Beyond Eye Candy

Total Page:16

File Type:pdf, Size:1020Kb

Beyond Eye Candy COVER STORY Xgl and Compiz An OpenGL-accelerated desktop with Xgl and Compiz BEYOND EYE CANDY www.sxc.hu A member of Suse’s X11 team delivers an insider’s look at Xgl. agement must work hand in hand, we can expect to see more compositing BY MATTHIAS HOPF window managers in the future with the ability to merge both processes. ac fans were ecstatic when The Render extension adds new basic Another important X server compo- Apple introduced the Quartz primitives for displaying images and nent that desperately needs reworking is MExtreme [1] graphics interface, polygons, along with a new glyph sys- the hardware acceleration architecture, which accelerated desktop effects using tem for enhanced font displays. This which is responsible for efficient hard- 3D hardware. Microsoft’s Windows Vista particularly reflects the fact that the leg- ware representation of graphic com- with its Aero technology looks to close acy graphics commands, called core re- mands. The previous XAA architecture is this gap with the Mac. In the world of quests, no longer meet the demands built around core requests, and is there- Linux, Xgl [2] now provides a compara- placed on modern toolkits such as Qt fore difficult to extend. The architecture ble and even more advanced technology and GTK. All primitives can now be outlived its usefulness and needs replac- that supports similar effects. linked to data in the framebuffer using ing. The most promising alternatives are Xgl is an X Server by David Revemann Porter-Duff operators [3], thus support- EXA and OpenGL. that uses OpenGL to implement graphics ing the rendering of semitransparent sur- EXA is straightforward and easy to im- output. When a program tells Xgl to faces (alpha blending) and fonts with plement, but OpenGL has the advantage draw a line, Xgl passes the vertices to anti-aliasing (pixel coverage). Many of being a widespread programming in- the OpenGL subsystem, which then modern applications make extensive use terface supported by working drivers. sends the matching commands to the of antialiased fonts in particular. There is no need for the X server to con- graphics hardware. Despite this empha- Up to now, the window system used in trol the hardware. In the future, there sis on OpenGL, Xgl also retains the pro- X has supported overlapping windows, will only be one graphics hardware in- tocol that existing applications use to but it has not provided the ability to terface, rather that two separate inter- talk to the X Server, removing the need draw to invisible window areas and dis- faces for XAA/ EXA and OpenGL. to rewrite application programs. play this window content. To achieve this, all windows first have to be drawn Looking Deeper Background in an invisible area of the framebuffer, In constrast to popular claims, Xgl does Following an extended period of stand- before all windows are joined (compos- not accelerate the execution of OpenGL still in X server development, program- ited) in the visible frame buffer. This is programs. On the contrary, only indirect mers have integrated new features in re- exactly what the X server’s Composite rendering is possible for technical rea- cent years to provide a basis for the new extension does. sons at this time of writing. In other Xgl technology. Modern toolkits such as An external process handles the task words, OpenGL commands are handed Qt and GTK already use many of these of combining all the windows to provide to Xgl via the GLX protocol before being new features without users actually real- an overall view in a similar way to the passed on to the graphics hardware. In- izing it. Two major protocol extensions, well-known window manager. It can use direct rendering is much slower than di- Render and Composite, play an impor- the Render extension to draw multiple rect rendering for programs that need to tant role for Xgl and the composite man- superimposed, semi-transparent win- generate large numbers of polygons ager Compiz. dows. As compositing and window man- (games) or textures (video). 