Improvement of Non-Shattering Capsule by Using Gamma Rays and EMS in the Kasetsart University Sesame Breeding Project Has Been Carried out Since November 1994

Total Page:16

File Type:pdf, Size:1020Kb

Improvement of Non-Shattering Capsule by Using Gamma Rays and EMS in the Kasetsart University Sesame Breeding Project Has Been Carried out Since November 1994 XA0100279 SESAME MUTATION INDUCTION: IMPROVEMENT OF NON- SHATTERING CAPSULE BY USING GAMMA RAYS AND EMS W. WONGYAI, W. SAENGKAEWSOOK, J.VEERAWUDH Department of Agronomy, Kasetsart University, Bangkok, Thailand Abstract Improvement of non-shattering capsule by using gamma rays and EMS in the Kasetsart University Sesame Breeding Project has been carried out since November 1994. Seed treatments with gamma rays (500 Gy) and EMS (0.5 and 1.0%, 4 hrs) were used. Growth characteristics, delayed shattering and shatter resistance of capsule were investigated in M2 through M8 lines. The seed yield of thirty promising M7 lines was evaluated in April 1997 at Suwan Farm, Pakchong , Nakorn Ratchasima. Most of the tested lines gave higher seed yields than the check variety, MK 60. M 6026 gave the highest seed yield (1,477 kg/ha). All the tested mutant lines had a longer period of growth during flowering (GF). However, three promising lines had a shorter flowering period (FP) and a degree of stem termination (DST) when they were planted both in April and August 1997. Based on the criteria of determinate growth studied, these mutant lines would be classified as having a determinate growth habit. Delayed shattering and shatter resistant capsule were obtained. It is noted that the promising mutant lines were obtained from EMS treatment. Thus, the study of these mutant lines revealed that the improvement of sesame by mutation breeding for reduced seed losses before or during the harvest can be successful. 1. INTRODUCTION Yield potential in sesame can be substantially reduced due to capsule shattering or uneven capsules' ripening. Thus, breeding sesame varieties for shatter resistance is considered important in improving seed yield of sesame. It has been generally agreed and recommended by FAO Expert Consultations that it is very important to develop sesame varieties which retain their seeds. The types of capsules with better seed retention are those that have indehiscence, strong placentation, limited tip opening, pinched capsule tips, delayed shattering, and upright capsules [1]. Also, development of uniform capsule maturation is required [2]. At present the commercial sesame cultivars have indeterminate growth habit with capsule shattering. The Sesame Breeding Project of Kasetsart University has developed determinate sesame since 1988 by using determinate sesame lines which were developed by Ashri in 1981 [3]. Some promising determinate lines of our project gave a shorter flowering period of approximately 17 days. But these lines have shattering capsules. The project has been trying to improve sesame varieties for resistance to shattering since 1991 by using the indehiscent lines (id/id) of Yermanos. Sesame lines with delayed shattering were obtained from this program [4]. However, these delayed shattering lines have only black seed, single stem and low seed yield. In November 1994, the Kasetsart University Sesame Breeding Project has proposed to use gamma rays and EMS induce capsule non-shattering. In addition, since October 1995, the project has included gamma rays treatment of Fi seeds of the promising crosses from the experiment of breeding for delayed shattering and two indehiscent lines for improving non-shattering and high seed yield. Due to the infection by bacterial leaf spot, Pseudomonas syringae pv. sesami and Xanthomonas phaseolina pv. sesami of the sesame lines in our project since 1995, the work of the project has been focused on this problem in 1997. 