, • PMR:AMSR-2/3 S-3A-3B SLSTR VIIRS_NPP, • OPT: MetOp(AVHRR), • PMR:AMSR-2/3 S-3A-3B SLSTR VIIRS_NPP • OPT: MetOp(AVHRR), SWOT • ALT: S-3,S-6,HY-2, CONTINUITY(2) PRE-HPCM -ENHANCED

PMR:CIMR TAL • ALT:CRIS- • PMR:CIMR NG SLSTR • OPT: S-3- TAL • ALT:CRIS- • PMR:CIMR SLSTR • OPT:S-3 TAL • ALT: CRIS- POST-HPCM

SLSTR • OPT: S-3-NG SLSTR • OPT: S-3-NG SRAL • ALT: S-3-NG REQUIREMENTS NG

• Insituobservations • Missioncontinuity • Insituobservations • Missioncontinuity • Insituobservations • Missioncontinuity • Insituobservations • Missioncontinuity GAPS PRE-HPCM OBSERVATION

vations • Insituobser- vations • Insituobser- vations • Insituobser- vations • Insituobser- POST-HPCM SERVATION GAPS POTENTIAL OB

-

CIMR &S-3-NG CIMR &S-3-NG PLANNING CROSS-SENSOR SYNERGIES/

0 0 0 0 SERVATIONS OF IN SITU OB AVAILABILITY -

MVP, gliders,CTD MVP, gliders,CTD SST radiometers, MVP, gliders,CTD SST radiometers, buoys, Drones Depth (CTD),Argo Temperature, and Conductivity, filer (MVP),Gliders, Moving vesselpro- Tide gauge, IN-SITU SENSORS POTENTIAL

For imagesacquiredoutsideEMSAcontractedgroundstationscoverage, usingon-boardrecorders,satelliteflytimeisadded (*) SARbasedvalueaddedproducts:EVS,EFS,WDS,ADScurrentlyunderintegrationtests onEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize. Continuity(1): Continuityontheservicelevelof2020 8. SECURITY 7.1 Floodextent 7. EMERGENCY MANAGEMENT 6.5 Seasonalsubsidence 6.4 LandSurfaceTemperature 6.3 Lake water level 6.2 Lake iceextent 6.1 Soilmoisture 6.LAND SURFACE AND GEOPHYSICAL VARIABLES SURFACE FRESH WATER

• ALT: S-3,JASON AR-X, CosmoSkyMed Radarsat-2, TerraS- • SAR:S-1A+B, • SAR: S-1 A+B A+B S-1 SAR: • • PMR:SSMI,AMSR-2 Himawari, GOES, MTSAT/ MODIS, VIIRS,MSG, • OPT: S-3SLSTR, SLSTR S-3 • OPT: S-2,MODIS, • SAR:S-1 Landsat-7 tOp(SEVIRI), ASTER, • OPT: MODIS,Me- • PMR:SMOS,SMAP, Radarsat-2 • SAR:S-1A+B, IDEAL SPACE OBSERVATION ASSETS OVER TIME NUITY(1) PRE-HPCM -CONTI

EnhancedContinuity(2):continuityintheMFFperiodpost-2021withservice levelof2020asbaseline

-

• ALT: S-3,S6,SWOT Tandem-L CosmoSkyMed, NISAR, Radarsat-2, TerraSAR-X, • SAR:S-1A+B+C, • SAR: S-1 A+B+C • SAR:S-1A+B+C • PMR:SSMI,AMSR-2 GOES, MTSAT/Himawari, MODIS, VIIRS,MSG, • OPT: S-3SLSTR, SLSTR • OPT: S-2,MODIS,S-3 • SAR:S-1 Landsat-7 tOp(SEVIRI), ASTER, • OPT: MODIS,Me- • PMR:SMOS,SMAP, Radarsat-2 • SAR:S-1A+B+C, CONTINUITY(2) PRE-HPCM -ENHANCED

TAL, S-3 ALT: CRIS- ROSE-L • SAR:S-1, S-1 • SAR:ROSE-L, • PMR:CIMR LSTM SLSTR, • OPT: S-3 SLSTR S-2, S-3 • OPT: CHIME, S-1 • SAR:ROSE-L, CHIME HYP: • • PMR:CIMR S-1 ROSE-L, • SAR: POST-HPCM

