Tizen Overview & Architecture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tizen IVI “From Scratch” Customizing, Building and Testing
Tizen IVI “from scratch” Customizing, building and testing Stéphane Desneux Senior Software Engineer Eurogiciel <[email protected]> Eurogiciel ● Open source development and integration: ● Maintainers in multiple domains on tizen.org ● Embedded systems for real-time multimedia: ▪ Widi/Miracast stack ▪ Wayland/Weston ▪ Webkit2 browser with HW acceleration ● Applications: HTML5/CSS3, jquery, jqmobi, Cordova ● Location : Vannes (Brittany), France 14 2 FOSDEM' Automotive devroom – Tizen “from scratch” : customize, build, test ! Agenda ● Tizen & Tizen:IVI : short introduction ● From source code to target devices ● Customize ● Build ● Flash, Run, Test ! 14 3 FOSDEM' Automotive devroom – Tizen “from scratch” : customize, build, test ! Tizen: a short introduction Definition ● Open source project ● Hosted at the Linux Foundation ● Innovative Web-based platform for multiple devices ● Sponsored by worldwide companies ● Samsung & Intel are two big contributors ● Built on industry standards: ● GNU/Linux kernel, GNU libc ● POSIX ● W3C ● Many upstream Open Source projects 14 5 FOSDEM' Automotive devroom – Tizen “from scratch” : customize, build, test ! Tizen Profiles ● Multiple vertical profiles (derived from Tizen:Generic) ● IVI ● Mobile ● Future: other devices (TV, ...) ● Each profile adds its own enhancements ● Tizen packaging format: RPM 14 6 FOSDEM' Automotive devroom – Tizen “from scratch” : customize, build, test ! From source code … … to target devices 1: Source code GIT Repositories Remote Local Clone source repo Developers -
UG1046 Ultrafast Embedded Design Methodology Guide
UltraFast Embedded Design Methodology Guide UG1046 (v2.3) April 20, 2018 Revision History The following table shows the revision history for this document. Date Version Revision 04/20/2018 2.3 • Added a note in the Overview section of Chapter 5. • Replaced BFM terminology with VIP across the user guide. 07/27/2017 2.2 • Vivado IDE updates and minor editorial changes. 04/22/2015 2.1 • Added Embedded Design Methodology Checklist. • Added Accessing Documentation and Training. 03/26/2015 2.0 • Added SDSoC Environment. • Added Related Design Hubs. 10/20/2014 1.1 • Removed outdated information. •In System Level Considerations, added information to the following sections: ° Performance ° Clocking and Reset 10/08/2014 1.0 Initial Release of document. UltraFast Embedded Design Methodology Guide Send Feedback 2 UG1046 (v2.3) April 20, 2018 www.xilinx.com Table of Contents Chapter 1: Introduction Embedded Design Methodology Checklist. 9 Accessing Documentation and Training . 10 Chapter 2: System Level Considerations Performance. 13 Power Consumption . 18 Clocking and Reset. 36 Interrupts . 41 Embedded Device Security . 45 Profiling and Partitioning . 51 Chapter 3: Hardware Design Considerations Configuration and Boot Devices . 63 Memory Interfaces . 69 Peripherals . 76 Designing IP Blocks . 94 Hardware Performance Considerations . 102 Dataflow . 108 PL Clocking Methodology . 112 ACP and Cache Coherency. 116 PL High-Performance Port Access. 120 System Management Hardware Assistance. 124 Managing Hardware Reconfiguration . 127 GPs and Direct PL Access from APU . 133 Chapter 4: Software Design Considerations Processor Configuration . 137 OS and RTOS Choices . 142 Libraries and Middleware . 152 Boot Loaders . 156 Software Development Tools . 162 UltraFast Embedded Design Methodology GuideSend Feedback 3 UG1046 (v2.3) April 20, 2018 www.xilinx.com Chapter 5: Hardware Design Flow Overview . -
Porting a Window Manager from Xlib to XCB
Porting a Window Manager from Xlib to XCB Arnaud Fontaine (08090091) 16 May 2008 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version pub- lished by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Contents List of figures i List of listings ii Introduction 1 1 Backgrounds and Motivations 2 2 X Window System (X11) 6 2.1 Introduction . .6 2.2 History . .6 2.3 X Window Protocol . .7 2.3.1 Introduction . .7 2.3.2 Protocol overview . .8 2.3.3 Identifiers of resources . 10 2.3.4 Atoms . 10 2.3.5 Windows . 12 2.3.6 Pixmaps . 14 2.3.7 Events . 14 2.3.8 Keyboard and pointer . 15 2.3.9 Extensions . 17 2.4 X protocol client libraries . 18 2.4.1 Xlib . 18 2.4.1.1 Introduction . 18 2.4.1.2 Data types and functions . 18 2.4.1.3 Pros . 19 2.4.1.4 Cons . 19 2.4.1.5 Example . 20 2.4.2 XCB . 20 2.4.2.1 Introduction . 20 2.4.2.2 Data types and functions . 21 2.4.2.3 xcb-util library . 22 2.4.2.4 Pros . 22 2.4.2.5 Cons . 23 2.4.2.6 Example . 23 2.4.3 Xlib/XCB round-trip performance comparison . -
