Commercial Lunar Propellant Architecture a Collaborative Study of Lunar Propellant Production
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Location #1: Peary/Whipple Crater
Location, Location, Location A Lunar Investment Strategy Hoyt Davidson Near Earth LLC June 2017 ISU's International Institute of Space Commerce Lunar Economic Action Plan (LEAP) Space and Questions from 1960 Still Relevant Today Economic Development • How can we utilize our dynamic system of competitive private enterprise in space, as on earth, to make newly discovered resources useful to man? • How can private enterprise and private capital make their maximum contribution? Philosophy and Policy The ultimate goal is not to impress others, or merely to explore our planetary system, but to use accessible space for the benefit of humankind. It is a goal that is not confined to a decade or a century. Nor is it confined to a single nearby destination, or to a fleeting dash to plant a flag. The idea is to begin preparing now for a future in which the material trapped in the Sun's vicinity is available for incorporation into our way of life. Dr. John Marburger, Head of the Office of Science and Technology Policy 2006 3 The Investment Premise • Just as on Earth, lunar real estate “value” is driven by location, location, location Rank Location Why Valuable 1 Peary Crater Best 1st industrial base and settlement 2 Sinus Medii Good cargo port & space elevator site 3 Largest skylights / lava tubes Best large scale settlements 4 Tsiolkovskiy crater, dark side Prime radio astronomy site 5 High helium-3 concentrations Potential high value mining 6 Lipsky Crater Space elevator site for Earth-Moon L2 7 Aristillus High Thorium concentrations • Lunar real -
4. Lunar Architecture
4. Lunar Architecture 4.1 Summary and Recommendations As defined by the Exploration Systems Architecture Study (ESAS), the lunar architecture is a combination of the lunar “mission mode,” the assignment of functionality to flight elements, and the definition of the activities to be performed on the lunar surface. The trade space for the lunar “mission mode,” or approach to performing the crewed lunar missions, was limited to the cislunar space and Earth-orbital staging locations, the lunar surface activities duration and location, and the lunar abort/return strategies. The lunar mission mode analysis is detailed in Section 4.2, Lunar Mission Mode. Surface activities, including those performed on sortie- and outpost-duration missions, are detailed in Section 4.3, Lunar Surface Activities, along with a discussion of the deployment of the outpost itself. The mission mode analysis was built around a matrix of lunar- and Earth-staging nodes. Lunar-staging locations initially considered included the Earth-Moon L1 libration point, Low Lunar Orbit (LLO), and the lunar surface. Earth-orbital staging locations considered included due-east Low Earth Orbits (LEOs), higher-inclination International Space Station (ISS) orbits, and raised apogee High Earth Orbits (HEOs). Cases that lack staging nodes (i.e., “direct” missions) in space and at Earth were also considered. This study addressed lunar surface duration and location variables (including latitude, longi- tude, and surface stay-time) and made an effort to preserve the option for full global landing site access. Abort strategies were also considered from the lunar vicinity. “Anytime return” from the lunar surface is a desirable option that was analyzed along with options for orbital and surface loiter. -
Concept of a Human-Attended Lunar Outpost
Paper ID #16714 Concept of a Human-Attended Lunar Outpost Mr. Thomas W. Arrington, Texas A&M University Thomas Arrington worked as the student Project Manager for the Human Attended Lunar Outpost senior design project for the the Department of Aerospace Engineering at Texas A&M University in College Station. He has interned with Boeing Research and Technology three times, and was an active member of the Texas A&M University Sounding Rocketry Team. Mr. Nicolas Federico Hurst, Texas A&M 2015 Capstone Design Spacecraft Nico Hurst is a student of Texas A&M University. He recently graduated from the Aerospace Engineering department with my bachelor’s of science and will be continuing his education with a master’s of science in finance. Mr. David B. Kanipe, Texas A&M University After receiving a BS in Aerospace Engineering in May 1970, followed by a MS in Aerospace Engineering in August 1971 from Texas A&M University, Mr. Kanipe accepted a position with NASA at the Manned Spacecraft Center in Houston and began his professional career in November 1972. A month after his arrival at NASA, the last Apollo mission, Apollo 17, was launched. Obviously, that was exciting, but in terms of his career, the commencement of the Space Shuttle Program in November 1972 was to have far more impact. As a result, David was able to begin his career working on what he says was the most interesting and exciting project he could possibly imagine: the Space Shuttle. Over his career, David held successively influential management positions including Deputy Branch Chief of the Aerodynamics Branch in the Aeroscience and Flight Mechanics Division, Chief of the GN&C Analysis and Design Branch, Deputy Chief of the Aeroscience and Flight Mechanics Division, and for the final 10 years of his career, Chief of the Aeroscience and Flight Mechanics Division in the Engineering Directorate at the Johnson Space Center. -
