Kernel Configuration Option Reference

Total Page:16

File Type:pdf, Size:1020Kb

Kernel Configuration Option Reference ,ch11.12684 Page 122 Friday, December 1, 2006 10:07 AM Chapter 11Configuration Reference 11 Kernel Configuration Option Reference This chapter lists the most important configuration options offered when you run make config or one of its graphical interfaces. The majority of the chapter is based on the in-kernel documentation for the different kernel configuration options, which were written by the kernel developers and released under the GPL. EXPERIMENTAL Prompt for development and/or incomplete code/drivers Some of the many things that Linux supports (such as network drivers, filesystems, network protocols, etc.) can be in a state of development where the functionality, stability, or the level of testing is not yet high enough for general use. This is usually known as the “alpha-test” phase among developers. If a feature is currently in alpha-test, the developers usually discourage unin- formed widespread use of this feature by the general public to avoid “Why doesn’t this work?” mail messages. However, active testing and use of these systems is welcomed. Just be aware that it may not meet the normal level of reliability or may fail to work in some special cases. Detailed bug reports from people familiar with the kernel internals are usually welcomed by the developers. (But before submitting bug reports, please read the documents README, MAINTAINERS, REPORTING-BUGS, Documentation/ BUG-HUNTING, and Documentation/oops-tracing.txt in the kernel source.) This option also makes obsolete drivers available. These are drivers that have been replaced by something else and/or are scheduled to be removed in a future kernel release. Unless you intend to help test and develop a feature or driver that falls into this category, or you have a situation that requires using these features, you should probably say no here, which will cause the configurator to present you with fewer choices. If you say yes 122 ,ch11.12684 Page 123 Friday, December 1, 2006 10:07 AM here, you will be offered the choice of using features or drivers that are currently considered to be in the alpha-test phase. On its own, this option does not do anything except allow you to select other options. LOCALVERSION Local version—append to kernel release Configuration Reference This allows you to append an extra string to the end of your kernel version. This will show up when you enter a uname command, for example. The string you set here will be appended after the contents of any files with a filename beginning with localversion in your object and source tree, in that order. The string can be a maximum of 64 characters. AUDIT Auditing support Enable an auditing infrastructure that can be used with another kernel subsystem, such as SELinux (which requires this for logging of avc messages output). IKCONFIG Kernel .config support This option enables the complete Linux kernel .config file contents to be saved in the kernel. It documents which kernel options are used in a running kernel or an on-disk kernel. This information can be extracted from the kernel image file with the script scripts/ extract-ikconfig and used as input to rebuild the current kernel or to build another kernel. It can also be extracted from a running kernel by reading the file /proc/config.gz. EMBEDDED Configure standard kernel features (for small systems) This option allows certain base kernel options and settings to be disabled or tweaked. This is for specialized environments that can tolerate a “nonstandard” kernel. This is recommend only for experts, as it is very easy to change the options to create a kernel that will not even boot properly. On its own, this option does not do anything except allow you to select other options. MODULES Enable loadable module support Kernel modules are small pieces of compiled code that can be inserted in the running kernel, rather than being permanently built into the kernel. If you select this option, many parts of the kernel can be built as modules (by answering M instead of yes where indi- cated): this is most useful for infrequently used options that are not required for booting. For more information, see Chapter 4 and the manpages for modprobe, lsmod, modinfo, insmod, and rmmod. MODULES | 123 ,ch11.12684 Page 124 Friday, December 1, 2006 10:07 AM If you say yes here, you will need to run make modules_install to put the modules under /lib/modules where the module tools can find them. IOSCHED_NOOP No-op I/O scheduler The no-op I/O scheduler is a minimal scheduler that does basic merging and sorting. Its main uses include nondisk-based