March 7, 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lloyd Shoals
Southern Company Generation. 241 Ralph McGill Boulevard, NE BIN 10193 Atlanta, GA 30308-3374 404 506 7219 tel July 3, 2018 FERC Project No. 2336 Lloyd Shoals Project Notice of Intent to Relicense Lloyd Shoals Dam, Preliminary Application Document, Request for Designation under Section 7 of the Endangered Species Act and Request for Authorization to Initiate Consultation under Section 106 of the National Historic Preservation Act Ms. Kimberly D. Bose, Secretary Federal Energy Regulatory Commission 888 First Street, N.E. Washington, D.C. 20426 Dear Ms. Bose: On behalf of Georgia Power Company, Southern Company is filing this letter to indicate our intent to relicense the Lloyd Shoals Hydroelectric Project, FERC Project No. 2336 (Lloyd Shoals Project). We will file a complete application for a new license for Lloyd Shoals Project utilizing the Integrated Licensing Process (ILP) in accordance with the Federal Energy Regulatory Commission’s (Commission) regulations found at 18 CFR Part 5. The proposed Process, Plan and Schedule for the ILP proceeding is provided in Table 1 of the Preliminary Application Document included with this filing. We are also requesting through this filing designation as the Commission’s non-federal representative for consultation under Section 7 of the Endangered Species Act and authorization to initiate consultation under Section 106 of the National Historic Preservation Act. There are four components to this filing: 1) Cover Letter (Public) 2) Notification of Intent (Public) 3) Preliminary Application Document (Public) 4) Preliminary Application Document – Appendix C (CEII) If you require further information, please contact me at 404.506.7219. Sincerely, Courtenay R. -
11-1 335-6-11-.02 Use Classifications. (1) the ALABAMA RIVER BASIN Waterbody from to Classification ALABAMA RIVER MOBILE RIVER C
335-6-11-.02 Use Classifications. (1) THE ALABAMA RIVER BASIN Waterbody From To Classification ALABAMA RIVER MOBILE RIVER Claiborne Lock and F&W Dam ALABAMA RIVER Claiborne Lock and Alabama and Gulf S/F&W (Claiborne Lake) Dam Coast Railway ALABAMA RIVER Alabama and Gulf River Mile 131 F&W (Claiborne Lake) Coast Railway ALABAMA RIVER River Mile 131 Millers Ferry Lock PWS (Claiborne Lake) and Dam ALABAMA RIVER Millers Ferry Sixmile Creek S/F&W (Dannelly Lake) Lock and Dam ALABAMA RIVER Sixmile Creek Robert F Henry Lock F&W (Dannelly Lake) and Dam ALABAMA RIVER Robert F Henry Lock Pintlala Creek S/F&W (Woodruff Lake) and Dam ALABAMA RIVER Pintlala Creek Its source F&W (Woodruff Lake) Little River ALABAMA RIVER Its source S/F&W Chitterling Creek Within Little River State Forest S/F&W (Little River Lake) Randons Creek Lovetts Creek Its source F&W Bear Creek Randons Creek Its source F&W Limestone Creek ALABAMA RIVER Its source F&W Double Bridges Limestone Creek Its source F&W Creek Hudson Branch Limestone Creek Its source F&W Big Flat Creek ALABAMA RIVER Its source S/F&W 11-1 Waterbody From To Classification Pursley Creek Claiborne Lake Its source F&W Beaver Creek ALABAMA RIVER Extent of reservoir F&W (Claiborne Lake) Beaver Creek Claiborne Lake Its source F&W Cub Creek Beaver Creek Its source F&W Turkey Creek Beaver Creek Its source F&W Rockwest Creek Claiborne Lake Its source F&W Pine Barren Creek Dannelly Lake Its source S/F&W Chilatchee Creek Dannelly Lake Its source S/F&W Bogue Chitto Creek Dannelly Lake Its source F&W Sand Creek Bogue -
Chapter 335-6-11 Water Use Classifications for Interstate and Intrastate Waters
Environmental Management Chapter 335-6-11 DEPARTMENT OF ENVIRONMENTAL MANAGEMENT WATER DIVISION - WATER QUALITY PROGRAM ADMINISTRATIVE CODE CHAPTER 335-6-11 WATER USE CLASSIFICATIONS FOR INTERSTATE AND INTRASTATE WATERS TABLE OF CONTENTS 335-6-11-.01 The Use Classification System 335-6-11-.02 Use Classifications 335-6-11-.01 The Use Classification System. (1) Use classifications utilized by the State of Alabama are as follows: Outstanding Alabama Water ................... OAW Public Water Supply ......................... PWS Swimming and Other Whole Body Shellfish Harvesting ........................ SH Fish and Wildlife ........................... F&W Limited Warmwater Fishery ................... LWF Agricultural and Industrial Water Supply ................................ A&I (2) Use classifications apply water quality criteria adopted for particular uses based on existing utilization, uses reasonably expected in the future, and those uses not now possible because of correctable pollution but which could be made if the effects of pollution were controlled or eliminated. Of necessity, the assignment of use classifications must take into consideration the physical capability of waters to meet certain uses. (3) Those use classifications presently included in the standards are reviewed informally by the Department's staff as the need arises, and the entire standards package, to include the use classifications, receives a formal review at least once every three years. Efforts currently underway through local 201 planning projects will provide additional technical data on certain waterbodies in the State, information on treatment alternatives, and applicability of various management techniques, which, when available, will hopefully lead to new decisions regarding use classifications. Of particular interest are those segments which are currently classified for any usage which has an associated Supp. -
Depth Information Not Available for Lakes Marked with an Asterisk (*)
DEPTH INFORMATION NOT AVAILABLE FOR LAKES MARKED WITH AN ASTERISK (*) LAKE NAME COUNTY COUNTY COUNTY COUNTY GL Great Lakes Great Lakes GL Lake Erie Great Lakes GL Lake Erie (Port of Toledo) Great Lakes GL Lake Erie (Western Basin) Great Lakes GL Lake Huron Great Lakes GL Lake Huron (w West Lake Erie) Great Lakes GL Lake Michigan (Northeast) Great Lakes GL Lake Michigan (South) Great Lakes GL Lake Michigan (w Lake Erie and Lake Huron) Great Lakes GL Lake Ontario Great Lakes GL Lake Ontario (Rochester Area) Great Lakes GL Lake Ontario (Stoney Pt to Wolf Island) Great Lakes GL Lake Superior Great Lakes GL Lake Superior (w Lake Michigan and Lake Huron) Great Lakes AL Baldwin County Coast Baldwin AL Cedar Creek Reservoir Franklin AL Dog River * Mobile AL Goat Rock Lake * Chambers Lee Harris (GA) Troup (GA) AL Guntersville Lake Marshall Jackson AL Highland Lake * Blount AL Inland Lake * Blount AL Lake Gantt * Covington AL Lake Jackson * Covington Walton (FL) AL Lake Jordan Elmore Coosa Chilton AL Lake Martin Coosa Elmore Tallapoosa AL Lake Mitchell Chilton Coosa AL Lake Tuscaloosa Tuscaloosa AL Lake Wedowee Clay Cleburne Randolph AL Lay Lake Shelby Talladega Chilton Coosa AL Lay Lake and Mitchell Lake Shelby Talladega Chilton Coosa AL Lewis Smith Lake Cullman Walker Winston AL Lewis Smith Lake * Cullman Walker Winston AL Little Lagoon Baldwin AL Logan Martin Lake Saint Clair Talladega AL Mobile Bay Baldwin Mobile Washington AL Mud Creek * Franklin AL Ono Island Baldwin AL Open Pond * Covington AL Orange Beach East Baldwin AL Oyster Bay Baldwin AL Perdido Bay Baldwin Escambia (FL) AL Pickwick Lake Colbert Lauderdale Tishomingo (MS) Hardin (TN) AL Shelby Lakes Baldwin AL Walter F. -
Fish Consumption Guidelines: Rivers & Creeks
FRESHWATER FISH CONSUMPTION GUIDELINES: RIVERS & CREEKS NO RESTRICTIONS ONE MEAL PER WEEK ONE MEAL PER MONTH DO NOT EAT NO DATA Bass, LargemouthBass, Other Bass, Shoal Bass, Spotted Bass, Striped Bass, White Bass, Bluegill Bowfin Buffalo Bullhead Carp Catfish, Blue Catfish, Channel Catfish,Flathead Catfish, White Crappie StripedMullet, Perch, Yellow Chain Pickerel, Redbreast Redhorse Redear Sucker Green Sunfish, Sunfish, Other Brown Trout, Rainbow Trout, Alapaha River Alapahoochee River Allatoona Crk. (Cobb Co.) Altamaha River Altamaha River (below US Route 25) Apalachee River Beaver Crk. (Taylor Co.) Brier Crk. (Burke Co.) Canoochee River (Hwy 192 to Lotts Crk.) Canoochee River (Lotts Crk. to Ogeechee River) Casey Canal Chattahoochee River (Helen to Lk. Lanier) (Buford Dam to Morgan Falls Dam) (Morgan Falls Dam to Peachtree Crk.) * (Peachtree Crk. to Pea Crk.) * (Pea Crk. to West Point Lk., below Franklin) * (West Point dam to I-85) (Oliver Dam to Upatoi Crk.) Chattooga River (NE Georgia, Rabun County) Chestatee River (below Tesnatee Riv.) Chickamauga Crk. (West) Cohulla Crk. (Whitfield Co.) Conasauga River (below Stateline) <18" Coosa River <20" 18 –32" (River Mile Zero to Hwy 100, Floyd Co.) ≥20" >32" <18" Coosa River <20" 18 –32" (Hwy 100 to Stateline, Floyd Co.) ≥20" >32" Coosa River (Coosa, Etowah below <20" Thompson-Weinman dam, Oostanaula) ≥20" Coosawattee River (below Carters) Etowah River (Dawson Co.) Etowah River (above Lake Allatoona) Etowah River (below Lake Allatoona dam) Flint River (Spalding/Fayette Cos.) Flint River (Meriwether/Upson/Pike Cos.) Flint River (Taylor Co.) Flint River (Macon/Dooly/Worth/Lee Cos.) <16" Flint River (Dougherty/Baker Mitchell Cos.) 16–30" >30" Gum Crk. -