Illumination Conditions at the Lunar Poles: Implications for Future Exploration
Illumination conditions at the lunar poles: Implications for future exploration P. Glaser¨ a,∗, J. Obersta,b,c, G. A. Neumannd, E. Mazaricod, E.J. Speyerere, M. S. Robinsone aTechnische Universit¨atBerlin, Institute of Geodesy and Geoinformation Science, 10623 Berlin, Germany bGerman Aerospace Center, Institute of Planetary Research, 12489 Berlin, Germany cExtraterrestrial Laboratory, Moscow State University for Geodesy and Cartography, RU-105064 Moscow, Russia dNASA Goddard Space Flight Center, Code 698, Greenbelt, MD 20771, USA eArizona State University, School of Earth and Space Exploration, Tempe, AZ 85287, USA Abstract We produced 400 x 400 km Digital Terrain Models (DTMs) of the lunar poles from Lunar Orbiter Laser Altimeter (LOLA) ranging measurements. To achieve consistent, high-resolution DTMs of 20 m/pixel the individual ranging profiles were adjusted to remove small track-to-track offsets. We used these LOLA- DTMs to simulate illumination conditions at surface level for 50 x 50 km regions centered on the poles. Illumination was derived in one-hour increments from 01 January, 2017 to 01 January, 2037 to cover the lunar precessional cycle of 18.6 years and to determine illumination conditions over several future mission cycles. We identified three regions receiving high levels of illumination at each pole, e.g. the equator-facing crater rims of Hinshelwood, Peary and Whipple for the north pole and the rim of Shackleton crater, and two locations on a ridge between Shackleton and de Gerlache crater for the south pole. Their average illumination levels range from 69.5% to 82.9%, with the highest illumination levels found at the north pole on the rim of Whipple crater. -
The Shackleton Crater Expedition: a Lunar Commerce Mission in the Spirit of Lewis and Clark
The Shackleton Crater Expedition: A Lunar Commerce Mission in the Spirit of Lewis and Clark by William C. Stone, Ph.D., P.E. Stone AeroSPACE / PSC, Inc. 18912 Glendower Road Gaithersburg, MD 20879-1833 Ph: (301) 216-0932 evening / (301) 975-6075 day Email: [email protected] November 2003 StoneAeroSPACE / PSC, Inc., 18912 Glendower Road, Gaithersburg, MD 20879 V31 11-05-2003 Shackleton Crater Expedition Executive Summary The space program of the United States of America is in disarray. During the past 30 years it has failed to deliver what the American public most wants from it: routine, economical access to space that enables broad private sector involvement and the establishment of a burgeoning extraterrestrial economy. The agency charged with this task, NASA, has instead woven an intricate partnership with its Cold War era subcontractors that has sought to maintain its Apollo legacy through a series of costly mega-projects lasting decades. These projects – the space shuttle and the International Space Station (ISS) – have failed. The shuttle remains an inherently dangerous vehicle for human space operations (and will remain so even following upgrades as a result of the Columbia investigation commission). But more importantly, the shuttle is non- competitive with alternative – particularly Russian – means for transporting goods to low earth orbit. The ISS, after 25 years of effort, remains incomplete and is presently capable of supporting just three individuals in orbit. Both programs cost the nation billions of dollars every year, yet produce no tangible forward progress towards the creation of an environment in which private sector space opportunities can flourish – and thus dramatically expand human presence off Earth. -
2 / Lunar Base Concepts