71 2. MATERIALS AND METHODS 2.1. Experiment 1: Improvement of non-shattering capsule by using gamma rays and EMS Thirty M7 lines lines were selected for testing their yielding ability and investigated for growth characteristics in April 1997. MK 60, the recommended variety of the Department of Agriculture was used as standard check. Based on shatter resistance and the plant having 1, 2 or 3 capsules at the top of stem, nineteen M8 lines were selected for yield trial in August 1997. MK 60 and KU 18 were used as check varieties. M7 and M8 lines were grown in 4 rows of 4m with spacing of 50 x 10 cm in a randomized complete block design with four replications, at Suwan Farm, Pakchong, Nakorn Ratchasima. Streptomycin at 50 ppm was used for control bacterial leaf spot. The seeds of these lines were soaked with streptomycin for 30 minutes before planting and the plants were sprayed with it at the flowering stage and subsequently at 14 days intervals until maturity [5]. The growth characters studied were modified from Foley et al. [6] and Lin and Nelson [7] are listed in Table I. TABLE I. DEFINITION OF GROWTH CHARACTERS STUDIED BF - Date of beginning flowering. When 50% of the plants have at least one flower. FP - Flowering period. The number of days from beginning of flowering to the terminal flowering. HTBF - Height at beginning flower. Height, in cm, to the terminal node. NOBF - Number of nodes on the main stem at beginning of flowering. TF - Date of terminal flowering. When 50% of the plants have at least one flower on the main stem. HTTF - Height at terminal flowering. Height, in cm, to the terminal node. NOTF - Number of nodes on the main stem at terminal flowering. DST - Degree of stem termination. The increase in number of observable nodes on the main stem after beginning flower, (NOTF-NOBF). GF - Growth during flowering. (HTTF-HTBF). HTM - Height at harvest. Height, in cm, to the terminal node. In classifying stem termination the GF values were used as follows: GF <20 cm = determinate growth habit GF ranged from 21-40 cm = semi-determinate growth habit GF >40 cm = indeterminate growth habit. The shatter characteristics investigated were delayed shattering and shatter resistance. Measurement of delayed shattering was done after all the capsules of the plant were ripe. Delayed shatter is assessed by the number of days that elapse from the first capsule's maturation until it splits. The shatter resistance is classified by using the concept of D.R. Langham (personal communication). The method for measuring shatter resistance on a 0-8 scale is as follows: TI = 0-8 scale the amount of the seed in the capsule when it is upright KE = 0-8 scale the amount of seed in the capsule when it is inverted TO = on 0-8 scale the extent of opening of the capsule. 2.2. Experiment 2. Use of gamma ray to induce mutation in F, seeds and indebiscent lines to improve shatter resistance F, seed of the four crosses of KKU1 x KUns 7018, KKU1 x KUns 7005, KUur 8012 x KUns 7014 and RS 6054 x KUns 7014 and two indehiscent lines (UCR 5010 and KU# 4) were treated with gamma rays at doses of 300 and 400 Gy. 72 Mi seeds of these materials were grown in March 1996 at the greenhouse of Agronomy Department, Kasetsart University. 12 M2 populations were sown in plots of 10 4m long rows, in spacings of 50 x 10 cm, in December 13, 1996. Each M2 population consisted of approximately 400 plants. Selection has been done in M2 and in successive generations. Pedigree selection was employed. Selection criteria were based on shatter resistance, resistance to bacterial leaf spot and good agronomic characteristics. Streptomycin was used to control bacterial leaf spot with the same procedure as in Experiment 1, in the M3 and M4 lines. 302 M3 lines and one hundred and fifty M4 lines were planted in April 21, and August 21, 1997 respectively. The M2 through M4 generations were grown at Suwan Farm, Pakchorg, Nakorn Ratchasima Province. 