Juvenile Gangrene by Walton Martin, M.D

Total Page:16

File Type:pdf, Size:1020Kb

Juvenile Gangrene by Walton Martin, M.D JUVENILE GANGRENE BY WALTON MARTIN, M.D. AND BENJAMIN RICE SHORE, M.D. OF NEW YORK, N. Y. FROM THE FIRST SURGICAL DIVISION OF ST. LUKE S HOSPITAL I HAVE ventured to report four cases of gangrene of the extremities in young subjects, as such cases are unusual and their origin and manner of development imperfectly understood, I have thought it might be of interest to bring to your attention the reports of similar cases and to follow, as far as possible, the succession of happenings. The first case, a boy four and a half years old, became acutely ill with temperature and symptoms suggesting a generalized infection. When seen three weeks after the onset, he had gangrene of the left foot, of both ears and of a circular patch of skin over the left patella. There was a systolic murmur over the apex of the heart and a to-and-fro pericardial friction rub heard over the sternum. The gangrenous areas separated and the foot sloughed through at the ankle-joint at the end of two months. The boy recovered and is well today, five years after his original illness. The skin over the stump of his leg, only a few inches above the original line of demarcation, is normal looking and movable. The skin of the stump of the ear is white and the scar looks as if a portion of the ear had been severed by a surgical operation. (Fig. I, 2, 3, 4.) The second case I have recently seen in consultation, through the courtesy of Dr. J. V. Bohrer of New York. A child six years old was lying in bed in a small flat. One hand and both legs were coal black, there were zones of suppuration where the living tissue was being separated from the dead. There was a recent healing scar on the external ear where a portion of dead tissue had fallen off. The boy had had an acute illness, apparently diphtheria, preceding the onset of gangrene. (Fig. 5.) The third case, a boy seven years old, had widespread chronic tuberculosis. He had been chronically ill for six months with enlargement of the abdomen and cough when the left foot and lower part of the left leg became blue, swollen and tender. Gradually this gangrenous area became deep black and was separated from the living tissue. (Fig. 6.) Four months after the onset, when the soft parts had sloughed through to bone, an amputation was carried out through the thigh. The parts bled freely. The stump healed. Six months later the boy was still alive, although the general tuberculosis was more advanced. A section taken through the main vessels in the amputated leg showed endarteritis, confined largely to the intima. One of the veins showed some evi- dence of canalization as if it had been thrombosed. (Fig. 9.) The fourth case, a boy of fourteen, had an indolent perforating ulcer on the ball of the great toe. In the course of three years he developed gangrene of the tip of the second toe and a perforating ulcer of the sole of the foot. The anterior portion of the foot was amputated. The stump healed soundly. The boy is well today and free from pain. We have, then, four cases of gangrene in young subjects. The first and the second followed an acute general infection, in both of these the patches of dead tissue were multiple. The third occurred in a patient suffering from general tuberculosis with evidence of local endarteritis in the tissues above the 725 MIARTIN AND SHOkR ganigreniotus leg-; iii the foumrth local endarteritiS walS (leillonistrated in the foot, four or five iniches fromi the gangrenious toe. Thle (letailed report of three of these cases is given at the enid of this paper, with the microscopical studies micade by Doctor Shore of miiy staff, who has assistedl me in its preparation. In I904, Barraudl I published a paper giving the records of I03 cases of gangrene of the extremities, occurring in patienits uinder thirty and following acute infectioni. TIhe occasion of this essay was an unusual instance of gan- grene of both legs in a woman of twenty, follow- ing an inifection of the .fing er. The autopsy ^ showed an arterial throm- ,& bus from the aorta dowl- ward. Among the cases he had collected, in forty- M four the gangrene oc- _-|,_ ; curred in the course of typhoid and in eleven it followed typhus. In six the gangrenie developed during measles; in five ............. d~~~(uring scarlet fever; in two it followed diphtheria Case I. Gal,gree oand in five pneumonia. In .lii one case gangrene oc- of ...n ..atncurred afttare perityphlitis (appendicitis) in a six- year old boy; ic another, ani eight-day-old iin