block devices such as memory devices and specialized software or hard- ware environments that do their own scheduling and require only minimal assistance from the kernel. IOSCHED_AS Anticipatory I/O scheduler The anticipatory I/O scheduler is the default disk scheduler. It is generally a good choice for most environments, but is quite large and complex compared to the deadline I/O scheduler. It can also be slower in some cases, especially under some database loads. IOSCHED_ Deadline I/O scheduler DEADLINE The deadline I/O scheduler is simple and compact. It is often as good as the anticipatory I/O scheduler, and under some database work- loads, even better. In the case of a single process performing I/O to a disk at any one time, its behavior is almost identical to the anticipa- tory I/O scheduler and so is a good choice. IOSCHED_CFQ CFQ I/O scheduler The CFQ I/O scheduler tries to distribute bandwidth equally among all processes in the system. It should provide a fair working environment, suitable for desktop systems. SMP Symmetric multiprocessing support This enables support for systems with more than one CPU. If you have a system with only one CPU, like most personal computers, say no. If you have a system with more than one CPU, say yes. If you say no here, the kernel will run on single and multiprocessor machines, but will use only one CPU of a multiprocessor machine. If you say yes here, the kernel will run on many, but not all, single- processor machines. On a single-processor machine, the kernel will run faster if you say no here. Note that if you say yes here and choose architecture 586 or Pentium under Processor family, the kernel will not work on 486 architectures. Similarly, multiprocessor kernels for the PPro archi- tecture may not work on all Pentium-based boards. 124 | Chapter 11: Kernel Configuration Option Reference ,ch11.12684 Page 125 Friday, December 1, 2006 10:07 AM See also Documentation/smp.txt, Documentation/i386/IO-APIC.txt, Documentation/nmi_watchdog.txt, and the SMP-HOWTO avail- able at http://www.tldp.org/docs.html#howto. M386 386 Configuration This is the processor type of your CPU. This information is used Reference for optimization. In order to compile a kernel that can run on all x86 CPU types (albeit not optimally fast), you can specify 386 here. The kernel will not necessarily run on earlier architectures than the one you have chosen; e.g., a Pentium-optimized kernel will run on a PPro, but not necessarily on a i486. Here are the settings recommended for greatest speed: 386 Choose this if you have an AMD/Cyrix/Intel 386DX/DXL/SL/ SLC/SX, Cyrix/TI 486DLC/DLC2, UMC 486SX-S, or NexGen Nx586 processor. Only 386 kernels will run on a 386 class machine. 486 Choose this if you have an AMD/Cyrix/IBM/Intel 486DX/ DX2/DX4, SL/SLC/SLC2/SLC3/SX/SX2 and UMC U5D, or U5S processor. 586 Choose this if you have a generic Pentium processor lacking the TSC (timestamp counter) register. Pentium-Classic Choose this if you have an Intel Pentium processor. Pentium-MMX Choose this if you have an Intel Pentium MMX processor. Pentium-Pro Choose this if you have an Intel Pentium Pro processor. Pentium-II Choose this if you have an Intel Pentium II or pre-Copper- mine Celeron processor. Pentium-III Choose this if you have an Intel Pentium III or Coppermine Celeron processor. Pentium-4 Choose this if you have an Intel Pentium 4 or P4-based Celeron processor. K6 Choose this if you have an AMD K6, K6-II or K6-III (aka K6- 3D) processor. Athlon Choose this if you have an AMD K7 family (Athlon/Duron/ Thunderbird) processor. M386 | 125 ,ch11.12684 Page 126 Friday, December 1, 2006 10:07 AM Crusoe Choose this if you have a Transmeta Crusoe series processor. Efficeon Choose this if you have a Transmeta Efficeon series processor. Winchip-C6 Choose this if you have an original IDT Winchip processor. Winchip-2 Choose this if you have an IDT Winchip 2 processor. Winchip-2 Choose this if you have an IDT Winchip processor with 3DNow! capabilities. GeodeGX1 Choose this if you have a Geode GX1 (Cyrix MediaGX) processor. Geode GX/LX Choose this if you have an AMD Geode GX or LX processor. CyrixIII/VIA C3 Choose this if you have a VIA Cyrix III or VIA C3 processor. VIA C3-2 Choose this if you have a VIA C3-2 “Nehemiah” (model 9 and above) processor. If you don’t know what to do, choose 386. X86_GENERIC Generic x86 support Instead of just including optimizations for the selected x86 variant (e.g., PII, Crusoe, or Athlon), include some more generic optimiza- tions as well. This will make the kernel perform better on x86 CPUs other than the one selected. This is really intended for distributors who need more generic optimizations.