ALT: S-3NGSRAL (Pan-Polar) • SAR:S-1NG (Pan-Polar) • SAR:S-1NG SLSTR • S-3NGOLCI/ (Pan-Polar) • S-1,2,3NG (Pan-Polar) • SAR:S-1NG REQUIREMENTS NG

vegetation) • onlyopenwaterlakes (no cover (for CandXBand) ies,dense vegetation,changingsnow • Incoherentscatteringfor waterbod- for Europe • InCopernicuscurrentlyonlyprovided cover (for CandXBand) ies,dense vegetation,changingsnow • Incoherentscatteringfor waterbod- • Revisttime urements) • Largererror(for microwave meas- measurements) • Cloudyconditions(for cloud cover duringicebreakup night) •Frequent • Freeze-up periodnotincluded(polar ed for Balticregion • InCopernicuscurrentlyonlyprovid- penetration depth(for CBand) • Denselyvegetatedareasandsoil thawing Europe •Detectionoffreezing/ • InCLMScurrentlyonlyprovided for GAPS PRE-HPCM OBSERVATION

vegetation) water lakes (no • onlyopen south direction direction south ponent innorth/ • Motioncom- uncertainty • Location tainty tainty • Locationuncer- urements) microwave meas- • Largererror(for measurements) tions (for infrared • Cloudycondi- lake ice melting snow on • Backscatterfrom ice thin and between water • Poorcontrast limited to5cm • Soilpenetration season growing outside the • Noretrieval POST-HPCM SERVATION GAPS POTENTIAL OB -

FO) (GRACE, GRACE- • CRISTAL, S-3 • ROSE-L,S-1 • ROSE-L,S-1 • LSTM,S-1/2/3 LSTM CIMR, • • S-1,S-2/3 CHIME ROSE-L, • S-2 ROSE-L, • • ROSE-L,S-1,CIMR PLANNING CROSS-SENSOR SYNERGIES/

1 1 3 2 1 2 SERVATIONS OF IN SITU OB AVAILABILITY -

pressure sensors acoustic sensors, surveys extensometers, spirit-level ters, thermocouples thermal infraredradiome- Drones visual inspection pulse sensors techniques, heat sensors, dielectric electrical impedance IN-SITU SENSORS POTENTIAL

101 POLAR EXPERT GROUP III REPORT • 2021 102 POLAR EXPERT GROUP III REPORT • 2021 Anti-piracy, …) (ADS)* (eg:Fisheries control, 8.7 ActivityDetectionService (WDS)* 8.6 Wake DetectionService For imagesacquiredoutsideEMSAcontracted groundstationscoverage, usingon-boardrecorders,satelliteflytimeisadded (*) SARbasedvalueaddedproducts:EVS,EFS, WDS,ADScurrentlyunderintegrationtestsonEMSAEOChain(**) Thesedeliverytimesrefer tothestandardimagesize. Continuity(1): Continuityontheservicelevel of2020 (EFS)* (eg:Fish farms,Debris,..) 8.5 EnrichedFeatureService 8.4 EnrichedVessel Service(EVS)* 8.3 OilSpillDetection (FDS)* 8.2 FeatureDetectionService 8.1 Vessel DetectionService(VDS)* GEOPHYSICAL VARIABLES TERRASAR-X, PAZ • SAR:Radarsat-2, TERRASAR-X, PAZ • SAR:Radarsat-2, TERRASAR-X, PAZ • SAR:Radarsat-2, TERRASAR-X, PAZ • SAR:Radarsat-2, AR-X, PAZ Radarsat-2, TERRAS- • SAR:S-1A+B, TERRASAR-X, PAZ • SAR:Radarsat-2, AR-X, PAZ Radarsat-2, TERRAS- • SAR:S-1A+B, IDEAL SPACE OBSERVATION ASSETS OVER TIME NUITY(1) PRE-HPCM -CONTI EnhancedContinuity(2):continuity intheMFFperiodpost-2021withservicelevelof2020asbaseline - TERRASAR-X, PAZ Radarsat-2, RCM • SAR:S-1A+B+C, TERRASAR-X, PAZ Radarsat-2, RCM • SAR:S-1A+B+C, TERRASAR-X, PAZ Radarsat-2, RCM • SAR:S-1A+B+C, RASAR-X, PAZ Radarsat-2, RCMTER- • SAR:S-1A+B+C, RASAR-X, PAZ Radarsat-2, RCMTER- • SAR:S-1A+B+C, RASAR-X, PAZ Radarsat-2, RCMTER- • SAR:S-1A+B+C, RASAR-X, PAZ Radarsat-2, RCMTER- • SAR:S-1A+B+C, CONTINUITY(2) PRE-HPCM -ENHANCED ROSE-L, S-1 • SAR: ROSE-L, S-1 • SAR: ROSE-L, S-1 • SAR: S-1 • SAR:ROSE-L, S-1 • SAR:ROSE-L, S-1 • SAR:ROSE-L, S-1 • SAR:ROSE-L, POST-HPCM min**) • Latency(30 ≤ 5m;) (from 2.5m