fan t, gangrene of Both legs fol- FIG. Ie lowedh lhlebitis of the uim- Case I Gangrene of foot, and area oeripateia. blilical veinr. In still another, ganigrenie of the left keg, in a boy seveniteen mioniths old, was preceded by to-n- sllitis. Many of these cases are accompaniiedI by autopsy reports or reports of examiNiination of the large vessels after operatioe. In 1914, Khatizt 2 published a paper o, "Spontaneous Gangree of the Extremities in Children" and reported two cases, o2e in a child three years old, with ganigrenie of both feet and the lobes of both ears and a patch on the back of the hiand. The gangrene was not preceded by any illness. Both legs were amputate(l; the patient recovered. No anatomical catise for the gan- grenie was found(. The vessels appeared niormial to the surgeon (loinig the amlptitationi. No miicroscopical examiniation was miade. The seconid patienit, a four-year-old boy, had ganigrene of both feet. The 726 JUVENILE GANGRENE gangrenie was preceded by an illness, possibly measles. Both feet sloughed off. The child recovered. Khautz collected and published the records of fifty cases; thirty of these are the same as those reported by Barraud. Every year or two, during the last twenty-four, similar cases have been reported. They are sufficieintly uncommonn to excite exceptional interest and( are usually reported with the prefatory remark that the rarity of the condition has occasioned the publication and, for the most part, with repro(luctions of photographs showing the lesions. Between 1914 and d 1925, Gerlach,3 Veau and ^ Weber,4 Hoyne,5 Hell- strom,6 G u n s o n,7 Rob- bins,8 Chodax,9 Michael 1"t 4 Frenkel,l Thorpe,l"C .,.; _ Kramer,13 Brusa,H Gor- don and Newman,15 Har- rell,16 Hoopma1n,17 Per- rier,'8 and Learmonth,"' have all reported cases of gangrene in childreni, fol- 7; lowing infection. In looking back on the autopsy findings and the observations made oni ves- sels of the amputated limbs in these reports. four groups can be distin- 7 / guishled. (i) The gan- FIG. 2. gren-ie has f ollowed an Case I. Gangrene of ear. emboluis, the primary thrombus being in the heart or the aorta; (2) there hlas been a primary thromobus in one of the large vessels supplying the extremity: (3) there has beeni evidence of local arteritis in the vessels above the gaii- grenous area; (4) no change has been founid in the vessels up to the line of (lemarcationi, there has been, presumably, a capillary thrombosis which ha; passed on to massive tissue death. The gangrene has been preceded by acute general infection in so malny instanices in all groups that it seems probable that microorganisms or toxic substanices liberated when micro6rganisms are growing in the body, are fac- tors that cannot be set aside. It is also obvious that some unusual circum- stance or combination of circumstances has been added, for it is a matter of commoni knowledge that measles, scarlet fever, diphtheria, typhoid and typhus fever, all manner of acute general infectionis, run their course commonly without any such pheniomena. 727 MARTIN AND SHORE The study, then, leads to a brief consideration of the occurrence of thronm- bosis under the influenice of infection in the heart, in the large vessels, or in the capillaries of a given area. As Aschoff expresses it, using a mathematical figure of speech, throm- bosis is the function of a number of variables. There are factors that have to do with injuries to the endothelial lininig of the various parts of the vas- cular system; there are factors that have to do with slowinlg of the 1)lood current an(l there are those which have to do with alterations in the makeup of the blood. All these factors play a part but we are still ignoraint of the or(ler of their occurrence. Damage to en(lotlhelial cells by toxins, slowing of the current, deposition of fibrin, perhaps a few mi- croorganisms caught in the fibrin meshes, further 10 c a 1 destruction and the formation of a thrombus, may in some instanices b)e the sequence. The (lomli- ;nant factor may be, oni the other hand, a slowing of the blood current. The velocity of the flow may be reduced to a point where FIG. 3. certain of the solidl ingre- Case 1. Five years later, showing deformity of ear following separation of gaingrenous tissue. dienits, like thebloo1 plate- lets, settle out. It is even possible that the endothelium dies as the result of being covered over by platelets, as suggested by Aschoff,20 and the institution of the changes leading to the separation of fibrin and the formation of clot mlay not be due in the first instance to (lamaged endothelium.