3. RESULTS AND DISCUSSION 3.1. Experiment 1 3.1.1. Seed yield The data of seed yield reported in this paper were obtained from the April 1997 growing season. There was much damage from diseases in August 1997, so it was not possible to harvest seed yield. However, the growth characteristics of the plants in this experiment were recorded. Seed yield of the tested M7 lines ranged from 915 to 1,477 kg/ha. Most of mutant lines had higher yields than the check variety. Most of tested lines had larger seeds than MK 60. Days to flowering of these lines were similar except M 6027 and M 6045 which had longer flowering periods of 45 and 48 days, respectively. Mean seed yield and some agronomic characters of fifteen promising M7 lines are shown in Table II. TABLE II. MEAN SEED YIELDS AND SOME AGRONOMIC CHARACTERS OF FIFTEEN PROMISING MUTANT LINES (M7) GROWN AT SUWAN FARM IN APRIL 1997 Line Pedigree Yield No. capsules/ No. days to No. nodes/ Plant Wt. 1000 (kg/ha) plant flower maturity plant height (cm) seeds (g) M6026 RS 6032-6-1 1,477 55 39 109 31.0 164 2.80 M6045 KUur 7014-1-1 1,370 59 48 116 39.1 165 3.35 M6017 RS 80001-4-1 1,362 56 33 116 30.4 134 3.20 M6020 RS 6032-1-1 1,352 56 30 112 35.3 140 3.00 M6039 RS 6028-5-2 1,352 54 32 108 30.3 126 3.20 M 6001-1 RS 8001-1-1-2 1,337 55 32 96 37.2 147 3.08 M6027 RS 6032-6-2 1,327 63 45 110 32.9 174 2.50 M6015 RS 8001-3-6 1,277 62 32 108 31.2 132 3.23 M 6006-1 RS 8001-1-6-1 1,243 52 32 102 33.6 142 3.15 M 6006-2 RS 8001-1-6-2 1,205 55 33 98 33.6 141 2.55 M6041 RS 6028-5-3-2 1,202 56 33 103 35.5 142 3.03 M6005 RS 8001-1-1-5 1,160 54 34 96 33.2 154 2.98 M6010 RS 8001-2-6 1,157 57 33 109 28.8 127 3.05 M6011 RS 8001-2-7 1,125 61 37 106 29.2 137 3.40 M6013 RS 8001-3-1-1 1,115 57 32 108 32.8 134 3.43 MK60 Check 1,031 56 32 110 32.4 123 2.82 LSD (0.05) 321 NS NS NS NS 10.2 - LSD (0.01) - 13.6 - C.V.
Recommended publications
  • Proposal for the Development of Large Scale Seed Production and Roadside Establishment Protocol for Five Native Hawaiian Groundcovers
    TERMINATION REPORT FOR (TA) DL2012-2 Proposal for the Development of Large Scale Seed Production and Roadside Establishment Protocol for Five Native Hawaiian Groundcovers. PREPARED BY Dr. Joseph DeFrank, project PI DATED: July 05, 2018 TERINATION REPORT FOR - (TA) DL 2012-2 - July 05, 2018 Page 1 Table of Contents Page Description number Executive Summary of Project Accomplishments 2-3 Establishing seed production nursery on Oahu. 4-10 Weed control research with native plants. 11-16 Seed Harvest Index for Aalii (Dodonaea viscosa) 17-19 Seed Harvest Index for Ahinahina (Achyranthes splendens) 19-23 Seed Harvest Index for Aweoweo (Chenopodium oahuense) 24-25 Seed Harvest Index for Ilima (Sida fallex) 26-27 Seed Harvest Index for Uhaloa (Waltheria indica) 28-30 Executive Summary of Project Accomplishments The Hawaii Department of Transportation has provided funding in support of the research and development project titled: “Proposal for the Development of Large Scale Seed Production and Roadside Establishment Protocol for Five Native Hawaiian Groundcovers”. The notice to proceed date was May15, 2015 with termination date of May 15, 2018. The Task Agreement (TA) for this project is DL2012-2 with Purchase Order No. 40055133. The Cooperative Agreement number is DOT-10-030. Summary of work performed during the project period Establishing seed production nurseries on Oahu. A .9 acre seed production nursery was established in the median area on the leeward side of Oahu in the Halawa interchange, see photos 1-7. All five of the project native plant species are included in this nursery. The nursery is supplied with automatic irrigation. Water conservation and clean seed collection is enhanced due to the used of durable woven black plastic ground cover used extensively throughout the planting.