Recommended publications
  • Shorten Device Boot Time for Automotive IVI and Navigation Systems
    Shorten Device Boot Time for Automotive IVI and Navigation Systems Jim Huang ( 黃敬群 ) <[email protected]> Dr. Shi-wu Lo <[email protected]> May 28, 2013 / Automotive Linux Summit (Spring) Rights to copy © Copyright 2013 0xlab http://0xlab.org/ [email protected] Attribution – ShareAlike 3.0 Corrections, suggestions, contributions and translations You are free are welcome! to copy, distribute, display, and perform the work to make derivative works Latest update: May 28, 2013 to make commercial use of the work Under the following conditions Attribution. You must give the original author credit. Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode Goal of This Presentation • Propose a practical approach of the mixture of ARM hibernation (suspend to disk) and Linux user-space checkpointing – to shorten device boot time • An intrusive technique for Android/Linux – minimal init script and root file system changes are required • Boot time is one of the key factors for Automotive IVI – mentioned by “Linux Powered Clusters” and “Silver Bullet of Virtualization (Pitfalls, Challenges and Concerns) Continued” at ALS 2013 – highlighted by “Boot Time Optimizations” at ALS 2012 About this presentation • joint development efforts of the following entities – 0xlab team - http://0xlab.org/ – OSLab, National Chung Cheng University of Taiwan, led by Dr.
    [Show full text]
  • UG1046 Ultrafast Embedded Design Methodology Guide
    UltraFast Embedded Design Methodology Guide UG1046 (v2.3) April 20, 2018 Revision History The following table shows the revision history for this document. Date Version Revision 04/20/2018 2.3 • Added a note in the Overview section of Chapter 5. • Replaced BFM terminology with VIP across the user guide. 07/27/2017 2.2 • Vivado IDE updates and minor editorial changes. 04/22/2015 2.1 • Added Embedded Design Methodology Checklist. • Added Accessing Documentation and Training. 03/26/2015 2.0 • Added SDSoC Environment. • Added Related Design Hubs. 10/20/2014 1.1 • Removed outdated information. •In System Level Considerations, added information to the following sections: ° Performance ° Clocking and Reset 10/08/2014 1.0 Initial Release of document. UltraFast Embedded Design Methodology Guide Send Feedback 2 UG1046 (v2.3) April 20, 2018 www.xilinx.com Table of Contents Chapter 1: Introduction Embedded Design Methodology Checklist. 9 Accessing Documentation and Training . 10 Chapter 2: System Level Considerations Performance. 13 Power Consumption . 18 Clocking and Reset. 36 Interrupts . 41 Embedded Device Security . 45 Profiling and Partitioning . 51 Chapter 3: Hardware Design Considerations Configuration and Boot Devices . 63 Memory Interfaces . 69 Peripherals . 76 Designing IP Blocks . 94 Hardware Performance Considerations . 102 Dataflow . 108 PL Clocking Methodology . 112 ACP and Cache Coherency. 116 PL High-Performance Port Access. 120 System Management Hardware Assistance. 124 Managing Hardware Reconfiguration . 127 GPs and Direct PL Access from APU . 133 Chapter 4: Software Design Considerations Processor Configuration . 137 OS and RTOS Choices . 142 Libraries and Middleware . 152 Boot Loaders . 156 Software Development Tools . 162 UltraFast Embedded Design Methodology GuideSend Feedback 3 UG1046 (v2.3) April 20, 2018 www.xilinx.com Chapter 5: Hardware Design Flow Overview .
    [Show full text]
  • Redbooks Paper Linux on IBM Zseries and S/390
    Redbooks Paper Simon Williams Linux on IBM zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN Preface This Redpaper provides information to help readers plan for and exploit Internet Protocol (IP) broadcast support that was made available to z/VM Guest LAN environments with the introduction of the z/VM 4.3 Operating System. Using IP broadcast support, Linux guests can for the first time use DHCP to lease an IP address dynamically from a DHCP server in a z/VM Guest LAN environment. This frees the administrator from the previous method of having to hardcode an IP address for every Linux guest in the system. This new feature enables easier deployment and administration of large-scale Linux environments. Objectives The objectives of this paper are to: Review the z/VM Guest LAN environment Explain IP broadcast Introduce the Dynamic Host Configuration Protocol (DHCP) Explain how DHCP works in a z/VM Guest LAN Describe how to implement DHCP in a z/VM Guest LAN environment © Copyright IBM Corp. 2003. All rights reserved. ibm.com/redbooks 1 z/VM Guest LAN Attention: While broadcast support for z/VM Guest LANs was announced with the base z/VM 4.3 operating system, the user must apply the PTF for APAR VM63172. This APAR resolves several issues which have been found to inhibit the use of DHCP by Linux-based applications running over the z/VM Guest LAN (in simulated QDIO mode). Introduction Prior to z/VM 4.2, virtual connectivity options for connecting one or more virtual machines (VM guests) was limited to virtual channel-to-channel adapters (CTCA) and the Inter-User Communications Vehicle (IUCV) facility.