Recommended publications
  • Hyperplasia (Growth Factors
    Adaptations Robbins Basic Pathology Robbins Basic Pathology Robbins Basic Pathology Coagulation Robbins Basic Pathology Robbins Basic Pathology Homeostasis • Maintenance of a steady state Adaptations • Reversible functional and structural responses to physiologic stress and some pathogenic stimuli • New altered “steady state” is achieved Adaptive responses • Hypertrophy • Altered demand (muscle . hyper = above, more activity) . trophe = nourishment, food • Altered stimulation • Hyperplasia (growth factors, . plastein = (v.) to form, to shape; hormones) (n.) growth, development • Altered nutrition • Dysplasia (including gas exchange) . dys = bad or disordered • Metaplasia . meta = change or beyond • Hypoplasia . hypo = below, less • Atrophy, Aplasia, Agenesis . a = without . nourishment, form, begining Robbins Basic Pathology Cell death, the end result of progressive cell injury, is one of the most crucial events in the evolution of disease in any tissue or organ. It results from diverse causes, including ischemia (reduced blood flow), infection, and toxins. Cell death is also a normal and essential process in embryogenesis, the development of organs, and the maintenance of homeostasis. Two principal pathways of cell death, necrosis and apoptosis. Nutrient deprivation triggers an adaptive cellular response called autophagy that may also culminate in cell death. Adaptations • Hypertrophy • Hyperplasia • Atrophy • Metaplasia HYPERTROPHY Hypertrophy refers to an increase in the size of cells, resulting in an increase in the size of the organ No new cells, just larger cells. The increased size of the cells is due to the synthesis of more structural components of the cells usually proteins. Cells capable of division may respond to stress by undergoing both hyperrtophy and hyperplasia Non-dividing cell increased tissue mass is due to hypertrophy.
    [Show full text]
  • Acquired Tumors Arising from Congenital Hypertrophy of the Retinal Pigment Epithelium
    CLINICAL SCIENCES Acquired Tumors Arising From Congenital Hypertrophy of the Retinal Pigment Epithelium Jerry A. Shields, MD; Carol L. Shields, MD; Arun D. Singh, MD Background: Congenital hypertrophy of the retinal lacunae in all 5 patients. The CHRPE ranged in basal di- pigment epithelium (CHRPE) is widely recognized to ameter from 333mmto13311 mm. The size of the el- be a flat, stationary condition. Although it can show evated lesion ranged from 23232mmto83834 mm. minimal increase in diameter, it has not been known to The nodular component in all cases was supplied and spawn nodular tumor that is evident ophthalmoscopi- drained by slightly prominent, nontortuous retinal blood cally. vessels. Yellow retinal exudation occurred adjacent to the nodule in all 5 patients and 1 patient developed a second- Objectives: To report 5 cases of CHRPE that gave rise ary retinal detachment. Two tumors that showed progres- to an elevated lesion and to describe the clinical features sive enlargement, increasing exudation, and progressive of these unusual nodules. visual loss were treated with iodine 125–labeled plaque brachytherapy, resulting in deceased tumor size but no im- Methods: Retrospective medical record review. provement in the visual acuity. Results: Of 5 patients with a nodular lesion arising from Conclusions: Congenital hypertrophy of the retinal pig- CHRPE, there were 4 women and 1 man, 4 whites and 1 ment epithelium can spawn a nodular growth that slowly black. Three patients were followed up for typical CHRPE enlarges, attains a retinal blood supply, and causes exuda- for longer than 10 years before the tumor developed; 2 pa- tiveretinopathyandchroniccystoidmacularedema.Although tients were recognized to have CHRPE and the elevated no histopathologic evidence is yet available, we believe that tumor concurrently.
    [Show full text]
  • Chapter 1 Cellular Reaction to Injury 3
    Schneider_CH01-001-016.qxd 5/1/08 10:52 AM Page 1 chapter Cellular Reaction 1 to Injury I. ADAPTATION TO ENVIRONMENTAL STRESS A. Hypertrophy 1. Hypertrophy is an increase in the size of an organ or tissue due to an increase in the size of cells. 2. Other characteristics include an increase in protein synthesis and an increase in the size or number of intracellular organelles. 3. A cellular adaptation to increased workload results in hypertrophy, as exemplified by the increase in skeletal muscle mass associated with exercise and the enlargement of the left ventricle in hypertensive heart disease. B. Hyperplasia 1. Hyperplasia is an increase in the size of an organ or tissue caused by an increase in the number of cells. 2. It is exemplified by glandular proliferation in the breast during pregnancy. 3. In some cases, hyperplasia occurs together with hypertrophy. During pregnancy, uterine enlargement is caused by both hypertrophy and hyperplasia of the smooth muscle cells in the uterus. C. Aplasia 1. Aplasia is a failure of cell production. 2. During fetal development, aplasia results in agenesis, or absence of an organ due to failure of production. 3. Later in life, it can be caused by permanent loss of precursor cells in proliferative tissues, such as the bone marrow. D. Hypoplasia 1. Hypoplasia is a decrease in cell production that is less extreme than in aplasia. 2. It is seen in the partial lack of growth and maturation of gonadal structures in Turner syndrome and Klinefelter syndrome. E. Atrophy 1. Atrophy is a decrease in the size of an organ or tissue and results from a decrease in the mass of preexisting cells (Figure 1-1).