    [Show full text]
  • Flowering Plant Families of Northwestern California: a Tabular Comparison
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 12-2019 Flowering Plant Families of Northwestern California: A Tabular Comparison James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Flowering Plant Families of Northwestern California: A Tabular Comparison" (2019). Botanical Studies. 95. https://digitalcommons.humboldt.edu/botany_jps/95 This Flora of Northwest California-Regional is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. FLOWERING PLANT FAMILIES OF NORTHWESTERN CALIFORNIA: A TABULAR COMPARISON James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University December 2019 Scientific Name Habit Leaves Sexuality • Floral Formula Common Name Fruit Type • Comments Aceraceae TSV SC:O U-m [P] • K 4-5 C 4-5 A 4-10 G (2) Maple Paired samaras • leaves often palmately lobed Acoraceae H S:A U-m • P 3+3 A 6 or G (3) Sweet Flag Berry • aquatic; aromatic rhizomes Aizoaceae HS S:AO B • P [3] 5 [8] A 0-4 Gsi (2-5-4) Ice Plant Capsule (berry-like) • fleshy; stamens divided, petaloid Alismataceae
    [Show full text]
  • Fruits: Kinds and Terms
    FRUITS: KINDS AND TERMS THE IMPORTANT PART OF THE LIFE CYCLE OFTEN IGNORED Technically, fruits are the mature ovaries of plants that contain ripe seeds ready for dispersal • Of the many kinds of fruits, there are three basic categories: • Dehiscent fruits that split open to shed their seeds, • Indehiscent dry fruits that retain their seeds and are often dispersed as though they were the seed, and • Indehiscent fleshy fruits that turn color and entice animals to eat them, meanwhile allowing the undigested seeds to pass from the animal’s gut We’ll start with dehiscent fruits. The most basic kind, the follicle, contains a single chamber and opens by one lengthwise slit. The columbine seed pods, three per flower, are follicles A mature columbine follicle Milkweed seed pods are also large follicles. Here the follicle hasn’t yet opened. Here is the milkweed follicle opened The legume is a similar seed pod except it opens by two longitudinal slits, one on either side of the fruit. Here you see seeds displayed from a typical legume. Legumes are only found in the pea family Fabaceae. On this fairy duster legume, you can see the two borders that will later split open. Redbud legumes are colorful before they dry and open Lupine legumes twist as they open, projecting the seeds away from the parent The bur clover modifies its legumes by coiling them and providing them with hooked barbs, only opening later as they dry out. The rattlepods or astragaluses modify their legumes by inflating them for wind dispersal, later opening to shed their seeds.
    [Show full text]
  • Morphology and Anatomy of the Fruit and Seed in Development of Chorisia Speciosa A
    Revista Brasil. Bot., V.26, n.1, p.23-34, mar. 2003 Morphology and anatomy of the fruit and seed in development of Chorisia speciosa A. St.-Hil. - Bombacaceae JULIANA MARZINEK1 and KÁTHIA S.M. MOURÃO1, 2 (received: October 11, 2001; accepted: August 28, 2002) ABSTRACT – (Morphology and anatomy of the fruit and seed in development of Chorisia speciosa A. St.-Hil. - Bombacaceae). The structure of the fruit and seed in development of Chorisia speciosa are described with the main purpose of clarifying the origin and nature of the hairs that cover the seeds and aiding future taxonomical and ecological studies of the group. The fruit is an ellipsoid loculicide capsule and presents the exocarp formed by 7-10 cells layers, with very thick walls and evident simple pits. A great number of mucilage secretory cavities and ramified vascular bundles, accompanied by fibers, occur in the parenchymatic mesocarp. The endocarp derives from the ventral epidermis of the ovary wall, whose cells undergo a gradual elongation, become lignified, and constitute the trichomes which cover the mature seeds. The fruit aperture occurs by means of a suture evident in the ovarian wall in the middle region of the carpel leaf. Anatropous and bitegmic ovules, provided by a hypostase, give rise to campilotropous and bitegmic seeds. The testa is uniseriate, the exotegmen is completely formed by macrosclereids, and mucilage secretory cavities occur in the mesotegmen. The endotegmen, which is differentiated in the endothelium, is crushed in the mature seed. The plicate embryo, which occupies practically the entire seminal cavity, is found between endosperm layers, both being rich in lipids.