2 / LUNAR BASE CONCEPTS HE TERM "LUNAR BASE" can refer to a spectrum of concepts ranging from a mannable "line shack" to a multifunctional, self-sufficient, populous Tcolony. In general, the authors contributing to this book discuss the earliest stages of a permanently manned facility with the capability for scientific investigations and some ability to support its own operation with local materials. The exact form of the "final" configuration usually is not critical to the discussion until cost is included. Costs of a lunar base can be similar to the space station program or can be at the level of the Apollo project. Since cost is such a sensitive topic in the advocacy phase, it becomes very important to understand not only the total cost but also the spending rate and the basic assumptions about what is charged to the project. The costs derived by Hoffman and Niehoff in their study presented in this section differ from costs referenced by Sellers and Keaton in a later section. The final configurations in the two studies differ considerably, but in both cases the spending rates over the duration of the project are well within the rate of expenditure of the current space program and are substantially less than rates associated with Project Apollo. Because lower cost is a major strategy goal, design concepts generally adopt hardware from prior programs. For example, the studies conducted by NASA in the 1960's and described by Lowrnan and by Johnson and Leonard depict habitats inspired by the Apollo transportation system. Contemporary drawings show space station modules emplaced on the lunar surface. -
Science Concept 3: Key Planetary
Science Concept 4: The Lunar Poles Are Special Environments That May Bear Witness to the Volatile Flux Over the Latter Part of Solar System History Science Concept 4: The lunar poles are special environments that may bear witness to the volatile flux over the latter part of solar system history Science Goals: a. Determine the compositional state (elemental, isotopic, mineralogic) and compositional distribution (lateral and depth) of the volatile component in lunar polar regions. b. Determine the source(s) for lunar polar volatiles. c. Understand the transport, retention, alteration, and loss processes that operate on volatile materials at permanently shaded lunar regions. d. Understand the physical properties of the extremely cold (and possibly volatile rich) polar regolith. e. Determine what the cold polar regolith reveals about the ancient solar environment. INTRODUCTION The presence of water and other volatiles on the Moon has important ramifications for both science and future human exploration. The specific makeup of the volatiles may shed light on planetary formation and evolution processes, which would have implications for planets orbiting our own Sun or other stars. These volatiles also undergo transportation, modification, loss, and storage processes that are not well understood but which are likely prevalent processes on many airless bodies. They may also provide a record of the solar flux over the past 2 Ga of the Sun‟s life, a period which is otherwise very hard to study. From a human exploration perspective, if a local source of water and other volatiles were accessible and present in sufficient quantities, future permanent human bases on the Moon would become much more feasible due to the possibility of in-situ resource utilization (ISRU). -
Minimum Functionality Lunar Habitation Element
Minimum Functionality Lunar Habitation Element by The University of Maryland Space Systems Laboratory Dr. David L. Akin Massimiliano Di Capua Adam D. Mirvis Omar W. Medina William Cannan Kevin Davis July 2009 ABSTRACT Title: MINIMUM FUNCTIONALITY LUNAR HABITATION ELEMENT Dr. David L. Akin, Massimiliano Di Capua, Adam D. Mirvis, Omar W. Medina, William Cannan, Kevin Davis University of Maryland - Space Systems Laboratory February 2009 NASA’s vision for the future of space exploration includes the establishment of a permanent human presence on the Moon through the Constellation program. Under the auspices of the NASA Exploration Systems Mission Directorate, the University of Mary- land Space Systems Laboratory has investigated, through literature reviews, a survey, and rigorous statistical methods, the definition of Minimal Functionality Habitation Element for medium duration lunar missions. By deploying a survey and making use of the Analyt- ical Hierarchy Process (AHP) and the Quality Function Deployment (QFD) methods, the study team determined a list of functions and their relative importance, as well as their impact on systems design/implementation. Based on the past literature and the survey results, four habitat concepts were proposed, focusing on interior space layout and prelim- inary systems sizing. Those concepts were then evaluated for habitability through virtual reality (VR) techniques and merged into a single design. Trade studies were conducted and the final design was defined. A full-scale functional mockup of the final concept was also implemented to enable more realistic human factors studies and to validate the VR techniques used previously. This study was funded by the NASA Exploration Systems Mission Directorate (ESMD). -
The Moon at a Distance of 384,400 Km from the Earth, the Moon Is Our Closest Celestial Neighbor and Only Natural Satellite