    [Show full text]
  • PATHOPHYSIOLOGY UNIT-1 .Basic Principles of Cell Injury And
    B.PHARMACY2nd SEMESTER SUBJECT: PATHOPHYSIOLOGY UNIT-1 .Basic Principles of Cell Injury and Adaptation Cell Injury: Introduction • Cell injury is defined as a variety of stresses a cell encounters as a result of changes in its internal and external environment. • The cellular response to stress may vary and depends upon the following: – The type of cell and tissue involved. – Extent and type of cell injury. ETIOLOGY OF CELL INJURY: 1. Genetic causes • Developmental defects: Errors in morphogenesis • Cytogenetic (Karyotypic) defects: chromosomal abnormalities • Single-gene defects: Mendelian disorders • Multifactorial inheritance disorders. 2. Acquired causes • Hypoxia and ischaemia • Physical agents • Chemical agents and drugs • Microbial agents • Immunologic agents • Nutritional derangements • Aging • Psychogenic diseases • Iatrogenic factors • Idiopathic diseases. 2.1. Oxygen deprivation: HYPOXIA Ischemia (loss of blood supply). Inadequate oxygenation (cardio respiratory failure). Loss of oxygen carrying capacity of the blood (anemia or CO poisoning). 2.2. PHYSICAL AGENTS: Trauma Heat Cold Radiation Electric shock 2.3. CHEMICAL AGENTS AND DRUGS: Endogenous products: urea, glucose Exogenous agents Therapeutic drugs: hormones Nontherapeutic agents: lead or alcohol. 2.4. INFECTIOUS AGENTS: Viruses Rickettsiae Bacteria Fungi Parasites 2.5. Abnormal immunological reactions: The immune process is normally protective but in certain circumstances the reaction may become deranged. Hypersensitivity to various substances can lead to anaphylaxis or to more localized lesions such as asthma. In other circumstances the immune process may act against the body cells – autoimmunity. 2.6. Nutritional imbalances: Protein-calorie deficiencies are the most examples of nutrition deficiencies. Vitamins deficiency. Excess in nutrition are important causes of morbidity and mortality. Excess calories and diet rich in animal fat are now strongly implicated in the development of atherosclerosis.
    [Show full text]
  • Sacrococcygeal Teratoma in the Perinatal Period
    754 Postgrad Med J 2000;76:754–759 Postgrad Med J: first published as 10.1136/pgmj.76.902.754 on 1 December 2000. Downloaded from Sacrococcygeal teratoma in the perinatal period R Tuladhar, S K Patole, J S Whitehall Teratomas are formed when germ cell tumours tissues are less commonly identified.12 An ocu- arise from the embryonal compartment. The lar lens present as lentinoids (lens-like cells), as name is derived from the Greek word “teratos” well as a completely formed eye, have been which literally means “monster”. The ending found within sacrococcygeal teratomas.10 11 “-oma” denotes a neoplasm.1 Parizek et al reported a mature teratoma containing the lower half of a human body in Incidence one of fraternal twins.13 Sacrococcygeal teratoma is the most common congenital tumour in the neonate, reported in Size approximately 1/35 000 to 1/40 000 live Size of a sacrococcygeal teratoma (average 8 births.2 Approximately 80% of aVected infants cm, range 1 to 30 cm) does not predict its bio- are female—a 4:1 female to male preponder- logical behaviour.8 Altman et al have defined ance.2 the size of sacrococcygeal teratomas as follows: The first reported case was inscribed on a small, 2 to 5 cm diameter; moderate, 5 to 10 Chaldean cuneiform tablet dated approxi- cm diameter; large, > 10 cm diameter.14 mately 2000 BC.3 In the modern era, the first large series of infants and children with sacro- Site coccygeal teratomas was reported by Gross et The sacrococcygeal region is the most com- al in 1951.4 mon location.