    [Show full text]
  • Onagraceae of Ohio
    ONAGRACEAE OF OHIO. ROSE GORMLEY. ONAGRACEAE. Evening-primrose Family. Annual or perennial herbs, rarely shrubs, with alternate or opposite leaves without stipules, and with axillary, spicate or racemose, bisporangiate, epigynous flowers often with an hypan- thium; sepals 2-6 (usually 4) rarely none; stamens as many or twice as many as the petals; ovularly with 1-6 cavities, styles united; ovules indefinite, usually anatropous; fruit, a capsule or small nut; seeds, small; endosperm little or none; embryo straight. Synopsis. I. Fruit a many-seeded capsule opening by valves or pores; cavities 6-4. A. Floral parts not on an hypanthium. 1. .Seeds naked; calyx persistent. a. Leaves alternate. Ludwigia (1). b. Leaves opposite; petals none or very small; stems creeping or floating. Isnardia (2). 2. Seeds with a tuft of silky hairs; calyx deciduous. Chamaenerion (3). B. Floral parts on a prominent epigynous hypanthium. 1. Seeds with a tuft of silky hairs. Epilobium (4). 2. .Seeds naked or sometimes tuberculate. a. Stamens equal in length. 1. Ovules and seeds horizontal and prismatic- angled. Oenothera (5). 2. Ovules and seeds ascending, not angled. Raimannia (6). 1). Stamens unequal in length, one set longer. 1. Ovules and seeds many. Kneiffia (7). Hartmannia (8). 2. Ovules and seeds few. Lavauxia (9). II. Fruit indehiscent; cavities 4-1. A. Floral whorls 4-parted. Gaura (10). B. Floral whorls 2-parted. Circaea (11). Key. 1. Floral whorls with 4 or more parts. 2. 1. Foral whorls 2 parted. Circaea (11). •2. Without an hypanthium. 3. 2. Floral parts on a prominent hypanthium. 5. 3. Leaves alternate.
    [Show full text]
  • PLANT MORPHOLOGY: Vegetative & Reproductive
    PLANT MORPHOLOGY: Vegetative & Reproductive Study of form, shape or structure of a plant and its parts Vegetative vs. reproductive morphology http://commons.wikimedia.org/wiki/File:Peanut_plant_NSRW.jpg Vegetative morphology http://faculty.baruch.cuny.edu/jwahlert/bio1003/images/anthophyta/peanut_cotyledon.jpg Seed = starting point of plant after fertilization; a young plant in which development is arrested and the plant is dormant. Monocotyledon vs. dicotyledon cotyledon = leaf developed at 1st node of embryo (seed leaf). “Textbook” plant http://bio1903.nicerweb.com/Locked/media/ch35/35_02AngiospermStructure.jpg Stem variation Stem variation http://www2.mcdaniel.edu/Biology/botf99/stems&leaves/barrel.jpg http://www.puc.edu/Faculty/Gilbert_Muth/art0042.jpg http://www2.mcdaniel.edu/Biology/botf99/stems&leaves/xstawb.gif http://biology.uwsp.edu/courses/botlab/images/1854$.jpg Vegetative morphology Leaf variation Leaf variation Leaf variation Vegetative morphology If the primary root persists, it is called a “true root” and may take the following forms: taproot = single main root (descends vertically) with small lateral roots. fibrous roots = many divided roots of +/- equal size & thickness. http://oregonstate.edu/dept/nursery-weeds/weedspeciespage/OXALIS/oxalis_taproot.jpg adventitious roots = roots that originate from stem (or leaf tissue) rather than from the true root. All roots on monocots are adventitious. (e.g., corn and other grasses). http://plant-disease.ippc.orst.edu/plant_images/StrawberryRootLesion.JPG Root variation http://bio1903.nicerweb.com/Locked/media/ch35/35_04RootDiversity.jpg Flower variation http://130.54.82.4/members/Okuyama/yudai_e.htm Reproductive morphology: flower Yuan Yaowu Flower parts pedicel receptacle sepals petals Yuan Yaowu Flower parts Pedicel = (Latin: ped “foot”) stalk of a flower.