24 ISSUE 68 JULY 2006 WWW.LINUX - MAGAZINE.COM Xgl and Compiz COVER STORY ager that can use OpenGL commands to Application(s) Composite Manager display windows. This option is not X11 Protocol EXT_texture_from_pixmap GLX Protocol open to the normal X Server, as OpenGL is not linked to the underlying window system; that is, it cannot access window Xserver content drawn using X11 commands. DDX Mesa / GLX As Xgl uses OpenGL internally, it can make window content accessible to an Pixmap Buffer ID 3D Desktop Geometry external composite manager using the Glitz GLX_EXT_texture_from_pixmap exten- sion. This extension is not provided by the OpenGL driver, but by Xgl. X.org has included this extension since the imple- OpenGL mentation of AIGLX, but it is still miss- Commands from XGL Texture Binding Commands from ing support for a number of features. Composite Manager As previously mentioned, the compos- pBuffer / FBO ite manager uses indirect rendering to gfx Hardware draw the desktop; that is, all OpenGL commands are sent to Xgl using the GLX pBuffer / FBO protocol before being passed to the graphics hardware. This is the only way pBuffer / FBO Framebuffer for another process to use textures in the Xgl address scope. This issue also affects Figure 1: Pixel pipeline of a composite managers under Xgl. all OpenGL applications, as they have to draw in an invisible area of the frame- At the current time, Xgl cannot na- and rendered by OpenGL. This process buffer, which has to be in the X server tively access the hardware; instead it occurs separately for each program. address scope as well. Refer to [4]. relies on a system that initializes the Then the composite manager draws the framebuffer and provides an OpenGL window content as textures on OpenGL Compiz interface. Right now, that is the popular objects. The objects are typically rectan- Humans are accustomed to understand- Xorg X Server; in other words, Xgl opens gles, but they can be more complex, ing three-dimensional scenarios. It thus a window that covers the whole screen three dimensional objects for transitions. makes sense to project the GUI onto a on the Xorg server. After this has hap- Therefore, Xgl is not responsible itself three dimensional desktop, assuming the pened, X applications can connect to for the breathtaking effects we have interactions with non-two-dimensional Xgl, while the standard X server only has heard so much of, however, it does allow program representations are kept to a to deal with the Xgl client throughout programmers to create a composite man- minimum. Genuine 3D interaction still the whole session. The X11 commands the server has to handle can be fairly complex; this is why an abstraction layer is used to encapsu- late the OpenGL statements. The layer, in the form of the Glitz library, is basi- cally the OpenGL-accelerated back-end for the Cairo library, a system for graph- ics operations that works independently of the resolution. When a composite manager enters the array, more complexity is added to the graphics pipeline. As Figure 1 shows, the X Server first redirects all window output to non-visible areas of the framebuffer. A memory area of this kind is created by a pBuffer or Frame Buffer Object (FBO). All X11 commands issued by an applica- tion are redirected to this memory space Figure 2: Compiz toggling to another virtual desktop. WWW.LINUX - MAGAZINE.COM ISSUE 68 JULY 2006 25 COVER STORY Xgl and Compiz like to see the complete driver code ousted from the X server. An X server working on the basis of OpenGL could more easily support a future protocol that dropped core graphics primitive support to improve client-server commu- nications. One of Xgl’s major weaknesses is its lack of native hardware support. For the time being, it is forced to rely on the Xorg server as an intermediary. An ex- perimental branch dubbed Xegl is capa- ble of talking directly to the graphics hardware, although it is restricted to R100 and R200 based Radeon cards, and the current server status is unknown. Everyone involved seems to agree that the future belongs to OpenGL-based Figure 3: The Switcher plugin with live thumbnails of applications. compositing window managers. And Compiz in particular could be the win- poses a number of technical issues and easily modify Compiz to suit their own dow manager of the future thanks to its is typically unintuitive. taste. Check out [6] for a more detailed flexible plugin architecture. Projecting two-dimensional pixel data list of plugins, along with function de- As of this writing, Xgl and Compiz are onto three-dimensional objects is a stan- scriptions and instructions on how to both fairly stable, but they are at an dard application for OpenGL. At the use them. early stage of their development. Pack- same time, you get effects such as semi- OpenGL-based programs are often crit- ages are available for openSuse [5] to transparency more or less for free, as icized for being eye candy and nothing give users an opportunity to test the new they are part of OpenGL’s standard bag more. However, this technology really technology without going to much trou- of tricks. So far, the only reason not to does support useful developments in the ble. The current snaphots of the immi- release a composite manager of this kind field of accessibility aids for users with nent Ubuntu release, Dapper Drake, has been that Xgl was needed to open up sensory impairments (using a zoom plu- allow users to install Xgl and Compiz.