Flexible Lustre Management
Flexible Lustre management Making less work for Admins ORNL is managed by UT-Battelle for the US Department of Energy How do we know Lustre condition today • Polling proc / sysfs files – The knocking on the door model – Parse stats, rpc info, etc for performance deviations. • Constant collection of debug logs – Heavy parsing for common problems. • The death of a node – Have to examine kdumps and /or lustre dump Origins of a new approach • Requirements for Linux kernel integration. – No more proc usage – Migration to sysfs and debugfs – Used to configure your file system. – Started in lustre 2.9 and still on going. • Two ways to configure your file system. – On MGS server run lctl conf_param … • Directly accessed proc seq_files. – On MSG server run lctl set_param –P • Originally used an upcall to lctl for configuration • Introduced in Lustre 2.4 but was broken until lustre 2.12 (LU-7004) – Configuring file system works transparently before and after sysfs migration. Changes introduced with sysfs / debugfs migration • sysfs has a one item per file rule. • Complex proc files moved to debugfs • Moving to debugfs introduced permission problems – Only debugging files should be their. – Both debugfs and procfs have scaling issues. • Moving to sysfs introduced the ability to send uevents – Item of most interest from LUG 2018 Linux Lustre client talk. – Both lctl conf_param and lctl set_param –P use this approach • lctl conf_param can set sysfs attributes without uevents. See class_modify_config() – We get life cycle events for free – udev is now involved. What do we get by using udev ? • Under the hood – uevents are collect by systemd and then processed by udev rules – /etc/udev/rules.d/99-lustre.rules – SUBSYSTEM=="lustre", ACTION=="change", ENV{PARAM}=="?*", RUN+="/usr/sbin/lctl set_param '$env{PARAM}=$env{SETTING}’” • You can create your own udev rule – http://reactivated.net/writing_udev_rules.html – /lib/udev/rules.d/* for examples – Add udev_log="debug” to /etc/udev.conf if you have problems • Using systemd for long task. -
Version 7.8-Systemd
Linux From Scratch Version 7.8-systemd Created by Gerard Beekmans Edited by Douglas R. Reno Linux From Scratch: Version 7.8-systemd by Created by Gerard Beekmans and Edited by Douglas R. Reno Copyright © 1999-2015 Gerard Beekmans Copyright © 1999-2015, Gerard Beekmans All rights reserved. This book is licensed under a Creative Commons License. Computer instructions may be extracted from the book under the MIT License. Linux® is a registered trademark of Linus Torvalds. Linux From Scratch - Version 7.8-systemd Table of Contents Preface .......................................................................................................................................................................... vii i. Foreword ............................................................................................................................................................. vii ii. Audience ............................................................................................................................................................ vii iii. LFS Target Architectures ................................................................................................................................ viii iv. LFS and Standards ............................................................................................................................................ ix v. Rationale for Packages in the Book .................................................................................................................... x vi. Prerequisites -
How-To Gnome-Look Guide