    [Show full text]
  • Field Guide to Intermountain Rushes
    United States Department of Field Guide to Agriculture Forest Service Intermountain Intermountain Research Station Rushes General Technical Report INT-306 Emerenciana G. Hurd Sherel Goodrich May 1994 Revised January 1997 Nancy L. Shaw THE AUTHORS Idaho, an M.S. degree in botany at Idaho State University, and a Ph.D. EMERENCIANA G. HURD is bota- degree in crop science at Oregon nist with the Intermountain Re- State University. search Station at the Forestry Sci- ences Laboratory in Boise, ID. ACKNOWLEDGMENTS Originally from the Phillipines, she holds a B.S. degree in biology from Warren Clary, Project Leader of Whitman College, Walla Walla, WA, the Intermountain Research and M.S. and Ph.D. degrees in Station’s Riparian/Stream Ecology botany from Northern Arizona and Management Research Work University. Unit, suggested the idea of devel- SHEREL GOODRICH is range con- oping field guides for grasslike spe- servationist for the Ashley National cies of Intermountain riparian areas. Forest, Vernal, UT. He received a We appreciate his helpful advise B.S. degree in range management and leadership in the accomplish- from Utah State University in 1971 ment of this work. We offer special and an M.S. degree in botany from thanks to Joy Mastrogiuseppe, cu- Brigham Young University in 1981. rator of the Marion Ownbey Her- He worked extensively in Utah and barium, Washington State Univer- central Nevada when he was with sity, for her taxonomic assistance; the Intermountain Research Sta- Lynda Smithman, Intermountain tion, Provo, UT. Research Station, for her helpful suggestions and encouragement; NANCY L. SHAW is botanist with Joe Duft for his assistance with the Intermountain Research Station photography; and Gary Hurd for his at the Forestry Sciences Laboratory willingness to drive long distances in Boise, ID.
    [Show full text]
  • Harvard Papers in Botany Volume 22, Number 1 June 2017
    Harvard Papers in Botany Volume 22, Number 1 June 2017 A Publication of the Harvard University Herbaria Including The Journal of the Arnold Arboretum Arnold Arboretum Botanical Museum Farlow Herbarium Gray Herbarium Oakes Ames Orchid Herbarium ISSN: 1938-2944 Harvard Papers in Botany Initiated in 1989 Harvard Papers in Botany is a refereed journal that welcomes longer monographic and floristic accounts of plants and fungi, as well as papers concerning economic botany, systematic botany, molecular phylogenetics, the history of botany, and relevant and significant bibliographies, as well as book reviews. Harvard Papers in Botany is open to all who wish to contribute. Instructions for Authors http://huh.harvard.edu/pages/manuscript-preparation Manuscript Submission Manuscripts, including tables and figures, should be submitted via email to [email protected]. The text should be in a major word-processing program in either Microsoft Windows, Apple Macintosh, or a compatible format. Authors should include a submission checklist available at http://huh.harvard.edu/files/herbaria/files/submission-checklist.pdf Availability of Current and Back Issues Harvard Papers in Botany publishes two numbers per year, in June and December. The two numbers of volume 18, 2013 comprised the last issue distributed in printed form. Starting with volume 19, 2014, Harvard Papers in Botany became an electronic serial. It is available by subscription from volume 10, 2005 to the present via BioOne (http://www.bioone. org/). The content of the current issue is freely available at the Harvard University Herbaria & Libraries website (http://huh. harvard.edu/pdf-downloads). The content of back issues is also available from JSTOR (http://www.jstor.org/) volume 1, 1989 through volume 12, 2007 with a five-year moving wall.