    [Show full text]
  • Firewalld ↔ Iptables (Continued)
    firewalld ↔ iptables (continued) Or, better said as, Understanding Linux Firewall Changes and Tools A firewall evolution and system management process Presented to SLUUG By David Forrest August 9, 2017 Bio I am David Forrest, a businessman in the housing and construction materials industry. Always keen to use the open and supportable solution even if it means getting my hands dirty. I was there, I did that, I have the t-shirt. And, I'm retired so now I can work on the “bleeding edge” - so on to the testing kernel! Why tonight? Why should we switch to firewalld? I felt a continuation was in order to address the problems that are caused by the virtual world and the interaction of processes within today's machines. Our various distributions seem to be jumping to the systemd init setup as it appears to offer better administration control to Linux Kernel machines. Firewalld just one of many efforts to see the future. In recent years, operating system virtualization has taken the industry by storm. But I'm still on CentOS7 and it uses firewalld as its default firewall along with systemd https://wiki.debian.org/Debate/initsystem/systemd firewalld It's a daemon and a command line interface to all the backends! One can start it as a service with a default setup and change it dynamically with a command line or with the daemon using D-Bus or NetworkManager. And with the new nftables release, we'll be able to combine several rules in one rich rule. The firewalld Architecture Firewalld and nft Systems have also moved toward Software Defined Networking (SDN) and system density has increased.
    [Show full text]
  • Hardening Linux
    eBooks-IT.org 4444_FM_final.qxd 1/5/05 12:39 AM Page i eBooks-IT.org Hardening Linux JAMES TURNBULL 4444_FM_final.qxd 1/5/05 12:39 AM Page ii eBooks-IT.org Hardening Linux Copyright © 2005 by James Turnbull All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher. ISBN (pbk): 1-59059-444-4 Printed and bound in the United States of America 987654321 Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. Lead Editor: Jim Sumser Technical Reviewer: Judith Myerson Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore, Chris Mills, Dominic Shakeshaft, Jim Sumser Project Manager: Kylie Johnston Copy Edit Manager: Nicole LeClerc Copy Editor: Kim Wimpsett Production Manager: Kari Brooks-Copony Production Editor: Kelly Winquist Compositor: Linda Weidemann Proofreader: Lori Bring Indexer: Kevin Broccoli Artist: Kinetic Publishing Services, LLC Cover Designer: Kurt Krames Manufacturing Manager: Tom Debolski Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany. In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail [email protected], or visit http://www.springer-ny.com.
    [Show full text]
  • Linux Kernal II 9.1 Architecture
    Page 1 of 7 Linux Kernal II 9.1 Architecture: The Linux kernel is a Unix-like operating system kernel used by a variety of operating systems based on it, which are usually in the form of Linux distributions. The Linux kernel is a prominent example of free and open source software. Programming language The Linux kernel is written in the version of the C programming language supported by GCC (which has introduced a number of extensions and changes to standard C), together with a number of short sections of code written in the assembly language (in GCC's "AT&T-style" syntax) of the target architecture. Because of the extensions to C it supports, GCC was for a long time the only compiler capable of correctly building the Linux kernel. Compiler compatibility GCC is the default compiler for the Linux kernel source. In 2004, Intel claimed to have modified the kernel so that its C compiler also was capable of compiling it. There was another such reported success in 2009 with a modified 2.6.22 version of the kernel. Since 2010, effort has been underway to build the Linux kernel with Clang, an alternative compiler for the C language; as of 12 April 2014, the official kernel could almost be compiled by Clang. The project dedicated to this effort is named LLVMLinxu after the LLVM compiler infrastructure upon which Clang is built. LLVMLinux does not aim to fork either the Linux kernel or the LLVM, therefore it is a meta-project composed of patches that are eventually submitted to the upstream projects.