• Latency(30min**) 5 m;) • Resolution(from2.5m

min**) • Latency(30 ≤ 5m;) (from 2.5m

-

revisit frequency frequency revisit allowing high observation plan • ROSE-L,S-1- revisit frequency frequency revisit allowing high observation plan • ROSE-L,S-1- revisit frequency frequency revisit allowing high observation plan • ROSE-L,S-1- frequency frequency allowing highrevisit observation plan • ROSE-L,S-1- frequency allowing highrevisit observation plan • ROSE-L,S-1- frequency allowing highrevisit observation plan • ROSE-L,S-1- frequency allowing highrevisit observation plan • ROSE-L,S-1- PLANNING CROSS-SENSOR SYNERGIES/

• 0 • 2 • 3 • 0 • 2 • 3 • 0 • 2 • 3 • 0 • 2 • 3 • 0 • 2 • 3 • 0 • 2 • 3 • 0 • 2 • 3 SERVATIONS OF IN SITU OB AVAILABILITY

-

future Sensors for the • RadioFrequency • RPAS, • AIS, future Sensors for the • RadioFrequency • RPAS, • AIS, future Sensors for the • RadioFrequency • RPAS, • AIS, future Sensors for the • RadioFrequency • RPAS, • AIS, future Sensors for the • RadioFrequency • RPAS, • AIS, future Sensors for the • RadioFrequency • RPAS, • AIS, future Sensors for the • RadioFrequency • RPAS, • AIS, IN-SITU SENSORS POTENTIAL

The MFCs (MonitoringandForecastingCentres)ofCMEMSalsorequirein-situobservationsfor thevalidationoftheirpolarproductsasillustrated inTable A4.2below. data inthepolarregionsisaffecting thequalityofCopernicusproducts for thepolarregions. Each CMEMSTAC productisassociatedwithaQuID(QualityInformation Document).TheanalysisoftheseQuIDsshows thatthelackoftemporalandspatialin-situ assimilation; NRT:Near RealTime; RAN:Reanalysis. ARC:Arctic; SL:Sealevel;OC:Oceancolour;REP:Reprocessed;BGC:Biogeochemical;PHYS:Physics;INS:In-situ;AD:Algorithm development;CV:Calibration/Validattion;DA:Data Table A4.1:CurrentuseofArcticin-situobservationsinCMEMSThematicAssemblyCentres(TACS) Wind TAC SIC TAC OC TAC ANNEX 4. IN-SITU OBSERVATIONS IN CMEMS Wave TAC SST TAC SL TAC USERS USERS CMEMS

