Lloyd Shoals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stream-Temperature Characteristics in Georgia
STREAM-TEMPERATURE CHARACTERISTICS IN GEORGIA By T.R. Dyar and S.J. Alhadeff ______________________________________________________________________________ U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 96-4203 Prepared in cooperation with GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION Atlanta, Georgia 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 3039 Amwiler Road, Suite 130 Denver Federal Center Peachtree Business Center Box 25286 Atlanta, GA 30360-2824 Denver, CO 80225-0286 CONTENTS Page Abstract . 1 Introduction . 1 Purpose and scope . 2 Previous investigations. 2 Station-identification system . 3 Stream-temperature data . 3 Long-term stream-temperature characteristics. 6 Natural stream-temperature characteristics . 7 Regression analysis . 7 Harmonic mean coefficient . 7 Amplitude coefficient. 10 Phase coefficient . 13 Statewide harmonic equation . 13 Examples of estimating natural stream-temperature characteristics . 15 Panther Creek . 15 West Armuchee Creek . 15 Alcovy River . 18 Altamaha River . 18 Summary of stream-temperature characteristics by river basin . 19 Savannah River basin . 19 Ogeechee River basin. 25 Altamaha River basin. 25 Satilla-St Marys River basins. 26 Suwannee-Ochlockonee River basins . 27 Chattahoochee River basin. 27 Flint River basin. 28 Coosa River basin. 29 Tennessee River basin . 31 Selected references. 31 Tabular data . 33 Graphs showing harmonic stream-temperature curves of observed data and statewide harmonic equation for selected stations, figures 14-211 . 51 iii ILLUSTRATIONS Page Figure 1. Map showing locations of 198 periodic and 22 daily stream-temperature stations, major river basins, and physiographic provinces in Georgia. -
Commercial Real Estate
COMMERCIAL REAL ESTATE URBAN LAND INSTITUTE October 5-11, 2012 SPECIAL SECTION Page 25A Tapping resouces TAP teams wrestle development challenges By Martin Sinderman CONTRIBUTING WRITER roups dealing these communities come up with there are some projects done on a recommendations regarding development with real estate timely solutions.” pro bono basis. packages that identify the sites, program, development-related Potential TAP clients set things in motion The past year was a busy one for the expected goals, financing/ funding mecha- problems can tap by contacting the ULI Atlanta office. Once TAP program, Callahan reported, with a nisms, and other incentives to attract into an increasingly they are cleared for TAP treatment, they total of six TAPs undertaken. developers. popular source of receive the services of a ULI panel of These included one TAP where the The LCI study in Morrow dealt with assistance from subject-matter experts in fields such as Fulton Industrial Boulevard Community ideas regarding redevelopment of proper- the Urban Land development, urban design, city planning, Improvement District (CID) worked with ties that had been vacated by retailers over Institute. and/or other disciplines that deal with ULI Atlanta to obtain advice and the years, according to city of Morrow ULI’s Technical Assistance Program, commercial retail, office, industrial, recommendations on the revitalization Planning & Economic Development G or TAP, provides what it describes as residential and mixed land uses. and improved economic competitiveness -
Okefenokee Swamp and St. Marys River Named Among America's
Okefenokee Swamp and St. Marys River named Among America’s Most Endangered Rivers of 2020 Mining threatens, fish and wildlife habitat; wetlands; water quality and flow Contact: Ben Emanuel, American Rivers, 706-340-8868 Christian Hunt, Defenders of Wildlife 828-417-0862 Rena Ann Peck, Georgia River Network, 404-395-6250 Alice Miller Keyes, One Hundred Miles, 912-230-6494 Alex Kearns, St. Marys EarthKeepers, 912-322-7367 Washington, D.C. –American Rivers today named the Okefenokee Swamp and St. Marys River among America’s Most Endangered Rivers®, citing the threat titanium mining would pose to the waterways’ clean water, wetlands and wildlife habitat. American Rivers and its partners called on the U.S. Army Corps of Engineers and other permitting agencies to deny any proposals that risk the long-term protection of the Okefenokee Swamp and St. Marys River. “America’s Most Endangered Rivers is a call to action,” said Ben Emanuel, Atlanta- based Clean