Economic Analysis of Critical Habitat Designation for the Fat Threeridge, Shinyrayed Pocketbook, Gulf Moccasinshell, Ochlockonee
ECONOMIC ANALYSIS OF CRITICAL HABITAT DESIGNATION FOR THE FAT THREERIDGE, SHINYRAYED POCKETBOOK, GULF MOCCASINSHELL, OCHLOCKONEE MOCCASINSHELL, OVAL PIGTOE, CHIPOLA SLABSHELL, AND PURPLE BANKCLIMBER Draft Final Report | September 12, 2007 prepared for: U.S. Fish and Wildlife Service 4401 N. Fairfax Drive Arlington, VA 22203 prepared by: Industrial Economics, Incorporated 2067 Massachusetts Avenue Cambridge, MA 02140 Draft – September 12, 2007 TABLE OF CONTENTS EXECUTIVE SUMMARY ES-1T SECTION 1 INTRODUCTION AND FRAMEWORK FOR ANALYSIS 1-1 1.1 Purpose of the Economic Analysis 1-1 1.2 Background 1-2 1.3 Regulatory Alternatives 1-9 1.4 Threats to the Species and Habitat 1-9 1.5 Approach to Estimating Economic Effects 1-9 1.6 Scope of the Analysis 1-13 1.7 Analytic Time Frame 1-16 1.8 Information Sources 1-17 1.9 Structure of Report 1-18 SECTION 2 POTENTIAL CHANGES IN WATER USE AND MANAGEMENT FOR CONSERVATION OF THE SEVEN MUSSELS 2-1 2.1 Summary of Methods for Estimation of Economic Impacts Associated with Flow- Related Conservation Measures 2-2 2.2 Water Use in Proposed Critical Habitat Areas 2-3 2.3 Potential Changes in Water Use in the Flint River Basin 2-5 2.4 Potential Changes in Water Management in the Apalachicola River Complex (Unit 8) 2-10 2.5 Potential Changes in Water Management in the Santa Fe River Complex (Unit 11) 2-22 SECTION 3 POTENTIAL ECONOMIC IMPACTS RELATED TO CHANGES IN WATER USE AND MANAGEMENT 3-1 3.1 Summary 3-6 3.2 Potential Economic Impacts Related to Agricultural Water Uses 3-7 3.3 Potential Economic Impacts Related -
Lakes, Electricity &
Lakes, Electricity & You Why It’s So Important That Lakes Are Used To Generate Electricity Why We Can Thank Our Lakes For Electricity Because lakes were made to generate electricity. Back in the mid-1940s, Congress recognized the need for better flood control and navigation. To pay for these services, Congress passed laws that started the building of federal hydroelectric dams, and sold the power from the dams under long-term contracts. Today these dams provide efficient, environmentally safe electricity for our cities and rural areas. And now these beautiful lakes are ours to enjoy. There are now 22 major man-made lakes all across the Southeast built under these federal programs and managed by the U.S. Army Corps of Engineers — lakes that help prevent flooding and harness the renewable power of water to generate electricity. Power produced at these lakes is marketed by the Elberton, GA–based Southeastern Power Administration (SEPA). J. Strom Thurmond Lake Photo courtesy Jonas Jordan, U.S. Army Corps of Engineers How The Sale Of Electricity From Lakes Benefits Everyone The sale of electricity pays back all the costs of building, operating and maintaining hydroelectric facilities — and covers most of the costs of the reservoirs, which provide flood control, navigation and recreation. The original cost of building the dams and creating the lakes was considerable, and initially hydropower (electricity produced by lakes) was more expensive Electricity from lakes helps provide renewable, than power from other sources. Forward-looking consumer-owned electric affordable public power. utilities, however, believed hydropower would be an important future resource Today, hydroelectricity is among the most economical and environmentally and contracted to buy the electricity produced by the lakes. -
Iron Sequestration in Lake Sediments from Artificial Hypolimnetic Oxygenation: Richard B. Russell Reservoir Amanda Elrod Clemson University, [email protected]