    [Show full text]
  • Hdcp Support in Optee
    HDCP SUPPORT IN OPTEE PRODUCT PRESENTATION Linaro Multimedia Working Group MICR ADVANCED TECHNOLOGIES • https://www.linaro.org/ SEPTEMBER 2019 Agenda • Quick introduction to HDCP • Secure Video Path overview • Current HDCP control in Linux • Proposal to control HDCP in OPTEE • Questions HDCP OVERVIEW 3 HDCP : High bandwidth Digital Content Protection • A digital copy protection developed by Intel™ to prevent copying of digital and audio video content. Before sending data, the source device shall check the destination device is authorized to received it. If so, the source device encrypts the data, only the destination device can decrypt. - data encryption - prevent non-licensed devices from receiving content • Android and Linux NXP bsp manage HDCP at Linux Level, through libDRM. So nothing prevent a user to disable HDCP protection while secure content is under playback. It is a security holes in the Secure Video Path. • HDCP support currently under development for wayland/Weston: https://gitlab.freedesktop.org/wayland/weston/merge_requests/48 • No Open Source solution exists to manage HDCP in secure mode. • HDCP versions: ▪ HDCP 1.X: Hacked: Master key published (leak/reverse engineering) ▪ HDCP 2.0: Hacked before release ▪ HDCP 2.1: Hacked before release ▪ HDCP 2.2: Not yet hacked 4 ▪ HDCP 2.3: Not yet hacked HDCP control state Machine Content with HDCP protection mandatory no yes Local display Local display yes no yes no Video displayed Video displayed without HDCP Digital Display without HDCP Digital Display encryption encryption yes no yes no It means we have analog display Video displayed Video displayed HDCP supported without HDCP HDCP supported without HDCP encryption encryption yes no yes no Video displayed Video displayed without Widevine/PlayReady To Video not displayed Application to decide if HDCP check current HDCP version Application to display a Warning 5 HDCP encryption message HDCP Unauthorized, encryption to be used >= expected HDCP version Content Disabled.' Error.
    [Show full text]
  • A Simplified Graphics System Based on Direct Rendering Manager System
    J. lnf. Commun. Converg. Eng. 16(2): 125-129, Jun. 2018 Regular paper A Simplified Graphics System Based on Direct Rendering Manager System Nakhoon Baek* , Member, KIICE School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea Abstract In the field of computer graphics, rendering speed is one of the most important factors. Contemporary rendering is performed using 3D graphics systems with windowing system support. Since typical graphics systems, including OpenGL and the DirectX library, focus on the variety of graphics rendering features, the rendering process itself consists of many complicated operations. In contrast, early computer systems used direct manipulation of computer graphics hardware, and achieved simple and efficient graphics handling operations. We suggest an alternative method of accelerated 2D and 3D graphics output, based on directly accessing modern GPU hardware using the direct rendering manager (DRM) system. On the basis of this DRM support, we exchange the graphics instructions and graphics data directly, and achieve better performance than full 3D graphics systems. We present a prototype system for providing a set of simple 2D and 3D graphics primitives. Experimental results and their screen shots are included. Index Terms: Direct rendering manager, Efficient handling, Graphics acceleration, Light-weight implementation, Prototype system I. INTRODUCTION Rendering speed is one of the most important factors for 3D graphics application programs. Typical present-day graph- After graphics output devices became publicly available, a ics programs need to be able to handle very large quantities large number of graphics applications were developed for a of graphics data. The larger the data size, and the more sen- broad spectrum of uses including computer animations, com- sitive to the rendering speed, the better the speed-up that can puter games, user experiences, and human-computer inter- be achieved, even for minor aspects of the graphics pipeline.
    [Show full text]
  • Geode™ Gxm Processor Integrated X86 Solution with MMX Support
    Geode™ GXm Processor Integrated x86 Solution with MMX Support April 2000 Geode™ GXm Processor Integrated x86 Solution with MMX Support General Description The National Semiconductor® Geode™ GXm processor graphics accelerator provides pixel processing and ren- is an advanced 32-bit x86 compatible processor offering dering functions. high performance, fully accelerated 2D graphics, a 64-bit A separate on-chip video buffer enables >30 fps MPEG1 synchronous DRAM controller and a PCI bus controller, video playback when used together with the CS5530 I/O all on a single chip that is compatible with Intel’s MMX companion chip. Graphics and system memory accesses technology. are supported by a tightly-coupled synchronous DRAM The GXm processor core is a proven design that offers (SDRAM) memory controller. This tightly coupled memory competitive CPU performance. It has integer and floating subsystem eliminates the need for an external L2 cache. point execution units that are based on sixth-generation The GXm processor includes Virtual System Architec- technology. The integer core contains a single, six-stage ture® (VSA™ technology) enabling XpressGRAPHICS execution pipeline and offers advanced features such as and XpressAUDIO subsystems as well as generic emula- operand forwarding, branch target buffers, and extensive tion capabilities. Software handler routines for the Xpress- write buffering. A 16 KB write-back L1 cache is accessed GRAPHICS and XpressAUDIO subsystems can be in a unique fashion that eliminates pipeline stalls to fetch included in the BIOS and provide compatible VGA and 16- operands that hit in the cache. bit industry standard audio emulation. XpressAUDIO tech- In addition to the advanced CPU features, the GXm pro- nology eliminates much of the hardware traditionally asso- cessor integrates a host of functions which are typically ciated with audio functions.