    [Show full text]
  • Somatic Events Modify Hypertrophic Cardiomyopathy Pathology and Link Hypertrophy to Arrhythmia
    Somatic events modify hypertrophic cardiomyopathy pathology and link hypertrophy to arrhythmia Cordula M. Wolf*†, Ivan P. G. Moskowitz†‡§¶, Scott Arno‡, Dorothy M. Branco*, Christopher Semsarian‡§ʈ, Scott A. Bernstein**, Michael Peterson‡¶, Michael Maida‡, Gregory E. Morley**, Glenn Fishman**, Charles I. Berul*, Christine E. Seidman‡§††‡‡, and J. G. Seidman‡§†† Departments of *Cardiology and ¶Pathology, Children’s Hospital, Boston, MA 02115; ‡Department of Genetics, Harvard Medical School, Boston, MA 02115; §Howard Hughes Medical Institute, Boston, MA 02115; and **Department of Cardiology, New York University School of Medicine, New York, NY 10010 Contributed by Christine E. Seidman, October 19, 2005 Sarcomere protein gene mutations cause hypertrophic cardiomy- many HCM patients who succumb to ventricular arrhythmias all opathy (HCM), a disease with distinctive histopathology and in- of these risk factors are absent (11–13). creased susceptibility to cardiac arrhythmias and risk for sudden Increased myocardial fibrosis and abnormal myocyte archi- death. Myocyte disarray (disorganized cell–cell contact) and car- tecture are associated with arrhythmia vulnerability in many diac fibrosis, the prototypic but protean features of HCM histopa- cardiovascular diseases (14–16), and these parameters are hy- thology, are presumed triggers for ventricular arrhythmias that pothesized to also increase sudden death risk in HCM (12, 17). precipitate sudden death events. To assess relationships between In support of this suggestion, histopathological studies
    [Show full text]
  • The Repair of Skeletal Muscle Requires Iron Recycling Through Macrophage Ferroportin Gianfranca Corna, Imma Caserta, Antonella Monno, Pietro Apostoli, Angelo A
    The Repair of Skeletal Muscle Requires Iron Recycling through Macrophage Ferroportin Gianfranca Corna, Imma Caserta, Antonella Monno, Pietro Apostoli, Angelo A. Manfredi, Clara Camaschella and This information is current as Patrizia Rovere-Querini of September 25, 2021. J Immunol 2016; 197:1914-1925; Prepublished online 27 July 2016; doi: 10.4049/jimmunol.1501417 http://www.jimmunol.org/content/197/5/1914 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/07/26/jimmunol.150141 Material 7.DCSupplemental http://www.jimmunol.org/ References This article cites 53 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/197/5/1914.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Repair of Skeletal Muscle Requires Iron Recycling through Macrophage Ferroportin Gianfranca Corna,* Imma Caserta,*,† Antonella Monno,* Pietro Apostoli,‡ Angelo A.
    [Show full text]
  • The Cellular Basis of Disease Cell Injury 1
    The Cellular Basis of Disease Cell Injury 1 Adaptation and Reversible Injury Patterns of Tissue Necrosis (Irreversible Injury) Christine Hulette MD The Cellular Basis of Disease Cell Injury 1: Adaptation and Reversible Injury Patterns of Irreversible Injury (Necrosis) Cell Injury 2: Mechanisms of Cell Injury Cell Injury 3: Apoptosis and Necrosis Cellular Aging Cell Injury 4A: Sub lethal Cell Injury John Shelburne MD PhD Cell Injury 4B: Intracellular accumulations ! Objectives • Understand the cellular response to injury and stress. • Understand the differences between hyperplasia, hypertrophy, atrophy and metaplasia at the cellular and organ level. • List and understand the causes of cell injury and death including oxygen deprivation; physical and chemical agents including drugs; infections and immunologic reactions; genetic derangements and nutritional imbalances • Discriminate cell adaptation, reversible cell injury and irreversible cell injury (cell death) based on etiology, pathogenesis and histological and ultrastructural appearance. • Define and understand the morphologic patterns of lethal cell injury and the clinical settings in which they occur. Cellular Adaptation to Injury or Stress Injury or Stress Adaptation • Increased demand • Hyperplasia or hypertrophy • Decreased • Atrophy stimulation or nutrients • Chronic irritation • Metaplasia Adapted - Normal - Injured Cells Adaptations • Hypertrophy • Hyperplasia • Atrophy • Metaplasia Hypertrophy Increase in the size of cells results in increased size of the organ May be Physiologic or Pathologic Examples of Physiologic Hypertrophy Increased workload - skeletal muscle cardiac muscle Hormone induced –pregnant uterus Physiologic hypertrophy Gravid uterus and Normal uterus Biochemical Mechanisms of Myocardial Hypertrophy Adaptations • Hypertrophy • Hyperplasia • Atrophy • Metaplasia Hyperplasia Increase in the number of cells results in increase in size of the organ. May be Physiologic or Pathologic.