Recommended publications
  • Porting a Window Manager from Xlib to XCB
    Porting a Window Manager from Xlib to XCB Arnaud Fontaine (08090091) 16 May 2008 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version pub- lished by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Contents List of figures i List of listings ii Introduction 1 1 Backgrounds and Motivations 2 2 X Window System (X11) 6 2.1 Introduction . .6 2.2 History . .6 2.3 X Window Protocol . .7 2.3.1 Introduction . .7 2.3.2 Protocol overview . .8 2.3.3 Identifiers of resources . 10 2.3.4 Atoms . 10 2.3.5 Windows . 12 2.3.6 Pixmaps . 14 2.3.7 Events . 14 2.3.8 Keyboard and pointer . 15 2.3.9 Extensions . 17 2.4 X protocol client libraries . 18 2.4.1 Xlib . 18 2.4.1.1 Introduction . 18 2.4.1.2 Data types and functions . 18 2.4.1.3 Pros . 19 2.4.1.4 Cons . 19 2.4.1.5 Example . 20 2.4.2 XCB . 20 2.4.2.1 Introduction . 20 2.4.2.2 Data types and functions . 21 2.4.2.3 xcb-util library . 22 2.4.2.4 Pros . 22 2.4.2.5 Cons . 23 2.4.2.6 Example . 23 2.4.3 Xlib/XCB round-trip performance comparison .
    [Show full text]
  • Sun Ultratm 5 Workstation Just the Facts
    Sun UltraTM 5 Workstation Just the Facts Copyrights 1999 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun logo, Ultra, PGX, PGX24, Solaris, Sun Enterprise, SunClient, UltraComputing, Catalyst, SunPCi, OpenWindows, PGX32, VIS, Java, JDK, XGL, XIL, Java 3D, SunVTS, ShowMe, ShowMe TV, SunForum, Java WorkShop, Java Studio, AnswerBook, AnswerBook2, Sun Enterprise SyMON, Solstice, Solstice AutoClient, ShowMe How, SunCD, SunCD 2Plus, Sun StorEdge, SunButtons, SunDials, SunMicrophone, SunFDDI, SunLink, SunHSI, SunATM, SLC, ELC, IPC, IPX, SunSpectrum, JavaStation, SunSpectrum Platinum, SunSpectrum Gold, SunSpectrum Silver, SunSpectrum Bronze, SunVIP, SunSolve, and SunSolve EarlyNotifier are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OpenGL is a registered trademark of Silicon Graphics, Inc. Display PostScript and PostScript are trademarks of Adobe Systems, Incorporated, which may be registered in certain jurisdictions. Netscape is a trademark of Netscape Communications Corporation. DLT is claimed as a trademark of Quantum Corporation in the United States and other countries. Just the Facts May 1999 Positioning The Sun UltraTM 5 Workstation Figure 1. The Ultra 5 workstation The Sun UltraTM 5 workstation is an entry-level workstation based upon the 333- and 360-MHz UltraSPARCTM-IIi processors. The Ultra 5 is Sun’s lowest-priced workstation, designed to meet the needs of price-sensitive and volume-purchase customers in the personal workstation market without sacrificing performance.
    [Show full text]
  • Trabajo Practico De Teoría De Aplicación a La Informática 2
    Trabajo Practico de Teoría de Aplicación a la Informática 2 XGL: aceleración OpenGL para el escritorio del sistema operativo Linux Nicolás González Oddone Universidad Católica Nuestra Señora de la Asunción 20 de setiembre de 2006 Breve historia del Xgl Xgl es concebido para proveer un servidor X basado en GL para escribir en el stack GL, proveyendo asi de un contexto OpenGL para que algun cliente OpenGL pueda hacer uso de este contexto y realize funciones de compisiting. Xgl fue desarrollado originalmente a través de listas de mail publicas, pero por un largo tiempo y hasta hasta el 2 de enero del 2006 la mayoría del desarrollo de Xgl se realizo a puertas cerradas por el equipo de desarrollo de escritorio de Novell. Ese 2 de enero el código volvió a liberarse al publico y fue incluido en freedesktop.org, junto con una reestructuración mayor para soporte mas amplio de drivers de display. En febrero del 2006 el servidor gano publicidad al ser exhibido por equipo de escritorio de Novell en una manera similar a la que se podrá apreciar en breve. Antes que nada es importante familiarizarse con algunos términos que serán necesarios para entender el funcionamiento del XGL y la comunicación del mismo con los servidores de ventanas del escritorio y los protocolos de comunicación utilizados. Comunicación entre el Xorg, Xgl y el cliente OpenGL, a través de libGL y el protocolo GLX Las aplicaciones X11 se comunican con el servidor utilizando libX11, una aplicación OpenGL se comunica con las extensiones GLX y al driver 3D utilizando libGL.