HHOOWW--TTOO Written by David D Lowe GGNNOOMMEE--LLOOOOKK GGUUIIDDEE hen I first joined the harddisk, say, ~/Pictures/Wallpapers. right-clicking on your desktop Ubuntu community, I and selecting the appropriate You may have noticed that gnome- button (you know which one!). Wwas extremely look.org separates wallpapers into impressed with the amount of different categories, according to the customization Ubuntu had to size of the wallpaper in pixels. For Don't let acronyms intimidate offer. People posted impressive the best quality, you want this to you; you don't have to know screenshots, and mentioned the match your screen resolution. If you what the letters stand for to themes they were using. They don't know what your screen know what it is. Basically, GTK is soon led me to gnome-look.org, resolution is, click System > the system GNOME uses to the number one place for GNOME Preferences > Screen Resolution. display things like buttons and visual customization. The However, Ubuntu stretches controls. GNOME is Ubuntu's screenshots there looked just as wallpapers quite nicely if you picked default desktop environment. I impressive, but I was very the wrong size, so you needn't fret will only be dealing with GNOME confused as to what the headings about it. on the sidebar meant, and I had customization here--sorry no idea how to use the files I SVG is a special image format that Kubuntu and Xubuntu folks! downloaded. Hopefully, this guide doesn't use pixels; it uses shapes Gnome-look.org distinguishes will help you learn what I found called vectors, which means you can between two versions of GTK: out the slow way. -
Scalability of VM Provisioning Systems
Scalability of VM Provisioning Systems Mike Jones, Bill Arcand, Bill Bergeron, David Bestor, Chansup Byun, Lauren Milechin, Vijay Gadepally, Matt Hubbell, Jeremy Kepner, Pete Michaleas, Julie Mullen, Andy Prout, Tony Rosa, Siddharth Samsi, Charles Yee, Albert Reuther Lincoln Laboratory Supercomputing Center MIT Lincoln Laboratory Lexington, MA, USA Abstract—Virtual machines and virtualized hardware have developed a technique based on binary code substitution been around for over half a century. The commoditization of the (binary translation) that enabled the execution of privileged x86 platform and its rapidly growing hardware capabilities have (OS) instructions from virtual machines on x86 systems [16]. led to recent exponential growth in the use of virtualization both Another notable effort was the Xen project, which in 2003 used in the enterprise and high performance computing (HPC). The a jump table for choosing bare metal execution or virtual startup time of a virtualized environment is a key performance machine execution of privileged (OS) instructions [17]. Such metric for high performance computing in which the runtime of projects prompted Intel and AMD to add the VT-x [19] and any individual task is typically much shorter than the lifetime of AMD-V [18] virtualization extensions to the x86 and x86-64 a virtualized service in an enterprise context. In this paper, a instruction sets in 2006, further pushing the performance and methodology for accurately measuring the startup performance adoption of virtual machines. on an HPC system is described. The startup performance overhead of three of the most mature, widely deployed cloud Virtual machines have seen use in a variety of applications, management frameworks (OpenStack, OpenNebula, and but with the move to highly capable multicore CPUs, gigabit Eucalyptus) is measured to determine their suitability for Ethernet network cards, and VM-aware x86/x86-64 operating workloads typically seen in an HPC environment. -
Linux Kernal II 9.1 Architecture
Page 1 of 7 Linux Kernal II 9.1 Architecture: The Linux kernel is a Unix-like operating system kernel used by a variety of operating systems based on it, which are usually in the form of Linux distributions. The Linux kernel is a prominent example of free and open source software. Programming language The Linux kernel is written in the version of the C programming language supported by GCC (which has introduced a number of extensions and changes to standard C), together with a number of short sections of code written in the assembly language (in GCC's "AT&T-style" syntax) of the target architecture. Because of the extensions to C it supports, GCC was for a long time the only compiler capable of correctly building the Linux kernel. Compiler compatibility GCC