    [Show full text]
  • Metaplasia in the Pancreas Ated Per Organ; Hence the Conclusions Must Be Interpreted with Caution
    Metaplasia in the gut 1999; Vol. 32, N~ 3 14. Bahia 55, McMahon RE, Hobbisa J et al. Pelvic ileo-anal reservoirs: A lectin with dysplasia harbor additional mutations, such as those of the histochemical study Hiatochemical J 1993; 25: 392-400. p53 gene or the p16 gene and only these can be regarded as true 15. Campbell AP, Merreft MN, Kettlewell M et al. Expression ofcolonic antigens by tumor precursors. Compared with other organs, the role of meta- goblet and columnar epithelial cells in ileal pouch mucosa: Their association plasia and hyperplasia of the ductal epithelium in the tumorigene- with inflammatory changes and faecal stasis. J Olin Pathol 1994; 47: 834-838. sis of pancreatic cancer has not yet been defined and a sequence 16. Warren BE, Shepherd NA. Pouch pathology In: Nicholls RJ, Bartolo DCC, of stepwise mutations has yet to be discovered. Mortensen NJMcC (Eds.). Restorative Proctocolectomy. Blackwell Scientific Publications Ltd., Oxford 1993; 147-162. 17. Wright NA, Pike C, Elia S. Induction of a novel epidermalgrowth factor-secret- General remarks ing cell lineage by mucosal ulceration in human gastrointestinal stem cells. More than 90% of metaplastic and hyperplastic changes occur IR Nature 1990; 343: 82-85. the ductal system. For acinar cells, only focal acinar transformation 18. Sandborn W. Pouchitis following ileal pouch-anal anastomosis: Definition, has been described. This has also been termed acinar adenoma- pathogenesis, and treatment. Gastroenterology 1994;107: 1856-1860. 19. Kmiot WA, Williams MR, Keighley MRB. Pouchitis following colectomy and tous hyperplasia or acinar cell dysplasia, although this alteration is ilealreservoir construction for familial adenomatouspolyposis.
    [Show full text]
  • Atrophy and Hypertrophy Signaling in the Diaphragm of Patients with Copd
    ERJ Express. Published on August 28, 2009 as doi: 10.1183/09031936.00091108 ATROPHY AND HYPERTROPHY SIGNALING IN THE DIAPHRAGM OF PATIENTS WITH COPD DRIES TESTELMANS+(1), TIM CRUL+, KAREN MAES+, ANOUK AGTEN+, MARK CROMBACH+(1), MARC DECRAMER+ AND GHISLAINE GAYAN-RAMIREZ+ +Respiratory Muscle Research Unit, Laboratory of Pneumology and Respiratory Division, Katholieke Universiteit Leuven, Leuven, Belgium (1) Fellow of the “Fonds voor Wetenschappelijk Onderzoek – Vlaanderen” To whom correspondence should be addressed: Ghislaine Gayan-Ramirez Labo Ademspieren, O&N 1 bus 706 Herestraat 49 B-3000 Leuven Belgium Tel: +32 (16) 33 01 93 Fax: +32 (16) 34 71 26 e-mail: [email protected] Body word count : 3000 Short title: Diaphragm remodeling in COPD Supported by the “Fonds voor Wetenschappelijk Onderzoek-Vlaanderen G.0386.05” This article has an online depository Copyright 2009 by the European Respiratory Society. ABSTRACT We investigated whether atrophy and hypertrophy signaling was altered in the diaphragm of COPD patients. Diaphragm fiber dimensions and proportion, expression of markers of the ubiquitin- proteasome, the NF-κB pathways, the muscle regulatory factors and myostatin were studied in diaphragm biopsies from 19 patients with severe COPD and 13 patients without COPD. Type I proportion was significantly increased in the diaphragm of COPD patients while type II proportion was decreased. Cross-sectional area of all fiber types was reduced in the COPD patients. In addition, MAFbx mRNA was higher in the diaphragm of COPD patients while Nedd4 mRNA decreased. Cytoplasmatic levels of IκBα and IκBβ were decreased in the COPD patients as was the nuclear NF-κB p50 DNA-binding activity.