    [Show full text]
  • OS Linux Desktop Effects
    OS Linux Desktop Effects Tomáš Dlouhý Y04A1L Presentation Content • Basics • Composite Managers • Compiz Fusion • Basic Effects • Advanced Effects • Small scratch Y04A1L Presentation Basics I • Linux Kernel • X Server • Window Manager • Composite Manager Y04A1L Presentation Basics II • How does compositing works? Y04A1L Presentation Composite Managers I • Compiz • Compiz Quinnstorm known as Beryl • Kwin from KDE4 platform • Compiz Fusion (in next chapter) Y04A1L Presentation Composite Managers II • Compiz – Released by Novell in january 2006 – Include effects as Cube, rain, wobbly... – Supports newest NVIDIA / ATI cards only – Most stable – Supports KDE and GNOME Y04A1L Presentation Composite Managers III • Beryl – Fork of compiz – Extended effects from Compiz – Adding: Show, Animations, Emerald (window borders),... – Works with all graphics cards which supports 3d acceleration (requires driver with support 3d) – Supports KDE and GNOME Y04A1L Presentation Composite Managers IV • Kwin 4 – Relativly newest, many effects still under development – Few effects as: mouse position highlight, show all desktop, animations,... – Many effects dont require 3d acceleration (using X Server DRI) Y04A1L Presentation Compiz Fusion • After reunion Compiz and Beryl (renamed to Compiz Extras) • First release in summer 2007 • Adding all advatages from both projects • Come with more effects as Expo, Paint,... • CompizConfig Settings Manager Y04A1L Presentation Basic effects I • Cube – Most popular effect – Can have more then 4 desktops – Change background
    [Show full text]
  • How-To Gnome-Look Guide
    HHOOWW--TTOO Written by David D Lowe GGNNOOMMEE--LLOOOOKK GGUUIIDDEE hen I first joined the harddisk, say, ~/Pictures/Wallpapers. right-clicking on your desktop Ubuntu community, I and selecting the appropriate You may have noticed that gnome- button (you know which one!). Wwas extremely look.org separates wallpapers into impressed with the amount of different categories, according to the customization Ubuntu had to size of the wallpaper in pixels. For Don't let acronyms intimidate offer. People posted impressive the best quality, you want this to you; you don't have to know screenshots, and mentioned the match your screen resolution. If you what the letters stand for to themes they were using. They don't know what your screen know what it is. Basically, GTK is soon led me to gnome-look.org, resolution is, click System > the system GNOME uses to the number one place for GNOME Preferences > Screen Resolution. display things like buttons and visual customization. The However, Ubuntu stretches controls. GNOME is Ubuntu's screenshots there looked just as wallpapers quite nicely if you picked default desktop environment. I impressive, but I was very the wrong size, so you needn't fret will only be dealing with GNOME confused as to what the headings about it. on the sidebar meant, and I had customization here--sorry no idea how to use the files I SVG is a special image format that Kubuntu and Xubuntu folks! downloaded. Hopefully, this guide doesn't use pixels; it uses shapes Gnome-look.org distinguishes will help you learn what I found called vectors, which means you can between two versions of GTK: out the slow way.
    [Show full text]
  • A Simplified Graphics System Based on Direct Rendering Manager System
    J. lnf. Commun. Converg. Eng. 16(2): 125-129, Jun. 2018 Regular paper A Simplified Graphics System Based on Direct Rendering Manager System Nakhoon Baek* , Member, KIICE School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea Abstract In the field of computer graphics, rendering speed is one of the most important factors. Contemporary rendering is performed using 3D graphics systems with windowing system support. Since typical graphics systems, including OpenGL and the DirectX library, focus on the variety of graphics rendering features, the rendering process itself consists of many complicated operations. In contrast, early computer systems used direct manipulation of computer graphics hardware, and achieved simple and efficient graphics handling operations. We suggest an alternative method of accelerated 2D and 3D graphics output, based on directly accessing modern GPU hardware using the direct rendering manager (DRM) system. On the basis of this DRM support, we exchange the graphics instructions and graphics data directly, and achieve better performance than full 3D graphics systems. We present a prototype system for providing a set of simple 2D and 3D graphics primitives. Experimental results and their screen shots are included. Index Terms: Direct rendering manager, Efficient handling, Graphics acceleration, Light-weight implementation, Prototype system I. INTRODUCTION Rendering speed is one of the most important factors for 3D graphics application programs. Typical present-day graph- After graphics output devices became publicly available, a ics programs need to be able to handle very large quantities large number of graphics applications were developed for a of graphics data. The larger the data size, and the more sen- broad spectrum of uses including computer animations, com- sitive to the rendering speed, the better the speed-up that can puter games, user experiences, and human-computer inter- be achieved, even for minor aspects of the graphics pipeline.