Clemson University TigerPrints All Theses Theses 12-2007 Iron sequestration in lake sediments from artificial hypolimnetic oxygenation: Richard B. Russell Reservoir Amanda Elrod Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Fresh Water Studies Commons Recommended Citation Elrod, Amanda, "Iron sequestration in lake sediments from artificial hypolimnetic oxygenation: Richard B. Russell Reservoir" (2007). All Theses. 273. https://tigerprints.clemson.edu/all_theses/273 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. IRON SEQUESTRATION IN LAKE SEDIMENTS FROM ARTIFICIAL HYPOLIMNETIC OXYGENATION: RICHARD B. RUSSELL RESERVOIR A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Biological Sciences by Amanda Kathleen Elrod December 2007 Accepted by: Dr. John J. Hains, Committee Chair Dr. Steven Klaine Dr. Mark Schlautman ABSTRACT The Upper Savannah River watershed has numerous impoundments, and the three largest hydroelectric reservoirs, from north to south, are Hartwell, Richard B. Russell, and J. Strom Thurmond Lakes. During the summer months, these reservoirs undergo thermal and chemical stratification, which results in the formation of cool, hypoxic/anoxic hypolimnia and warm, oxic epilimnion. To maintain fisheries habitat, the United States Army Corps of Engineers operates a hypolimnetic oxygenation system in the forebay of Richard B. Russell Lake. The purpose of this system is to improve the water quality of the releases from Richard B. -
Coosa River Lake Lanier Georgia's Rural
GEORGIA’S HEADWATER STREAMS COOSA RIVER LAKE LANIER GEORGIA’S RURAL COMMUNITIES GEORGIA’S PUBLIC HEALTH CHATTAHOOCHEE RIVER OCMULGEE RIVER ALTAMAHA RIVER TERRY CREEK ST. SIMONS OKEFENOKEE SOUND SWAMP ST. MARYS RIVER 2019’s Worst Offenses Against GEORGIA’S WATER GEORGIA WATER COALITION’S DIRTY DOZEN A Call to Action The Georgia Water Coalition’s Dirty Dozen list highlights the politics, policies and issues that threaten the health of Georgia’s water and the well-being of 10 million Georgians. The purpose of the report is not to identify the state’s “most polluted places.” Instead the report is a call to action for Georgia’s leaders and its citizens to solve ongoing pollution problems, eliminate potential threats to Georgia’s water and correct state and federal policies and actions that lead to polluted water. Unfortunately, this year’s report includes seven issues that are making return visits to this inauspicious list. Topping that category is pollution of the Altamaha River from the Rayonier Advanced Materials (RAM) chemical pulp mill in Jesup. The facility is making a record seventh appearance in the Dirty Dozen report because pollution from the mill continues. Next year, Georgia’s Environmental Protection Division (EPD) will issue a new pollution control permit for the facility, but if EPD’s actions in recent years are any indication, it seems unlikely that this new permit will fix this ongoing pollution problem. The state agency has repeatedly defended the existing and weak The Georgia Water Coalition’s Dirty Dozen report is a pollution control permit and last year took the extraordinary step of call to action for Georgia’s leaders and citizens to solve changing state laws to make it easier for RAM to continue polluting ongoing pollution problems, eliminate potential threats Georgia’s largest river. -
Stream-Temperature Charcteristics in Georgia
STREAM-TEMPERATURE CHARACTERISTICS IN GEORGIA U.S. GEOLOGICAL SURVEY Prepared in cooperation with the GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION Water-Resources Investigations Report 96-4203 STREAM-TEMPERATURE CHARACTERISTICS IN GEORGIA By T.R. Dyar and S.J. Alhadeff ______________________________________________________________________________ U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 96-4203 Prepared in cooperation with GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION Atlanta, Georgia 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 3039 Amwiler Road, Suite 130 Denver Federal Center Peachtree Business Center Box 25286 Atlanta, GA 30360-2824 Denver, CO 80225-0286 CONTENTS Page Abstract . 1 Introduction . 1 Purpose and scope . 2 Previous investigations. 2 Station-identification system . 3 Stream-temperature data . 3 Long-term stream-temperature characteristics. 6 Natural stream-temperature characteristics . 7 Regression analysis . 