    [Show full text]
  • Demystifying Internet of Things Security Successful Iot Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M
    Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Chandler, AZ, USA Chandler, AZ, USA Ned Smith David M. Wheeler Beaverton, OR, USA Gilbert, AZ, USA ISBN-13 (pbk): 978-1-4842-2895-1 ISBN-13 (electronic): 978-1-4842-2896-8 https://doi.org/10.1007/978-1-4842-2896-8 Copyright © 2020 by The Editor(s) (if applicable) and The Author(s) This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material.
    [Show full text]
  • IT Acronyms.Docx
    List of computing and IT abbreviations /.—Slashdot 1GL—First-Generation Programming Language 1NF—First Normal Form 10B2—10BASE-2 10B5—10BASE-5 10B-F—10BASE-F 10B-FB—10BASE-FB 10B-FL—10BASE-FL 10B-FP—10BASE-FP 10B-T—10BASE-T 100B-FX—100BASE-FX 100B-T—100BASE-T 100B-TX—100BASE-TX 100BVG—100BASE-VG 286—Intel 80286 processor 2B1Q—2 Binary 1 Quaternary 2GL—Second-Generation Programming Language 2NF—Second Normal Form 3GL—Third-Generation Programming Language 3NF—Third Normal Form 386—Intel 80386 processor 1 486—Intel 80486 processor 4B5BLF—4 Byte 5 Byte Local Fiber 4GL—Fourth-Generation Programming Language 4NF—Fourth Normal Form 5GL—Fifth-Generation Programming Language 5NF—Fifth Normal Form 6NF—Sixth Normal Form 8B10BLF—8 Byte 10 Byte Local Fiber A AAT—Average Access Time AA—Anti-Aliasing AAA—Authentication Authorization, Accounting AABB—Axis Aligned Bounding Box AAC—Advanced Audio Coding AAL—ATM Adaptation Layer AALC—ATM Adaptation Layer Connection AARP—AppleTalk Address Resolution Protocol ABCL—Actor-Based Concurrent Language ABI—Application Binary Interface ABM—Asynchronous Balanced Mode ABR—Area Border Router ABR—Auto Baud-Rate detection ABR—Available Bitrate 2 ABR—Average Bitrate AC—Acoustic Coupler AC—Alternating Current ACD—Automatic Call Distributor ACE—Advanced Computing Environment ACF NCP—Advanced Communications Function—Network Control Program ACID—Atomicity Consistency Isolation Durability ACK—ACKnowledgement ACK—Amsterdam Compiler Kit ACL—Access Control List ACL—Active Current
    [Show full text]
  • How Microprocessors Work E 1 of 64 ZM
    How Microprocessors Work e 1 of 64 ZM How Microprocessors Work ZAHIDMEHBOOB +923215020706 [email protected] 2003 BS(IT) PRESTION UNIVERSITY How Microprocessors Work The computer you are using to read this page uses a microprocessor to do its work. The microprocessor is the heart of any normal computer, whether it is a desktop machine, a server or a laptop. The microprocessor you are using might be a Pentium, a K6, a PowerPC, a Sparc or any of the many other brands and types of microprocessors, but they all do approximately the same thing in approximately the same way. If you have ever wondered what the microprocessor in your computer is doing, or if you have ever wondered about the differences between types of microprocessors, then read on. Microprocessor History A microprocessor -- also known as a CPU or central processing unit -- is a complete computation engine that is fabricated on a single chip. The first microprocessor was the Intel [email protected] +923215020706 (2003) How Microprocessors Work e 2 of 64 ZM 4004, introduced in 1971. The 4004 was not very powerful -- all it could do was add and subtract, and it could only do that 4 bits at a time. But it was amazing that everything was on one chip. Prior to the 4004, engineers built computers either from collections of chips or from discrete components (transistors wired one at a time). The 4004 powered one of the first portable electronic calculators. The first microprocessor to make it into a home computer was the Intel 8080, a complete 8- bit computer on one chip, introduced in 1974.
    [Show full text]