is the default compiler for the Linux kernel source. In 2004, Intel claimed to have modified the kernel so that its C compiler also was capable of compiling it. There was another such reported success in 2009 with a modified 2.6.22 version of the kernel. Since 2010, effort has been underway to build the Linux kernel with Clang, an alternative compiler for the C language; as of 12 April 2014, the official kernel could almost be compiled by Clang. The project dedicated to this effort is named LLVMLinxu after the LLVM compiler infrastructure upon which Clang is built. LLVMLinux does not aim to fork either the Linux kernel or the LLVM, therefore it is a meta-project composed of patches that are eventually submitted to the upstream projects. -
Hdcp Support in Optee
HDCP SUPPORT IN OPTEE PRODUCT PRESENTATION Linaro Multimedia Working Group MICR ADVANCED TECHNOLOGIES • https://www.linaro.org/ SEPTEMBER 2019 Agenda • Quick introduction to HDCP • Secure Video Path overview • Current HDCP control in Linux • Proposal to control HDCP in OPTEE • Questions HDCP OVERVIEW 3 HDCP : High bandwidth Digital Content Protection • A digital copy protection developed by Intel™ to prevent copying of digital and audio video content. Before sending data, the source device shall check the destination device is authorized to received it. If so, the source device encrypts the data, only the destination device can decrypt. - data encryption - prevent non-licensed devices from receiving content • Android and Linux NXP bsp manage HDCP at Linux Level, through libDRM. So nothing prevent a user to disable HDCP protection while secure content is under playback. It is a security holes in the Secure Video Path. • HDCP support currently under development for wayland/Weston: https://gitlab.freedesktop.org/wayland/weston/merge_requests/48 • No Open Source solution exists to manage HDCP in secure mode. • HDCP versions: ▪ HDCP 1.X: Hacked: Master key published (leak/reverse engineering) ▪ HDCP 2.0: Hacked before release ▪ HDCP 2.1: Hacked before release ▪ HDCP 2.2: Not yet hacked 4 ▪ HDCP 2.3: Not yet hacked HDCP control state Machine Content with HDCP protection mandatory no yes Local display Local display yes no yes no Video displayed Video displayed without HDCP Digital Display without HDCP Digital Display encryption encryption yes no yes no It means we have analog display Video displayed Video displayed HDCP supported without HDCP HDCP supported without HDCP encryption encryption yes no yes no Video displayed Video displayed without Widevine/PlayReady To Video not displayed Application to decide if HDCP check current HDCP version Application to display a Warning 5 HDCP encryption message HDCP Unauthorized, encryption to be used >= expected HDCP version Content Disabled.' Error. -
Long Comment Regarding a Proposed Exemption Under 17 U.S.C. 1201 for Software Freedom Conservancy Proposed Class: 20 – Smart T
Long Comment Regarding a Proposed Exemption Under 17 U.S.C. 1201 For Software Freedom Conservancy Proposed Class: 20 – Smart TVs No multimedia evidence is being provided in connection with this comment Item 1. Commenter Information The Petition submitter is Software Freedom Conservancy (“Conservancy”), a 501(c)(3) not-for-profit organization that helps promote, improve, develop, and defend Free, Libre, and Open Source Software (“FLOSS”)—software developed by volunteer communities and licensed for the benefit of everyone. Conservancy is the nonprofit home for dozens of FLOSS projects representing well over a thousand volunteer contributors. Conservancy's communities maintain some of the most fundamental utilities in computing today, and introduce innovations that will shape how software will be created in the future. Among the projects for which Conservancy provides logistical, administrative, and legal support are BusyBox and Samba, both of which are commonly installed on “smart” or computer- embedded consumer electronics devices. BusyBox provides a number of key system utilities that enable such devices to run applications, interact with files, access network services, and more.1 It is also used by community projects focused on unlocking and improving Samsung-2 and LG- manufactured Smart TVs.3 Samba permits devices to interact with files stored on other networked devices.4 Conservancy also represents the interests of several contributors to the Linux kernel, the core component of the operating system of most Smart TVs. Conservancy may be contacted through its authorized representatives and pro bono counsel at Tor Ekeland, P.C., 195 Plymouth Street, Brooklyn, New York 11201: Aaron Williamson Frederic Jennings (718) 285-9349 (718) 514-2075 [email protected] [email protected] Item 2. -