VATIONS_008_045 SEALEVEL_GLO_PHY_L3_REP_OBSER- VATIONS_008_047 SEALEVEL_GLO_PHY_L4_REP_OBSER- SERVATIONS_014_001 WAVE_GLO_WAV_L3_SWH_NRT_OB- TIONS_012_002 WIND_GLO_WIND_L3_NRT_OBSERVA- TIONS_011_010 VATIONS_011_003; L3_REP_OBSERVA- VATIONS_011_008; L4_NRT_OBSER- SEAICE_ARC_SEAICE_L4_NRT_OBSER- Reprocessed products SERVATIONS_009_047 OCEANCOLOUR_ARC_CHL_L3_NRT_OB- SERVATIONS_009_087 OCEANCOLOUR_ARC_CHL_L4_NRT_OB- VATIONS_008_046 SEALEVEL_GLO_PHY_L4_NRT_OBSER- VATIONS_008_038 SEALEVEL_ARC_PHY_L3_NRT_OBSER- CMEMS PRODUCT NAME AD AD PURPOSE OF USE CURRENT USAGE OF ARCTIC IN-SITU OBSERVATIONS √ √ √ √ √ √ √ √ √ √ √ √ CV CV DA DA Drifter data Argo T/S IMB buoy PSMSL GLOSS/CLIVAR & No dataused No dataused Drifters No dataused PSMSL GLOSS/CLIVAR & DATA CHARACTERISITICS DATASET NAME ICOADS INSTAC DMI UHSLC UHSLC N/A N/A ICOADS N/A N/A UHSLC UHSLC PROVIDER SID SST IST Sea level Sea level N/A N/A SST N/A N/A Sea level Sea level TER TER PARA-ME - ~132 ~80 ~8 ~100 ~100 N/A N/A ~132 N/A N/A ~100 ~10 STATIONS NO. OF Arctic Ocean Global Global N/A N/A Arctic Ocean N/A N/A Global Arctic COVER-AGE Hourly 10 days monthly Hourly monthly N/A N/A Hourly N/A N/A monthly monthly FREQ. FREQ. UPDATE_ NRT NRT N/A offline N/A N/A N/A NRT N/A N/A N/A N/A NESS NESS TIME-LI - 10 days N/A 2012 N/A N/A N/A hourly N/A N/A N/A N/A PERIOD PERIOD 103 POLAR EXPERT GROUP III REPORT • 2021 104 POLAR EXPERT GROUP III REPORT • 2021 Table A4.2:Currentuseofin-situobservationsinCMEMSMarineMonitoring andForecastingCentres(MFCs) –Source:ArcticIn-situdataavailability, Buchetal.2019. ARC MFC USERS USERS CMEMS WAV_002_010 ARCTIC_ANALYSIS_FORECAST_ BIO_002_005 BIO_002_005 ARCTIC_REANALYSIS_ PHYS_002_003 PHYS_002_003 ARCTIC_REANALYSIS_ BIO_002_004 BIO_002_004 ARCTIC_ANALYSIS_FORECAST_ PHYS_002_001_A PHYS_002_001_A ARCTIC_ANALYSIS_FORECAST_ CMEMS PRODUCT NAME √ √ √ AD AD PURPOSE OF USE CURRENT USAGE OF ARCTIC IN-SITU OBSERVATIONS √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ CV CV √ √ √ √ √ DA DA Platform-Buoy Wave R/V data R/V data Tide Gauges IABP buoys (sea ice) IABP buoys (seaice) Drifter buoy Drifter buoy Drifter buoy Drifter buoy BGEP moorings BGEP moorings IMB buoys IMB buoys Bio-Argo Bio-Argo Argo, ITP & R/Vs TS Argo, ITP&R/Vs TS ICES Ocean. Data ICES Ocean.Data R/Vs R/Vs R/V BGC R/V BGC Sea ice drift buoy Sea icedriftbuoy ITP-TS ITP-TS Drifter buoy Drifter buoy Drifter buoy Drifter buoy Argo & R/Vs TS Argo &R/Vs TS DATA CHARACTERISTICS DATASET NAME Met.no Met.no INSTAC PSMSL PSMSL NSIDC NSIDC INSTAC INSTAC WHOI WHOI CRREL Portal1 CRREL Portal1 INSTAC INSTAC ICES ICES MMBI MMBI AARI, IOPAS, INSTAC IABP-SIDFEx IABP-SIDFEx INSTAC INSTAC INSTAC INSTAC PROVIDER Waves chl-a, N chl-a, N sea level sea level UICE,VICE UICE,VICE U,V U,V SST SST SIT SIT SIT SIT chl-a, O2 chl-a, O2 T/S T/S T,S T,S T/S T/S chl-a, N chl-a, N UICE,VICE UICE,VICE T/S T/S U,V U,V SST SST T/S T/S TER TER PARA-ME - ~26 ~26 ~30 ~30 42 42 time time ~10 atany ~132 ~132 ~132 ~132 4 3 ~300 ~300 ~3000/y ~3000/y ~1000/y ~1000/y ~1000/y ~1000/y ~30 ~30 time time ~10 atany ~400/y ~400/y ~132 ~132 ~132 ~132 ~2000/y ~2000/y TIONS TIONS NO. OF STA - NOR-offshore NOR-offshore Nordic Seas Nordic Seas Arctic Ocean Arctic Ocean Arctic Ocean Arctic Ocean Beaufort Sea Beaufort Sea Irminger Sea Irminger Sea Arctic Ocean Arctic Ocean Nordic Sea Nordic Sea Nordic Sea Nordic Sea Nordic Seas Nordic Seas Arctic Ocean Arctic Ocean Nordic Seas Nordic Seas COVER-AGE hourly hourly daily daily monthly monthly 3hourly 3hourly hourly hourly hourly hourly daily daily daily daily daily daily daily daily daily daily daily daily daily daily 3hourly 3hourly daily daily hourly hourly hourly hourly daily daily FREQ. FREQ. UPDATE_ offline offline offline offline offline offline NRT NRT NRT NRT NRT NRT offline offline offline offline offline offline offline offline offline offline offline offline offline offline NRT NRT NRT NRT NRT NRT NRT NRT NRT & offline NRT &offline NESS NESS TIME-LI - 3-4 months 3-4 months 2007-2008 2007-2008 1991-2009 1991-2009 1980- 1980- 1991- 1991- 1991- 1991- 2013-2016 2013-2016 2013-2016 2013-2016 2015- 2015- 2003-2017 2003-2017 1991-2009 1991-2009 1991-2009 1991-2009 2007-2008 2007-2008 1980- 1980- 2006- 2006- 2012- 2012- 2012- 2010- 2010- PERIOD PERIOD Finding information about the EU

Online Information about the European Union in all the official languages of the EU is available on the Europa website at: https://europa.eu/european-union/index_en

EU publications You can download or order free and priced EU publications at:

https://publications.europa.eu/en/publications.

Multiple copies of free publications may be obtained by contacting Europe Direct or your local information centre (see https://europa.eu/european-union/contact_en). HV-NC-29-144-EN-N

ISBN: 978-92-76-34378-3 DOI 10.2889/90647