    [Show full text]
  • High Level Interface to Graphics and Zebra User's Guide User's Guide
    CERN Program Library Long Writeups Q120 and Y251 High Level Interface to Graphics and Zebra User’s Guide User’s Guide Application Software and Databases Computing and Networks Division CERN Geneva, Switzerland Copyright Notice CERN Program Library entries Q120 and Y251 HIGZ – High level Interface to Graphics and Zebra HPLOT – User’s Guide ⃝c Copyright CERN, Geneva 1998 Copyright and any other appropriate legal protection of these computer programs and associated documentation reserved in all countries of the world. These programs or documentation may not be reproduced by any method without prior written con- sent of the Director-General of CERN or his delegate. Permission for the usage of any programs described herein is granted apriori to those scientific institutes associated with the CERN experimental program or with whom CERN has concluded a scientific collaboration agreement. Requests for information should be addressed to: CERN Program Library Office CERN-IT Division CH-1211 Geneva 23 Switzerland Tel. +41 22 767 4951 Fax. +41 22 767 8630 Email: [email protected] Trademark notice: All trademarks appearing in this guide are acknowledged as such. Contact Person: Olivier Couet /IT ([email protected]) Technical Realization: Michel Goossens /IT ([email protected]) Edition – July 1998 i Preliminary remarks This guide conbines the user documentation for both the HIGZ (Part I) and HPLOT (Part II) packages. They are implemented on various mainframes (e.g. IBM VM/CMS, Cray and VAX/VMS) and Unix workstations (e.g. HP, Apollo, Ultrix, IBM RS6000, Silicon Graphics and Sun). HIGZ has been designed to provide basic graphics functions similar to GKS.
    [Show full text]
  • Toward General Purpose 3D User Interfaces: Extending Windowing Systems to Three Dimensions
    TOWARD GENERAL PURPOSE 3D USER INTERFACES: EXTENDING WINDOWING SYSTEMS TO THREE DIMENSIONS A Thesis presented to the Faculty of California Polytechnic State University San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science by Forrest Reiling June 2014 c 2014 Forrest Reiling ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Toward General Purpose 3D User Inter- faces: Extending Windowing Systems to Three Dimensions AUTHOR: Forrest Reiling DATE SUBMITTED: June 2014 COMMITTEE CHAIR: Assistant Professor Zo¨eWood, Ph.D., Department of Computer Science COMMITTEE MEMBER: Assistant Professor Chris Lupo, Ph.D., Department of Computer Science COMMITTEE MEMBER: Professor Franz Kurfess, Ph.D., Department of Computer Science iii ABSTRACT Toward General Purpose 3D User Interfaces: Extending Windowing Systems to Three Dimensions Forrest Reiling Recent growth in the commercial availability of consumer grade 3D user interface de- vices like the Microsoft Kinect and the Oculus Rift, coupled with the broad availability of high performance 3D graphics hardware, has put high quality 3D user interfaces firmly within the reach of consumer markets for the first time ever. However, these devices require custom integration with every application which wishes to use them, seriously limiting application support, and there is no established mechanism for mul- tiple applications to use the same 3D interface hardware simultaneously. This thesis proposes that these problems can be solved in the same way that the same problems were solved for 2D interfaces: by abstracting the input hardware behind input prim- itives provided by the windowing system and compositing the output of applications within the windowing system before displaying it.
    [Show full text]
  • Linux Graphics Meets the ARM Ecosystem
    Linux Graphics Meets the ARM Ecosystem Jesse Barker <[email protected]> April 12, 2011 Find us here on the Linaro wiki Overview ● The Linux Desktop ● The ARM Linux Desktop ● The Subset Approach ● Examples ● Questions ● What's Next The Desktop Window system ● Display management ● Resource management ● Session management ● Event handling ● Application programming interface Protocol Decode Device Independent X (DIX) DRI EXA DDX User space libdrm evdev DRM KMS Kernel GEM/TTM space Input H/W CPU GPU DC Memory Protocol Encode DRI GLX libdrm libX* Core Application Logic User space DRM KMS Kernel GEM/TTM space GPU DC CPU Memory Toolkits/Frameworks ● Create abstraction layer from the underlying window system. ● Provide uniform look-and-feel across platforms. ● Applications don't have to care which system they are running on. ● New backend to the framework adds a new supported platform for a whole bundle of applications. Bells and Whistles ● OpenGL ● Video ● Audio ● Compositing window managers ● Animation The ARM Desktop What's the difference? ● Most differences are “physical” ● Screen size and resolution ● Unified memory pool ● Power vs. raw performance ● Some API (not necessarily, though) ● Window system interfaces ● Rendering interfaces The Subset Approach ● OpenGL ES 2.0 is explicitly defined as a subset of OpenGL 2.1. ● Both have diverged since the original definition. ● Minimize specialized code (e.g., window system interfaces). The “big-ticket” items ● Immediate mode ● Fixed-function vertex processing ● Fixed-function fragment processing ● EGL vs. GLX Examples ● glmark2 ● cairo-gles ● compiz glmark2 ● Based upon opensource glmark by Ben Smith. ● Uses 3D Studio Max for model content. ● Uses SDL for window system abstraction.