    [Show full text]
  • EXTENSION EC1257 Garden Terms: Reproductive Plant Morphology — Black/PMS 186 Seeds, Flowers, and Fruitsextension
    4 color EXTENSION EC1257 Garden Terms: Reproductive Plant Morphology — Black/PMS 186 Seeds, Flowers, and FruitsEXTENSION Anne Streich, Horticulture Educator Seeds Seed Formation Seeds are a plant reproductive structure, containing a Pollination is the transfer of pollen from an anther to a fertilized embryo in an arrestedBlack state of development, stigma. This may occur by wind or by pollinators. surrounded by a hard outer covering. They vary greatly Cross pollinated plants are fertilized with pollen in color, shape, size, and texture (Figure 1). Seeds are EXTENSION from other plants. dispersed by a variety of methods including animals, wind, and natural characteristics (puffball of dandelion, Self-pollinated plants are fertilized with pollen wings of maples, etc.). from their own fl owers. Fertilization is the union of the (male) sperm nucleus from the pollen grain and the (female) egg nucleus found in the ovary. If fertilization is successful, the ovule will develop into a seed and the ovary will develop into a fruit. Seed Characteristics Seed coats are the hard outer covering of seeds. They protect seed from diseases, insects and unfavorable environmental conditions. Water must be allowed through the seed coat for germination to occur. Endosperm is a food storage tissue found in seeds. It can be made up of proteins, carbohydrates, or fats. Embryos are immature plants in an arrested state of development. They will begin growth when Figure 1. A seed is a small embryonic plant enclosed in a environmental conditions are favorable. covering called the seed coat. Seeds vary in color, shape, size, and texture. Germination is the process in which seeds begin to grow.
    [Show full text]
  • KEY to FRUIT TYPES 1A. Fruit Derived from Several Ovaries of One Or More Flowers 2A. Fruit Arising from the Several Ovaries of A
    KEY to FRUIT TYPES 1a. Fruit derived from several ovaries of one or more flowers 2a. Fruit arising from the several ovaries of as many flowers (examples: pineapple, mulberry) MULTIPLE FRUIT 2b. Fruit arising from the coalescence of several ripened ovaries of one flower (example: raspberry, blackberry) AGGREGATE FRUIT 1b. Fruit derived from a single ovary (simple or compound) 3a. Fruit fleshy or juicy when ripe 4a. Ovary wall of fruit (or pericarp) entirely or in part fleshy 5a. Fruit indehiscent 6a. Ovary wall entirely fleshy (examples: tomato, cranberry, grape, currant, banana, melon [pepo], and citrus fruit [hesperidium]) BERRY 6b. Ovary wall of three distinct layers, the inner one bony (endocarp), the middle fleshy (mesocarp), and the outer "skin- like" (exocarp) (examples: peach, plum, cherry) DRUPE 5b. Fruit dehiscent 7a. Fruit derived from one carpel FOLLICLE 7b. Fruit derived from a compound gynoecium CAPSULE 4b. Ovary wall (e.g., the outer layer of an apple 'core') of fruit papery, surrounded by a fleshy material that represents the coalescent parts of the stamens, petals, sepals, and (some believe) receptacle (examples: apple, pear, quince) POME 3b. Fruit typically dry and usually hardened when ripe 8a. Fruit indehiscent (does not open or dehisce when mature), generally with one seed 9a. Ovary wall of varying thickness, usually not bony 10a. Fruit not winged (examples: buttercup, 'seeds' of strawberry, sunflower family, sedges, grasses [ovary wall adherent to and surrounding seed, may be called caryopsis or grain]) ACHENE 10b. Fruit winged (examples: elm, tulip tree) SAMARA 9b. Ovary wall hardened and bony 11a. Fruit usually > 5mm long (examples: oak, chestnut, hazelnut) NUT 11b.