7 Harmonic mean coefficient . 7 Amplitude coefficient. 10 Phase coefficient . 13 Statewide harmonic equation . 13 Examples of estimating natural stream-temperature characteristics . 15 Panther Creek . 15 West Armuchee Creek . 15 Alcovy River . 18 Altamaha River . 18 Summary of stream-temperature characteristics by river basin . 19 Savannah River basin . 19 Ogeechee River basin. 25 Altamaha River basin. 25 Satilla-St Marys River basins. 26 Suwannee-Ochlockonee River basins . 27 Chattahoochee River basin. 27 Flint River basin. 28 Coosa River basin. 29 Tennessee River basin . 31 Selected references. 31 Tabular data . 33 Graphs showing harmonic stream-temperature curves of observed data and statewide harmonic equation for selected stations, figures 14-211 . -
Normal Streamflows and Water Levels: Summary of Hydrologic Conditions in Georgia, 2013 the U.S
Return to Normal Streamflows and Water Levels: Summary of Hydrologic Conditions in Georgia, 2013 The U.S. Geological Survey (USGS) emphasize the need for accurate, timely data Water Resources Internet Tools South Atlantic Water Science Center (SAWSC) to help Federal, State, and local officials make Georgia office, in cooperation with local, informed decisions regarding the management Historically, hydrologic data collected State, and other Federal agencies, maintains and conservation of Georgia’s water resources by the USGS were compiled into annual data a long-term hydrologic monitoring network for agricultural, recreational, ecological, and reports; however, this method of publication of more than 340 real-time continuous-record water-supply needs and for use in protecting has been discontinued. Current and historical streamflow-gaging stations (streamgages), life and property. data are now available through the National including 10 real-time lake-level monitoring Drought conditions, persistent in the area Water Information System Web interface, or stations, 67 real-time surface-water-quality since 2010, continued into the 2013 WY. In NWISWeb, at http://waterdata.usgs.gov/nwis/ monitors, and several water-quality sampling February 2013, Georgia was free of extreme (U.S. Geological Survey, 2013a). programs. Additionally, the SAWSC Georgia (D3) drought conditions, as defined by the The USGS has several water resources office operates more than 180 groundwater U.S. Drought Monitor, for the first time Internet tools designed to provide users with monitoring wells, 39 of which are real-time. The since August 2010 due to extended periods current streamflow and groundwater data, wide-ranging coverage of streamflow, reservoir, of heavy rainfall (U.S. -
Chattahoochee River Basin Dissolved Oxygen Tmdls
Chattahoochee River Basin Dissolved Oxygen TMDLs Cedar Creek, Partially Supporting, Coweta County Clear Creek, Partially Supporting, Fulton County Ollie Creek, Partially Supporting, Meriwether County Submitted to: U.S. Environmental Protection Agency Region 4 Atlanta, Georgia Submitted by: Georgia Department of Natural Resources Environmental Protection Division Atlanta, Georgia January 2003 Chattahoochee River Chattahoochee River Basin Dissolved Oxygen TMDLs FINAL Table of Contents Table of Contents........................................................................................................................... i List of Figures ............................................................................................................................... ii List of Tables.................................................................................................................................iii EXECUTIVE SUMMARY ............................................................................................................. iv 1.0 INTRODUCTION.................................................................................................................. 1 1.1 Background .......................................................................................................................1 1.2 Watershed Description......................................................................................................1 1.3 Water Quality Standards ...................................................................................................3