Water Supply Director with American Rivers. “Some places are simply too precious to allow risky mining operations, and the edge of the unique Okefenokee Swamp is one. The Army Corps of Engineers must deny the permit to save this national treasure.” The annual America’s Most Endangered Rivers report is a list of rivers at a crossroads, where key decisions in the coming months will determine the rivers’ fates. Over the years, the report has helped spur many successes including the removal of outdated dams, the protection of rivers with Wild and Scenic designations, and the prevention of harmful development and pollution. Rena Ann Peck, Executive Director of Georgia River Network, explains "The Okefenokee Swamp is like the heart of the regional Floridan aquifer system in southeast Georgia and northeast Florida. -
Chemical Character of Surface Waters of Georgia
SliEU' :\0..... / ........ RO O ~ l NO. ···- ··-<~ ......... U )'On no l~er need this publication write to the Geological Sur»ey in Washlndon for ali official maillne label to use In returning it UNITED STATES DEPARTMENT OF THE INTERIOR CHEMICAL CHARACTER OF SURFACE WATERS OF GEORGIA Prepared In cooperation wilh the DIVISION OF MINES, MINING, AND GEOLOGY OF 'l'HE GEORGIA DEPARTMENT OF NATURAL RESOURCES GEOLOGICAL SURVEY WATER-SUPPLY PAPER 889- E ' UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director Water-Supply Paper 889-E CHEMICAL CHARACTER OF SURFACE WATERS OF GEORGIA BY WILLIAM L. LAMAR Prepared in cooperation with the DIVISION OF MINES, MINING, AND GEOLOGY OF THE GEORGIA DEPARTMENT OF NATURAL RESOURCES Contributions to the Hydrology of the United States, 19~1-!3 (Pages 317- 380) UN ITED STATES GOVEHNMENT PRINTING OFFICE WASHINGTON : 1944 For sct le Ly Ll w S upcrinkntlent of Doc uments, U. S. Gover nme nt Printing Office, " ' asbingtou 25, D . C. Price 15 ce nl~ CONTENTS Page- Abstract ___________________________________________ -----_--------- 31 T Introduction __________________ c ________________________________ -- _ 317 Physiography_____________________________________________________ 318 Climate__________________________________________________________ 820 Collection and examination of samples_______________________________ 323 Stream flow __________________________ --------- ___________ c ________ . 324 Rainfall and discharge during sampling years_____________________ -
Upper Apalachicola-Chattahoochee
Georgia: Upper Apalachicola- Case Study Chattahoochee-Flint River Basin Water Resource Strategies and Information Needs in Response to Extreme Weather/Climate Events ACF Basin The Story in Brief Communities in the Apalachicola-Chattahoochee-Flint River Basin (ACF) in Georgia, including Gwinnett County and the city of Atlanta, faced four consecutive extreme weather events: drought of 2007-08, floods of Sep- tember and winter 2009, and drought of 2011-12. These events cost taxpayers millions of dollars in damaged infrastructure, homes, and businesses and threatened water supply for ecological, agricultural, energy, and urban water users. Water utilities were faced with ensuring reliable service during and after these events. Drought of 2007-2008 and 2012 Impacts Northern Georgia saw record-low precipitation in 2007. By late spring 2008, Lake Lanier, the state’s major water supply, was at 50% of its storage capacity. The drought, combined with record-high temperatures, caused an estimated $1.3 billion in economic losses and threatened local water utilities’ ability to meet demand for four million people. Similar drought conditions unfolded in 2011-2012, during which numerous Water Trends Georgia counties were declared disaster zones. The Chattahoochee River, its tributaries, and Reduced rain affected recharge of the surface-water- Lake Lanier provide water to most of the dependent reservoir. It reduced flows, dried tributaries, “There is nothing simple, nothing one sub-basin Atlanta and Columbus metro populations. The and caused ecological damage in a landscape already river is the most heavily used water resource in affected by urbanization, impervious cover, and reduced can do to solve the problem. -
List of TMDL Implementation Plans with Tmdls Organized by Basin