A Simplified Graphics System Based on Direct Rendering Manager System
J. lnf. Commun. Converg. Eng. 16(2): 125-129, Jun. 2018 Regular paper A Simplified Graphics System Based on Direct Rendering Manager System Nakhoon Baek* , Member, KIICE School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea Abstract In the field of computer graphics, rendering speed is one of the most important factors. Contemporary rendering is performed using 3D graphics systems with windowing system support. Since typical graphics systems, including OpenGL and the DirectX library, focus on the variety of graphics rendering features, the rendering process itself consists of many complicated operations. In contrast, early computer systems used direct manipulation of computer graphics hardware, and achieved simple and efficient graphics handling operations. We suggest an alternative method of accelerated 2D and 3D graphics output, based on directly accessing modern GPU hardware using the direct rendering manager (DRM) system. On the basis of this DRM support, we exchange the graphics instructions and graphics data directly, and achieve better performance than full 3D graphics systems. We present a prototype system for providing a set of simple 2D and 3D graphics primitives. Experimental results and their screen shots are included. Index Terms: Direct rendering manager, Efficient handling, Graphics acceleration, Light-weight implementation, Prototype system I. INTRODUCTION Rendering speed is one of the most important factors for 3D graphics application programs. Typical present-day graph- After graphics output devices became publicly available, a ics programs need to be able to handle very large quantities large number of graphics applications were developed for a of graphics data. The larger the data size, and the more sen- broad spectrum of uses including computer animations, com- sitive to the rendering speed, the better the speed-up that can puter games, user experiences, and human-computer inter- be achieved, even for minor aspects of the graphics pipeline. -
Tizen Based Remote Controller CAR Using Raspberry Pi2
#ELC2016 Tizen based remote controller CAR using raspberry pi2 Pintu Kumar ([email protected], [email protected]) Samsung Research India – Bangalore : Tizen Kernel/BSP Team Embedded Linux Conference – 06th April/2016 1 CONTENT #ELC2016 • INTRODUCTION • RASPBERRY PI2 OVERVIEW • TIZEN OVERVIEW • HARDWARE & SOFTWARE REQUIREMENTS • SOFTWARE CUSTOMIZATION • SOFTWARE SETUP & INTERFACING • HARDWARE INTERFACING & CONNECTIONS • ROBOT CONTROL MECHANISM • SOME RESULTS • CONCLUSION • REFERENCES Embedded Linux Conference – 06th April/2016 2 INTRODUCTION #ELC2016 • This talk is about designing a remote controller robot (toy car) using the raspberry pi2 hardware, pi2 Linux Kernel and Tizen OS as platform. • In this presentation, first we will see how to replace and boot Tizen OS on Raspberry Pi using the pre-built Tizen images. Then we will see how to setup Bluetooth, Wi-Fi on Tizen and finally see how to control a robot remotely using Tizen smart phone application. Embedded Linux Conference – 06th April/2016 3 RASPBERRY PI2 - OVERVIEW #ELC2016 1 GB RAM Embedded Linux Conference – 06th April/2016 4 Raspberry PI2 Features #ELC2016 • Broadcom BCM2836 900MHz Quad Core ARM Cortex-A7 CPU • 1GB RAM • 4 USB ports • 40 GPIO pins • Full HDMI port • Ethernet port • Combined 3.5mm audio jack and composite video • Camera interface (CSI) • Display interface (DSI) • Micro SD card slot • Video Core IV 3D graphics core Embedded Linux Conference – 06th April/2016 5 PI2 GPIO Pins #ELC2016 Embedded Linux Conference – 06th April/2016 6 TIZEN OVERVIEW #ELC2016 Embedded Linux Conference – 06th April/2016 7 TIZEN Profiles #ELC2016 Mobile Wearable IVI TV TIZEN Camera PC/Tablet Printer Common Next?? • TIZEN is the OS of everything.