    [Show full text]
  • Cicer Arietinum L.), Its Ecology and Cultivation
    r/ CICER L, A MONOGRAPH OF THE GENUS, WITH SPECIAL REFERENCE TO THE CHICKPEA {CICER ARIETINUM L.), ITS ECOLOGY AND CULTIVATION L. J. G. VAN DER MAESEN LAN!'/ . 11 GEN WAt;: CICER L., A MONOGRAPH OF THE GENUS, WITH SPECIAL REFERENCE TO THE CHICKPEA {CICER ARIETINUM L.), ITS ECOLOGY AND CULTIVATION Dit proefschrift met stellingen van LAURENTIUS JOSEPHUS GERARDUS van der MAESEN landbouwkundig ingenieur, geboren te Amsterdam op 18 december 1944, is goedgekeurd door de promotoren Dr. Ir. J. D. Ferwerda, hoogleraar in de Tropische Landbouw- plantenteelt, Dr. H. C. D. de Wit, hoogleraar in de Algemene Planten- systematiek en -geografie, en in het bijzonder die van de Tropen en de Subtropen. De Rector Magnificus van de Landbouwhogeschool, H. A. LENIGER Wageningen, 4 September 1972 635.657 582.738:581.4/.6+581. 9 L. J. G. VAN DER MAESEN CICER L., A MONOGRAPH OF THE GENUS, WITH SPECIAL REFERENCE TO THE CHICKPEA {CICER ARIETINUM L.), ITS ECOLOGY AND CULTIVATION PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE LANDBOUWWETENSCHAPPEN, OPGEZA G VAN DE RECTOR MAGNIFICUS, PROF. DR. IR. H. A. LENIGER, HOOGLERAAR IN DE TECHNOLOGIE, IN HET OPENBAAR TE VERDEDIGEN OP WOENSDAG 11 OKTOBER 1972 TE 16.00 UUR IN DE AULA VAN DE LANDBOUWHOGESCHOOL TE WAGENINGEN H. VEENMAN &ZONE N N.V. - WAGENINGEN - 1972 This thesisi sals o published as Mededelingen Landbouwhogeschool Wageningen 72-10(1972 ) (Communications Agricultural University Wageningen, The Netherlands) Aanmijn ouders CONTENTS PREFACE 1. ORIGIN AND HISTORY OF THE CHICKPEA 1 1.1. Introduction 1 1.2. Prehistoric data 1 1.3. Written sources 2 1.4.
    [Show full text]
  • Flowering Plant Families of Northwestern California: a Tabular Comparison
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital Commons@Humboldt State University (HSU) Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 12-2019 Flowering Plant Families of Northwestern California: A Tabular Comparison James P. Smith Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P., "Flowering Plant Families of Northwestern California: A Tabular Comparison" (2019). Botanical Studies. 95. https://digitalcommons.humboldt.edu/botany_jps/95 This Flora of Northwest California-Regional is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. FLOWERING PLANT FAMILIES OF NORTHWESTERN CALIFORNIA: A TABULAR COMPARISON James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University December 2019 Scientific Name Habit Leaves Sexuality • Floral Formula Common Name Fruit Type • Comments Aceraceae TSV SC:O U-m [P] • K 4-5 C 4-5 A 4-10 G (2) Maple Paired samaras • leaves often palmately lobed Acoraceae H S:A U-m • P 3+3 A 6 or G (3) Sweet Flag Berry • aquatic; aromatic rhizomes Aizoaceae HS S:AO B • P [3] 5 [8] A 0-4 Gsi (2-5-4) Ice Plant
    [Show full text]