    [Show full text]
  • Opengl and the Linux Desktop LIFE in 3D New Technologies Will Change the Way You View the Objects on Your Linux Desktop
    The Future of Linux Graphics COVER STORY OpenGL and the Linux desktop LIFE IN 3D New technologies will change the way you view the objects on your Linux desktop. BY JOE CASAD he X graphics system has been at antiquated design of the X system is not, specification originally created by Silicon the heart of the Unix GUI desktop on its own, flexible enough to support Graphics. The OpenGL specification pro- Tsince 1984. Of course, its hori- this kind of performance. vides a standard for vendors to create zons expanded slowly. In the early years, In the Linux world, wherever you find graphics programming interfaces. The no one knew they even needed a graph- a very big and intriguing question, you purpose of OpenGL is to provide a single ics subsystem, and if anyone did venture can bet that someone out there is work- interface that gives graphics programs a out to try X with one of the few applica- ing on the answer. A solution to the wor- standard way of talking to graphics hard- tions that supported it, they needed to ries of the restless graphics developers is ware. One of the reasons why OpenGL be ready for late nights of tinkering. converging now around the emergence is necessary is that graphics hardware But the X system kept getting better, of two very important developments: vendors are busy with their own experi- and the X protocol, with its surrounding • Extensions to X that offer increased ments to deliver richer graphics and bet- technologies, served a key role in the flexibility and shortcuts around some ter performance to their customers.
    [Show full text]
  • Full Circle Magazine #160 Contents ^ Full Circle Magazine Is Neither Affiliated With,1 Nor Endorsed By, Canonical Ltd
    Full Circle THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY ISSUE #160 - August 2020 RREEVVIIEEWW OOFF GGAALLLLIIUUMMOOSS 33..11 LIGHTWEIGHT DISTRO FOR CHROMEOS DEVICES full circle magazine #160 contents ^ Full Circle Magazine is neither affiliated with,1 nor endorsed by, Canonical Ltd. HowTo Full Circle THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY Python p.18 Linux News p.04 Podcast Production p.23 Command & Conquer p.16 Linux Loopback p.39 Everyday Ubuntu p.40 Rawtherapee p.25 Ubuntu Devices p.XX The Daily Waddle p.42 My Opinion p.XX Krita For Old Photos p.34 My Story p.46 Letters p.XX Review p.50 Inkscape p.29 Q&A p.54 Review p.XX Ubuntu Games p.57 Graphics The articles contained in this magazine are released under the Creative Commons Attribution-Share Alike 3.0 Unported license. This means you can adapt, copy, distribute and transmit the articles but only under the following conditions: you must attribute the work to the original author in some way (at least a name, email or URL) and to this magazine by name ('Full Circle Magazine') and the URL www.fullcirclemagazine.org (but not attribute the article(s) in any way that suggests that they endorse you or your use of the work). If you alter, transform, or build upon this work, you must distribute the resulting work under the same, similar or a compatible license. Full Circle magazine is entirely independent of Canonical, the sponsor of the Ubuntu projects, and the views and opinions in the magazine should in no way be assumed to have Canonical endorsement.
    [Show full text]
  • Oracle R Enterprise User's Guide, Release 11.2 for Linux, Solaris, AIX, and Windows E26499-05
    Oracle® R Enterprise User's Guide Release 11.2 for Linux, Solaris, AIX, and Windows E26499-05 June 2012 Oracle R Enterprise User's Guide, Release 11.2 for Linux, Solaris, AIX, and Windows E26499-05 Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Primary Author: Margaret Taft Contributing Author: Contributor: This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
    [Show full text]