    [Show full text]
  • Postmortem Findings in the Coffin-Lowry Syndrome Grange S
    May/June 2003 ⅐ Vol. 5 ⅐ No. 3 genetics legacies Postmortem findings in the Coffin-Lowry Syndrome Grange S. Coffin, MD The Coffin-Lowry Syndrome (CLS) is a congenital disorder that can be recognized by retarded growth and development, the characteristic appearance of the face and hands, and often by the typical deformities of the back and chest; there are many other anomalies. The history of the syndrome is reviewed, noting the x-linked semidominant pattern of inheritance, and two autopsies are presented and compared with the three autopsy reports that have been published previously. The five young patients died at ages between 18 to 28 years of advancing pneumonia, aspiration of food into the trachea, or postoperative complications. There were lesions or abnormalities in the heart, brain, lungs, liver, skeleton, kidneys, intestines, and other organs. Molecular geneti- cists have located the CLS gene or Rsk-2 gene at Xp22.2 and demonstrated that it works by influencing the activation of other genes. The “monopolygenic” pattern may help to explain the large number of seemingly unrelated abnormalities that make up this syndrome. Genet Med 2003:5(3):187–193. Key Words: Coffin-Lowry Syndrome, CLS, autopsies, gene locus Xp22.2, enzyme Rsk-2 In 1966 Coffin, Siris, and Wegienka1 described a syndrome The second published report of the CLS was by Martinelli in two unrelated boys that has become known as the Coffin- and Campailla in 19692 that described a boy whose parents and Lowry Syndrome (CLS). Our examination of both boys siblings showed no evidence of the syndrome. In 1970, Siris showed developmental retardation, short stature, plump, soft and Coffin6 published the Coffin-Siris Syndrome, a recogniz- hands with lax, extensible joints and tapered fingers, and a able inborn error of development that is not the same as CLS.
    [Show full text]
  • Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy
    cells Review Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy Tadashi Yoshida 1,2,* and Patrice Delafontaine 1,2,* 1 Heart and Vascular Institute, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-48, New Orleans, LA 70112, USA 2 Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA * Correspondence: [email protected] (T.Y.); [email protected] (P.D.) Received: 1 July 2020; Accepted: 19 August 2020; Published: 26 August 2020 Abstract: Insulin-like growth factor-1 (IGF-1) is a key growth factor that regulates both anabolic and catabolic pathways in skeletal muscle. IGF-1 increases skeletal muscle protein synthesis via PI3K/Akt/mTOR and PI3K/Akt/GSK3β pathways. PI3K/Akt can also inhibit FoxOs and suppress transcription of E3 ubiquitin ligases that regulate ubiquitin proteasome system (UPS)-mediated protein degradation. Autophagy is likely inhibited by IGF-1 via mTOR and FoxO signaling, although the contribution of autophagy regulation in IGF-1-mediated inhibition of skeletal muscle atrophy remains to be determined. Evidence has suggested that IGF-1/Akt can inhibit muscle atrophy-inducing cytokine and myostatin signaling via inhibition of the NF-κB and Smad pathways, respectively. Several miRNAs have been found to regulate IGF-1 signaling in skeletal muscle, and these miRs are likely regulated in different pathological conditions and contribute to the development of muscle atrophy. IGF-1 also potentiates skeletal muscle regeneration via activation of skeletal muscle stem (satellite) cells, which may contribute to muscle hypertrophy and/or inhibit atrophy.
    [Show full text]