The Moon At a distance of 384,400 km from the Earth, the Moon is our closest celestial neighbor and only natural satellite. Because of this fact, we have been able to gain more knowledge about it than any other body in the Solar System besides the Earth. Like the Earth itself, the Moon is unique in some ways and rather ordinary in others. The Moon is unique in that it is the only spherical satellite orbiting a terrestrial planet. The reason for its shape is a result of its mass being great enough so that gravity pulls all of the Moon's matter toward its center equally. Another distinct property the Moon possesses lies in its size compared to the Earth. At 3,475 km, the Moon's diameter is over one fourth that of the Earth's. In relation to its own size, no other planet has a moon as large. For its size, however, the Moon's mass is rather low. This means the Moon is not very dense. The explanation behind this lies in the formation of the Moon. It is believed that a large body, perhaps the size of Mars, struck the Earth early in its life. As a result of this collision a great deal of the young Earth's outer mantle and crust was ejected into space. This material then began orbiting Earth and over time joined together due to gravitational forces, forming what is now Earth's moon. Furthermore, since Earth's outer mantle and crust are significantly less dense than its interior explains why the Moon is so much less dense than the Earth. -
Earth-Based 12.6-Cm Wavelength Radar Mapping of the Moon: New Views of Impact Melt Distribution and Mare Physical Properties
Icarus 208 (2010) 565–573 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Earth-based 12.6-cm wavelength radar mapping of the Moon: New views of impact melt distribution and mare physical properties Bruce A. Campbell a,*, Lynn M. Carter a, Donald B. Campbell b, Michael Nolan c, John Chandler d, Rebecca R. Ghent e, B. Ray Hawke f, Ross F. Anderson a, Kassandra Wells b a Center for Earth and Planetary Studies, Smithsonian Institution, MRC 315, PO Box 37012, Washington, DC 20013-7012, USA b National Astronomy and Ionosphere Center, Cornell University, Ithaca, NY 14853, USA c Arecibo Observatory, HCO3 Box 53995, Arecibo, PR 00612, USA d Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138, USA e Department of Geology, University of Toronto, Toronto, Canada f HIGP, University of Hawaii, 1680 East–West Road, Honolulu, HI 96822, USA article info abstract Article history: We present results of a campaign to map much of the Moon’s near side using the 12.6-cm radar transmitter Received 2 December 2009 at Arecibo Observatory and receivers at the Green Bank Telescope. These data have a single-look spatial res- Revised 27 February 2010 olution of about 40 m, with final maps averaged to an 80-m, four-look product to reduce image speckle. Accepted 11 March 2010 Focused processing is used to obtain this high spatial resolution over the entire region illuminated by the Available online 16 March 2010 Arecibo beam. The transmitted signal is circularly polarized, and we receive reflections in both senses of cir- cular polarization; measurements of receiver thermal noise during periods with no lunar echoes allow well- Keywords: calibrated estimates of the circular polarization ratio (CPR) and the four-element Stokes vector. -
4. Lunar Architecture
4. Lunar Architecture 4.1 Summary and Recommendations As defined by the Exploration Systems Architecture Study (ESAS), the lunar architecture is a combination of the lunar “mission mode,” the assignment of functionality to flight elements, and the definition of the activities to be performed on the lunar surface. The trade space for the lunar “mission mode,” or approach to performing the crewed lunar missions, was limited to the cislunar space and Earth-orbital staging locations, the lunar surface activities duration and location, and the lunar abort/return strategies. The lunar mission mode analysis is detailed in Section 4.2, Lunar Mission Mode. Surface activities, including those performed on sortie- and outpost-duration missions, are detailed in Section 4.3, Lunar Surface Activities, along with a discussion of the deployment of the outpost itself. The mission mode analysis was built around a matrix of lunar- and Earth-staging nodes. Lunar-staging locations initially considered included the Earth-Moon L1 libration point, Low Lunar Orbit (LLO), and the lunar surface. Earth-orbital staging locations considered included due-east Low Earth Orbits (LEOs), higher-inclination International Space Station (ISS) orbits, and raised apogee High Earth Orbits (HEOs). Cases that lack staging nodes (i.e., “direct” missions) in space and at Earth were also considered. This study addressed lunar surface duration and location variables (including latitude, longi- tude, and surface stay-time) and made an effort to preserve the option for full global landing site access. Abort strategies were also considered from the lunar vicinity. “Anytime return” from the lunar surface is a desirable option that was analyzed along with options for orbital and surface loiter.