Latest 305(b)/303(d) List of Streams List of Stream Reaches With TMDLs and TMDL Implementation Plans - Updated June 2011 Total Maximum Daily Loadings TMDL TMDL PLAN DELIST BASIN NAME HUC10 REACH NAME LOCATION VIOLATIONS TMDL YEAR TMDL PLAN YEAR YEAR Altamaha 0307010601 Bullard Creek ~0.25 mi u/s Altamaha Road to Altamaha River Bio(sediment) TMDL 2007 09/30/2009 Altamaha 0307010601 Cobb Creek Oconee Creek to Altamaha River DO TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010601 Cobb Creek Oconee Creek to Altamaha River FC 2012 Altamaha 0307010601 Milligan Creek Uvalda to Altamaha River DO TMDL 2001 TMDL PLAN 08/31/2003 2006 Altamaha 0307010601 Milligan Creek Uvalda to Altamaha River FC TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010601 Oconee Creek Headwaters to Cobb Creek DO TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010601 Oconee Creek Headwaters to Cobb Creek FC TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010602 Ten Mile Creek Little Ten Mile Creek to Altamaha River Bio F 2012 Altamaha 0307010602 Ten Mile Creek Little Ten Mile Creek to Altamaha River DO TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010603 Beards Creek Spring Branch to Altamaha River Bio F 2012 Altamaha 0307010603 Five Mile Creek Headwaters to Altamaha River Bio(sediment) TMDL 2007 09/30/2009 Altamaha 0307010603 Goose Creek U/S Rd. S1922(Walton Griffis Rd.) to Little Goose Creek FC TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010603 Mushmelon Creek Headwaters to Delbos Bay Bio F 2012 Altamaha 0307010604 Altamaha River Confluence of Oconee and Ocmulgee Rivers to ITT Rayonier -
Endangered Species
FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S. -
11-1 335-6-11-.02 Use Classifications. (1) the ALABAMA RIVER BASIN Waterbody from to Classification ALABAMA RIVER MOBILE RIVER C
335-6-11-.02 Use Classifications. (1) THE ALABAMA RIVER BASIN Waterbody From To Classification ALABAMA RIVER MOBILE RIVER Claiborne Lock and F&W Dam ALABAMA RIVER Claiborne Lock and Alabama and Gulf S/F&W (Claiborne Lake) Dam Coast Railway ALABAMA RIVER Alabama and Gulf River Mile 131 F&W (Claiborne Lake) Coast Railway ALABAMA RIVER River Mile 131 Millers Ferry Lock PWS (Claiborne Lake) and Dam ALABAMA RIVER Millers Ferry Sixmile Creek S/F&W (Dannelly Lake) Lock and Dam ALABAMA RIVER Sixmile Creek Robert F Henry Lock F&W (Dannelly Lake) and Dam ALABAMA RIVER Robert F Henry Lock Pintlala Creek S/F&W (Woodruff Lake) and Dam ALABAMA RIVER Pintlala Creek Its source F&W (Woodruff Lake) Little River ALABAMA RIVER Its source S/F&W Chitterling Creek Within Little River State Forest S/F&W (Little River Lake) Randons Creek Lovetts Creek Its source F&W Bear Creek Randons Creek Its source F&W Limestone Creek ALABAMA RIVER Its source F&W Double Bridges Limestone Creek Its source F&W Creek Hudson Branch Limestone Creek Its source F&W Big Flat Creek ALABAMA RIVER Its source S/F&W 11-1 Waterbody From To Classification Pursley Creek Claiborne Lake Its source F&W Beaver Creek ALABAMA RIVER Extent of reservoir F&W (Claiborne Lake) Beaver Creek Claiborne Lake Its source F&W Cub Creek Beaver Creek Its source F&W Turkey Creek Beaver Creek Its source F&W Rockwest Creek Claiborne Lake Its source F&W Pine Barren Creek Dannelly Lake Its source S/F&W Chilatchee Creek Dannelly Lake Its source S/F&W Bogue Chitto Creek Dannelly Lake Its source F&W Sand Creek Bogue -
Chapter 335-6-11 Water Use Classifications for Interstate and Intrastate Waters
Environmental Management Chapter 335-6-11 DEPARTMENT OF ENVIRONMENTAL MANAGEMENT WATER DIVISION - WATER QUALITY PROGRAM ADMINISTRATIVE CODE CHAPTER 335-6-11 WATER USE CLASSIFICATIONS FOR INTERSTATE AND INTRASTATE WATERS TABLE OF CONTENTS 335-6-11-.01 The Use Classification System 335-6-11-.02 Use Classifications 335-6-11-.01 The Use Classification System. (1) Use classifications utilized by the State of Alabama are as follows: Outstanding Alabama Water ................... OAW Public Water Supply ......................... PWS Swimming and Other Whole Body Shellfish Harvesting ........................ SH Fish and Wildlife ........................... F&W Limited Warmwater Fishery ................... LWF Agricultural and Industrial Water Supply ................................ A&I (2) Use classifications apply water quality criteria adopted for particular uses based on existing utilization, uses reasonably expected in the future, and those uses not now possible because of correctable pollution but which could be made if the effects of pollution were controlled or eliminated. Of necessity, the assignment of use classifications must take into consideration the physical capability of waters to meet certain uses. (3) Those use classifications presently included in the standards are reviewed informally by the Department's staff as the need arises, and the entire standards package, to include the use classifications, receives a formal review at least once every three years. Efforts currently underway through local 201 planning projects will provide additional technical data on certain waterbodies in the State, information on treatment alternatives, and applicability of various management techniques, which, when available, will hopefully lead to new decisions regarding use classifications. Of particular interest are those segments which are currently classified for any usage which has an associated Supp. -
South Carolina Department of Natural Resources
FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas. -
Aerospace Manufacturing a Growth Leader in Georgia
Aerospace Manufacturing A Growth Leader in Georgia In this study: 9. Research Universities 10. GTRI and GTMI 1. Industry Snapshot 11. High-Tech Talent 3. A Top Growth Leader 12. Centers of Innovation 4. Industry Mix 13. World-Class Training Programs 6. Industry Wages and Occupational 15. Strong Partnerships and Ready Workforce Employment 16. Transportation Infrastructure 7. Pro-Business State 17. Powering Your Manufacturing Facility Community and Economic Development 8. Unionization 18. Aerospace Companies Aerospace Manufacturing A Growth Leader in Georgia Aerospace is defined as Aerospace Products and Parts Manufacturing as well as Other Support Activities for Air Transportation. Aerospace Georgia is the ideal home for aerospace include Pratt & Whitney’s expansion in companies with ¨¦§75 ¨¦§575 25+ employees companies. With the world’s most traveled Columbus in both 2016 and 2017, Meggitt «¬400 ¨¦§85 ¨¦§985 airport, eight regional airports, prominent Polymers & Composites’ expansion in military bases and accessibility to the Rockmart and MSB Group’s location in ¨¦§20 ¨¦§20 country’s fastest-growing major port, Savannah. For a complete list of new major ¨¦§85 Georgia’s aerospace industry serves a locations and expansions, see page 2. ¨¦§185 global marketplace. Georgia is also home to a highly-skilled workforce and world- ¨¦§16 Why Georgia for Aerospace? class technical expertise geared toward promoting the success of the aerospace • Highly skilled workers ¨¦§75 ¨¦§95 industry. Georgia’s business climate is • World-class technical expertise consistently ranked as one of the best • Renowned workforce training program in the country, with a business-friendly tax code and incentives that encourage • Increasing number of defense manufacturing growth for existing and personnel newly arriving companies. -
Streamflow Maps of Georgia's Major Rivers
GEORGIA STATE DIVISION OF CONSERVATION DEPARTMENT OF MINES, MINING AND GEOLOGY GARLAND PEYTON, Director THE GEOLOGICAL SURVEY Information Circular 21 STREAMFLOW MAPS OF GEORGIA'S MAJOR RIVERS by M. T. Thomson United States Geological Survey Prepared cooperatively by the Geological Survey, United States Department of the Interior, Washington, D. C. ATLANTA 1960 STREAMFLOW MAPS OF GEORGIA'S MAJOR RIVERS by M. T. Thomson Maps are commonly used to show the approximate rates of flow at all localities along the river systems. In addition to average flow, this collection of streamflow maps of Georgia's major rivers shows features such as low flows, flood flows, storage requirements, water power, the effects of storage reservoirs and power operations, and some comparisons of streamflows in different parts of the State. Most of the information shown on the streamflow maps was taken from "The Availability and use of Water in Georgia" by M. T. Thomson, S. M. Herrick, Eugene Brown, and others pub lished as Bulletin No. 65 in December 1956 by the Georgia Department of Mines, Mining and Geo logy. The average flows reported in that publication and sho\vn on these maps were for the years 1937-1955. That publication should be consulted for detailed information. More recent streamflow information may be obtained from the Atlanta District Office of the Surface Water Branch, Water Resources Division, U. S. Geological Survey, 805 Peachtree Street, N.E., Room 609, Atlanta 8, Georgia. In order to show the streamflows and other features clearly, the river locations are distorted slightly, their lengths are not to scale, and some features are shown by block-like patterns.